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Abstract

Topological properties of networks are widely applied to study the link-prediction problem recently. Common Neighbors,
for example, is a natural yet efficient framework. Many variants of Common Neighbors have been thus proposed to further
boost the discriminative resolution of candidate links. In this paper, we reexamine the role of network topology in
predicting missing links from the perspective of information theory, and present a practical approach based on the mutual
information of network structures. It not only can improve the prediction accuracy substantially, but also experiences
reasonable computing complexity.
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Introduction

Link prediction attempts to estimate the likelihood of the

existence of links between nodes based on the available network

information, such as the observed links and nodes’ attributes [1,2].

On the one hand, the link-prediction problem is a long-standing

practical scientific issue. It can find broad applications in both

identifying missing and spurious links and predicting the candidate

links that are expected to appear with the evolution of networks

[1,3,4]. In biological networks (such as protein-protein interaction

networks [5] and metabolic networks [6]), for example, the

discovery of interactions is usually costly. Therefore, accurate

prediction is more reasonable compared with blindly checking all

latent interaction links [3,4]. In addition, the detection of inactive

or anomalous connections in online social networks may improve

the performance of link-based ranking algorithms [7]. Further-

more, in online social networks, very promising candidate links

(non-connected node pairs) can be recommended to the relevant

users as potential friendships [8,9]. It can help them to find new

friends and thus enhance their loyalties to the web sites. In ref. [9],

the authors even proposed the potential theory to facilitate the

missing link prediction of directed networks. The hypothesis can

find broad applications in friendship recommendation of large-

scale directed social networks, such as Twitter, Weibo and so on.

On the other hand, theoretically, link prediction can provide a

useful methodology for the modeling of networks [10]. The

evolving mechanisms of networks have been widely studied. Many

evolving models have been proposed to capture the evolving

process of real-world networks [11–14]. However, it is very hard to

quantify the degree to which the proposed evolving models govern

real networks. Actually, each evolving model can be viewed as the

corresponding predictor, we can thus apply evaluating metrics on

prediction accuracy to measure the performance of different

models.

Therefore, link prediction has attracted much attention from

various scientific communities. Within computer society, for

example, scientists have employed Markov chains [15,16] and

machine learning techniques [17–21] to extract features of

networks. These methods, however, depend on the attributes of

nodes for particular networks such as social and textual features.

Obviously, the attributes of nodes are generally hidden, and it is

thus difficult for people to obtain them [2].

Over the last 15 years, network science has been developed as a

novel framework for understanding structures of many real-world

networked systems. Recently, a wealth of algorithms based on

structural information have been proposed [2,4,22–28]. Among

various node-neighbor-based indices, Common Neighbors (CN) is

undoubtedly the precursor with low computing complexity. It has

also been revealed that CN achieves high prediction accuracy

compared with other classical prediction indices [25]. CN,

however, only emphasizes the number of common neighbors but

ignores the difference in their contributions. In this case, several

variants of CN to correct such a defect were put forwarded.

Consider, for example, Adamic-Adar [24] and Resource Alloca-

tion [25], in which low-degree common neighbors are advocated

by assigning more weight to them. In addition, based on the

Bayesian theory, a Local Nave Bayes model [27] was presented to

differentiate the roles of neighboring nodes. Furthermore, node

centrality (including degree, closeness and betweenness) was

applied to make neighbors more distinguishable. Besides such

CN-based indices, the evolving patterns and organizing principles

of networks can also provide useful insights for coping with the

link-prediction problem. The well-known mechanism of preferen-

tial attachment [11], for instance, has been viewed as a prediction
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measure [25,29]. For networks exhibiting hierarchical structure,

Hierarchical Random Graph can be employed to predict missing

links accordingly [4]. Recently, communities have been reinvented

as groups of links rather than nodes [30]. Motivated by the shift in

perspective of communities, Cannistraci et al. developed the local-

community-paradigm to enhance the performance of classical

prediction techniques [28].

All the aforementioned methods aim to quantify the existence

likelihood of candidate links. In information theory, the likelihood

can be measured by the self-information. In this article, we thus try

to give a more theoretical analysis of the link-prediction problem

from the perspective of information theory. Then a general

prediction approach based on mutual information is presented

accordingly. Our framework outperforms other prediction meth-

ods greatly.

Results

A Mutual Information Approach to Link Prediction
We here introduce the definitions of the self-information and of

the mutual information, respectively.

Definition 1 Considering a random variable X associated with

outcome xk with probability p(xk), its self-information I(xk) can

be denoted as [31]

I(xk)~ log
1

p(xk)
~{ log p(xk), ð1Þ

where the base of the logarithm is specified as 2, thus the unit of

self-information is bit. This is applicable for the following if not

otherwise specified. The self-information indicates the uncertainty

of the outcome xk. Obviously, the higher the self-information is,

the less likely the outcome xk occurs.

Definition 2 Consider two random variables X and Y with a

joint probability mass function p(x,y) and marginal probability

mass functions p(x) and p(y). The mutual information I(X ; Y )
can be denoted as follows [32]:

I(X ; Y ) ~
P

x X y Y

P
p(x,y) log p(x,y)

p(x)p(y)

~
P
x,y

p(x,y) log p(x,y)
p(x)p(y)

~
P
x,y

p(x,y) log p(xDy)
p(x)

:

ð2Þ

Hence, the mutual information I(xk; yj)~I(X~xk; Y~yj)

can be obtained as

I(xk; yj) ~ log
p(xk Dyj )

p(xk )

~{ log p(xk){({ log p(xk Dyj))

~I(xk){I(xk Dyj):

ð3Þ

The mutual information is the reduction in uncertainty due to

another variable. Thus, it is a measure of the dependence between

two variables. It is equal to zero if and only if two variables are

independent.

Now consider the link-prediction problem. Our idea is to use

the local structural information to facilitate the prediction. To do

that, we denote the set of node x’s neighboring nodes by C(x). For

node pair (x,y), the set of their common neighbors is denoted as

Oxy~C(x)\C(y).

Given a disconnected node pair (x,y), if the set of their common

neighbors Oxy is available, the likelihood score of node pair (x,y) is

defined as

sMI
xy ~{I(L1

xyDOxy), ð4Þ

where I(L1
xyDOxy) is the conditional self-information of the

existence of a link between node pair (x,y) when their common

neighbors are known. According to the property of the self-

information, the smaller I(L1
xyDOxy) is, the higher the likelihood of

existence of links is. Thus, we define the score as the negation of

I(L1
xyDOxy). According to the definition of mutual information,

I(L1
xyDOxy) can thus be derived as

I(L1
xyDOxy)~I(L1

xy){I(L1
xy; Oxy), ð5Þ

where I(L1
xy) is the self-information of that node pair (x,y) is

connected. I(L1
xy; Oxy) is the mutual information between the

event that node pair (x,y) has one link between them and the

event that the node pair’s common neighbors are known. Note

that I(L1
xy) is calculated by the prior probability of that node x and

node y are connected. In our method, without knowing the

common neighbors of node pair (x,y), we could use I(L1
xy) to

estimate the existence of a link between node pair (x,y).

I(L1
xy; Oxy) indicates the reduction in uncertainty of the connec-

tion between nodes x and y due to the information given by their

common neighbors. Since the mutual information plays a

significant role in our method, this framework is called MI for

short.

If the elements of Oxy are assumed to be independent of each

other, then

I(L1
xy; Oxy)~

X

z Oxy

I(L1
xy; z): ð6Þ

Here I(L1
xy; z) can be estimated by I(L1; z), which is defined as

the average mutual information over all node pairs connected to

node z

I(L1; z)~
1

DC(z)D(DC(z)D{1)

X

m=n

m,n C(z)

I(L1
mn; z): ð7Þ

Now we try to calculate the above mutual information.

According to its definition (3), I(L1
mn; z) can be denoted as

I(L1
mn; z)~I(L1

mn){I(L1
mnDz), ð8Þ

where I(L1
mnDz) is the conditional self-information of that node pair

(m,n) is connected when node z is one of their common neighbors,

and I(L1
mn) denotes the self-information of that node pair (m,n)

has one link. The right-hand side of eq. (8) is composed of the

(conditional) self-information. Based on the definition of
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(conditional) self-information, it can be calculated based on the

(conditional) probability.

The conditional probability p(L1
mnDz) can be estimated by the

clustering coefficient of node z, defined as

p(L1
mnDz)~

NDz

NDzzN^z

, ð9Þ

where NDz and N^z are the numbers of connected and of

disconnected node pairs with node z being a common neighbor,

respectively. Once p(L1
mnDz) is available, I(L1

mnDz) can be

calculated.

In order to calculate the probability p(L1
mn), we assume that no

degree-degree correlation is considered. When nodes’ degrees are

known, the probability that node pair (m,n) is disconnected is

derived as

p(L0
mn) ~ P

kn

i~1

(M{km){iz1
M{iz1

~
C

kn
M{km

C
kn
M

,

ð10Þ

where km and kn are the degrees of nodes m and n, respectively.

M is the total number of links in the training set. Obviously this

formula is symmetric, namely

p(L0
nm)~

Ckm
M{kn

Ckm
M

~
Ckn

M{km

Ckn
M

~p(L0
mn): ð11Þ

Thus,

p(L1
nm)~p(L1

mn)~1{
Ckn

M{km

Ckn
M

, ð12Þ

and I(L1
nm) can be calculated accordingly.

Collecting these results, we can obtain

I(L1
xy; z)&I(L1; z) ~ 1

DC(z)D(DC(z)D{1)

P

m=n

m,n C(z)

(I(L1
mn){I(L1

mnDz))

~ 1
DC(z)D(DC(z)D{1)

P

m=n

m,n C(z)

({logp(L1
mn){({logp(L1

mnDz)))

~ 1
DC(z)D(DC(z)D{1)

P

m=n

m,n C(z)

log
C

kn
M

C
kn
M

{C
kn
M{km

zlog
NDz

NDzzN^z
:

ð13Þ

Figure 1. An illustration about the calculation of MI model.
doi:10.1371/journal.pone.0107056.g001
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It is stipulated that I(L1; z)~0 if NDz~0.

Based on the above derivation, we have

sMI
xy ~{I(L1

xyDOxy)

~
P

z Oxy

I(L1
xy; z){I(L1

xy), ð14Þ

where I(L1
xy; z) and I(L1

xy) can be calculated by eqs. (13) and (12)

respectively.

To facilitate the understanding of MI, we illustrate it with an

example as shown in fig. 1. First, consider node u1, for example,

which is the common neighbor of nodes u2, u3 and u4. Using eq.

(9), we can have

I(L1
u2u3Dv1)~I(L1

u3u4Dv1)~I(L1
u2u4Dv1)~ log 3~1:585. Based on

eq. (12), we obtain I(L1
u2u3)~ log 10

3
~1:737,

I(L1
u2u4)~ log 15

8
~0:9069 and I(L1

u3u4)~ log 5~2:3219. Hence,

we have I(L1; u1)~0:0703. Now we compare node pairs (u2,u3)
and (u3,u4) with the common neighbor node u1. Then

I(L1
u2u3DOu2u3)~1:6667, I(L1

u3u4DOu3u4)~2:2516, which can be

calculated based on eq. (5). That is to say, node pair (u2,u3) is

more likely to be connected than node pair (u3,u4). The six

prediction methods mentioned in section ‘‘Previous Prediction

Methods’’, however, cannot distinguish these two node pairs. In

this sense, MI has higher discriminative resolution than them.

Second, MI can distinguish node pairs even if they all have no

common neighbors. For instance, I(L1
u3u5)~ log 10

3
~1:7370 and

I(L1
u3u8)~ log 5~2:3219. That is to say, node pair (u3,u5) is more

likely to be connected than node pair (u3,u8). This is undoubtedly

beyond the distinguishing ability of previous methods. Thirdly, the

mutual information of node u6 can be calculated as

I(L1; u6)~I(L1; u7)~0:1854. Thus I(L1
u5u8DOu5u8)~0:5361. We

note that I(L1
u5u8DOu5u8)vI(L1

u2u3DOu2u3), namely, node pair (u5,u8)

with two common neighbors has higher connection likelihood

compared to node pair (u2,u3) with only one common neighbor.

This is in agreement with our intuition very well. Lastly, different

nodes may provide different mutual information to reduce the

uncertainty of connections. The extent to which node u6

(I(L1; u6)~0:1854) contributes to the reduction of link uncertain-

ty, for example, is greater than that of node u1

(I(L1; u1)~0:0703).

Experimental Results
In this section, we compare our MI approach with other six

representative prediction indices which are introduced in section

‘‘Previous Prediction Methods’’. Tables 1 and 2 show the

prediction accuracy measured by AUC and precision, respectively.

The overall prediction performance of MI outperforms them

greatly.

Table 1 demonstrates that for AUC, MI model gives much

higher prediction accuracy than all 6 other indices for real-world

networks except network Grid. Especially for networks EPA and

INT, AUC of six indices is all around 0.6. MI model can

experience AUC of more than 0.9. Such great difference may arise

from that previous methods can’t distinguish those node pairs

without common neighbors. Unfortunately, the lack of common

neighbors between two nodes often appear in real-world networks.

For example, more than 99% of node pairs in network INT have

no common neighbors. But MI approach is able to discriminate

them greatly. Another finding is that CAR-based indices (CAR

and CRA) achieve the worst prediction performance for ten
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networks. Actually, for node pairs with few common neighbors,

the distinguishing ability of CAR-based indices degenerates

remarkably due to their emphasis on the links among common

neighbors. For example, all node pairs with less than two common

neighbors share the same connection likelihood because they all

have no links among common neighbors.

Table 2 shows the comparisons of precision for ten real-world

networks. We can see that MI is much better than CN, RA, LBN-

CN, and LNB-RA for all networks. CAR-based indices, however,

achieve higher precision than MI for some networks. The

efficiency of CAR-based indices in predicting top-ranked candi-

date links is very high for networks with notable link communities.

Consider, for example, network Wikivote with high average

degree, in which CAR-based indices overwhelmingly win MI and

other methods. Obviously, the extent to which CAR-based indices

excel MI is positively related to link communities. The computing

complexity of CAR-based indices, however, depends on the

density of networks greatly.

It is thus necessary to compare the computing complexity of

CAR-based indices and our MI model. Here the average degree is

denoted as SkT. According to eq. (23), the time complexity of

computing c(z) and Oxy is O(SkT4) and O(SkT2), respectively.

The total computing complexity of CAR is thus O(N2:SkT6).
Similarly to CAR, the computing complexity of CRA is also

O(N2:SkT6) because C(z) has the computing complexity of O(1)

based on eq. (24). For MI, the computing complexity of I(L1
mn)

and averaging all neighboring node pairs of node z is both

O(SkT2). Thus, I(L1; z) has the computing complexity of

O(SkT4). The computing complexity of MI model can be derived

as O(N2:SkT4) accordingly. Taking precision and the computing

complexity of CAR-based indices together, we note that they

outperform MI in some networks but with the computing

complexity as SkT2 times as that of MI. It is intolerable especially

for networks with the high average degree.

We also conduct experiments on an ASUS RS500-E6-PS4

workstation with 16 GB RAM and a Inter (R) Xeon (R) E5606 @

2.13 GHz quad-core processor. The detailed comparison of

computational time on ten real-world networks is summarized in

Table 3. The results indicate that the MI index overwhelms CAR-

based methods while remains similar time scale to other CN-based

methods.

Altogether, MI has a good tradeoff among AUC, precision and

the computing complexity.

Discussion

In this paper, we develop a novel framework to uncover missing

edges in networks via the mutual information of network topology.

Note that our approach differs crucially from previous prediction

methods in that it is derived from the information theory. We

compare our model with six typical prediction indices on ten

networks from disparate fields. The simulation results show that

MI model overwhelms them. Furthermore, we compare the

computing complexity of MI model with that of CAR-based

indices and find that our approach is less time-consuming.

Notice that the calculation of the mutual information depends

on the assumption that the network is free of assortativity.

However, we find that MI method performs very well not only in

uncorrelated networks but also in networks with high assortativity

coefficient such as PB, Yeast and EPA. Actually, the assortativity

coefficient refers to the global network-level property [33] as

showed in Table 4, which can’t convey sufficient property about

local structure. Considering that our method is mainly focusing on
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the neighbors of two nodes, we utilize local assortativity [34,35] to

explain such a phenomenon. For a network with N nodes and M
links, its excess degree (which is equal to the node’s degree minus

one) distribution is denoted as q(k). Then, the local assortativity of

node v is defined as [35]

rv~
j(jz1)(�kk{mq)

2Ms2
q

, ð15Þ

where j is node v’s excess degree, �kk denotes the average excess

degree of node v’s neighbors, mq is defined as the expectation of

distribution q(k) and sq is the standard deviation of distribution

q(k). Based on this definition, the sum of all nodes’ local

assortativity is equal to the network assortativity coefficient.

Fig. 2 shows the cumulative distribution function of nodes’ local

assortativity. We find that i) both locally assortative and

disassortative nodes exist regardless of the network-level assortative

mixing pattern; ii) most nodes do not show the local assortative

property, which is coincident with our assumption. Since our

method is related to the local assortativity rather than the global

one, it can achieve good prediction performance even in those

globally correlated networks.

Materials and Methods

Data and Problem Description
In this article, in order to better capture the statistical

perspective of our method, we choose ten example data sets from

various areas with the size of its giant component being greater

than 1000. They are listed as follows. i) Email [37]: A network of

Alex Arenas’s email. ii) PB [38]: A network of the US political

blogs. iii) Yeast [39]: A protein-protein interaction network. iv)

SciMet [40]: A network of articles from or citing Scientometrics. v)

Kohonen [40]: A network of articles with topic self-organizing

maps or references to Kohonen T. vi) EPA [41]: A network of web

pages linking to the website www.epa.gov. vii) Grid [12]: An

electrical power grid of the western US. viii) INT [42]: The router-

level topology of the Internet. ix) Wikivote [43,44]: The network

contains all the Wikipedia voting data from the inception of

Wikipedia till January 2008. x) Lederberg [45]: A network of

articles by and citing J. Lederberg, during the year 1945 to 2002.

Here we only focus on the giant component of networks. Their

basic topological parameters are summarized in Table 4.

In this paper, only an undirected simple network G(V ,E) is

studied, where V and E are the sets of nodes and of links,

respectively. That is to say, the direction of links, self-connections

and multiple links are ignored here. The framework of prediction

indices can be described as follows [2]. Given a disconnected node

pair (x,y), where x,y V, we should try to predict the likelihood of

connectivity between them. For each non-existent link

(x,y) U{E, where U represents the universal set, a score sxy

will be given to measure its existence likelihood according to a

specific predictor. The higher the score is, the more possible the

node pair has a candidate link. To figure out the latent links, all

disconnected ones are first sorted in the descending order. The

top-ranked node pairs are believed most likely to have links.

To validate the prediction performance of the algorithms, the

observable links of the network are divided into two separate sets,

i.e., the training set ET and the probe set EP. Obviously, ET is the

available topological information, and EP is for the test and thus

cannot be used for prediction. Therefore, ET|EP~E and

ET\EP~ =0. In our model, the training set ET and probe set EPT
a

b
le

4
.

T
h

e
b

as
ic

st
ru

ct
u

ra
l

p
ar

am
e

te
rs

o
f

th
e

g
ia

n
t

co
m

p
o

n
e

n
ts

o
f

e
xa

m
p

le
n

e
tw

o
rk

s.

N
e

tw
o

rk
\

In
d

e
x

N
M

e
C

r
H

Sk
T

Sd
T

Em
ai

l
1

1
3

3
5

4
5

1
0

.2
9

9
9

0
.2

5
4

0
0

.0
7

8
2

1
.9

4
2

1
9

.6
2

2
2

3
.6

0
2

8

P
B

1
2

2
2

1
6

7
1

4
0

.3
9

8
2

0
.3

6
0

0
2

0
.2

2
1

3
2

.9
7

0
7

2
7

.3
5

5
2

2
.7

3
5

3

Y
e

as
t

2
3

7
5

1
1

6
9

3
0

.2
1

8
1

0
.3

8
8

3
0

.4
5

3
9

3
.4

7
5

6
9

.8
4

6
7

5
.0

9
3

8

Sc
iM

e
t

2
6

7
8

1
0

3
6

8
0

.2
5

6
9

0
.2

0
2

6
2

0
.0

3
5

2
2

.4
2

6
5

7
.7

4
3

1
4

.1
7

8
1

K
o

h
o

n
e

n
3

7
0

4
1

2
6

7
3

0
.2

9
5

7
0

.3
0

4
4

2
0

.1
2

1
1

9
.3

1
7

0
6

.8
4

2
9

3
.6

6
9

3

EP
A

4
2

5
3

8
8

9
7

0
.2

3
5

6
0

.1
3

6
0

2
0

.3
0

4
1

6
.7

6
6

8
4

.1
8

3
9

4
.4

9
9

3

G
ri

d
4

9
4

1
6

5
9

4
0

.0
6

2
9

0
.1

0
6

5
0

.0
0

3
5

1
.4

5
0

4
2

.6
6

9
1

1
8

.9
8

5
3

IN
T

5
0

2
2

6
2

5
8

0
.1

6
6

7
0

.0
3

2
9

2
0

.1
3

8
4

5
.5

0
3

1
2

.4
9

2
2

6
.4

4
7

5

W
ik

iv
o

te
7

0
6

6
1

0
0

7
3

6
0

.3
2

6
8

0
.2

0
9

0
2

0
.0

8
3

3
5

.0
9

9
2

2
8

.5
1

2
9

3
.2

4
7

1

Le
d

e
rb

e
rg

8
2

1
2

4
1

4
3

0
0

.2
5

6
0

0
.3

6
3

4
2

0
.1

0
0

1
6

.1
3

3
9

1
0

.0
9

0
1

4
.4

0
7

1

N
an

d
M

ar
e

th
e

n
e

tw
o

rk
si

ze
an

d
th

e
n

u
m

b
e

r
o

f
lin

ks
,

re
sp

e
ct

iv
e

ly
.

e
is

th
e

n
e

tw
o

rk
e

ff
ic

ie
n

cy
[3

6
],

d
e

n
o

te
d

as
e~

2
N

(N
{

1
)

P
x

,y
[V

,x
=

y
d

{
1

x
y

,
w

h
e

re
d

x
y

is
th

e
sh

o
rt

e
st

d
is

ta
n

ce
b

e
tw

e
e

n
n

o
d

e
s

x
an

d
y

.
C

an
d

r
ar

e
cl

u
st

e
ri

n
g

co
e

ff
ic

ie
n

t
[1

2
]

an
d

as
so

rt
at

iv
e

co
e

ff
ic

ie
n

t
[3

3
],

re
sp

e
ct

iv
e

ly
.
Sk

T
an

d
Sd

T
ar

e
th

e
av

e
ra

g
e

d
e

g
re

e
an

d
th

e
av

e
ra

g
e

sh
o

rt
e

st
d

is
ta

n
ce

.
H

d
e

n
o

te
s

th
e

d
e

g
re

e
h

e
te

ro
g

e
n

e
it

y
d

e
fi

n
e

d
as

H
~

Sk
2
T

Sk
T2

.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

7
0

5
6

.t
0

0
4

Link Prediction and Mutual Information

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107056

∈

∈

www.epa.gov


are assumed to contain 90% and 10% of links, respectively (see the

review article [2] and references therein).

As in many previous papers, two widely used metrics are

adopted to evaluate the performance of prediction algorithms [2].

They are AUC (area under the receiver operating characteristic

curve) [46] and precision [47]. AUC is denoted as follows:

AUC~
n’z0:5n’’

n
, ð16Þ

where among n times of independent comparisons, n’ and n’’
represent the time that a randomly chosen missing link has a

higher score and the time that they share the same score compared

with a randomly chosen nonexistent link, respectively. Clearly,

AUC should be around 0:5 if all scores follow an independent and

identical distribution. Therefore, as a macroscopic accuracy

measure, the extent to which AUC exceeds 0.5 indicates the

performance of a specific method compared with pure chance.

Another popular measure is precision, which focuses on top-

ranked latent links. It is defined as Lr=L, where among top-L
candidate links, Lr is the number of accurate predicted links in the

probe set.

Previous Prediction Methods
We here introduce six typical methods based on common

neighbors. They are Common Neighbors (CN), Resource

Allocation (RA) [25], the Local Naı̈ve Bayes (LNB) forms of CN

[27] and RA [27], CAR [28] and CRA [28], respectively.

N CN. This method is the natural framework in which the

more nodes x and y share common neighbors, the more

likely they are connected. The score can be quantified by

the number of their common neighbors, namely

sCN
xy ~DC(x)\C(y)D~DOxyD: ð17Þ

N RA. In this method, the weight of the neighboring node is

negatively proportional to its degree. The score is thus

denoted as

sRA
xy ~

X

z Oxy

1

DC(z)D
: ð18Þ

N LNB-CN. Based on the naı̈ve Bayes classifier, this method

combines CN and the clustering coefficient together. The

score is defined as

sLNB{CN
xy ~DOxyD log gz

X

z Oxy

log Rz: ð19Þ

In this formula, g is denoted as

g~
DV D(DV D{1)

2DET D
{1: ð20Þ

In addition, Rz is defined as

Rz~
NDzz1

N^zz1
, ð21Þ

where NDz and N^z are as same as those in eq. (9)

N LNB-RA. Similarly to LNB-CN, this method takes RA and

the clustering coefficient into account. The score is thus

denoted as

sLNB{RA
xy ~

X

z Oxy

1

DC(z)D
( log gz log Rz): ð22Þ

N CAR. This method boosts the discriminative resolution

between latent links characterized by the same number of

common neighbors through further emphasizing the link

community among such common neighbors. Thus, it is

described as

sCAR
xy ~DOxyD:

X

z Oxy

Dc(z)D
2

, ð23Þ

where c(z) refers to the subset of neighbors of node z that

are also common neighbors of nodes x and y.

Figure 2. Cumulative distribution function of local assortativity, F (r) vs r, for networks PB, Yeast and EPA respectively, where F (r)
is denoted as the percent of nodes with the local assortativity value not larger than r. r is the assortativity coefficient of the network
which is presented in Table 4.
doi:10.1371/journal.pone.0107056.g002
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N CRA. This method is a variation of CAR when RA is

considered. It can be thus denoted as

sCRA
xy ~

X

z Oxy

Dc(z)D
DC(z)D

: ð24Þ
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