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SUMMARY
Technology for crosslinking and immunoprecipitation (CLIP) followed by sequencing (CLIP-seq) has identi-
fied the transcriptomic targets of hundreds of RNA-binding proteins in cells. To increase the power of existing
and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed
reads into annotated binding sites using an improved statistical framework. Compared with existing
methods, Skipper on average calls 210%–320% more transcriptomic binding sites and sometimes
>1,000% more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls
binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experi-
ments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of trans-
lation factor occupancy, including transcript region, sequence, and subcellular localization. Furthermore, we
observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective
constraint because of translation factor occupancy. Skipper offers fast, easy, customizable, and state-of-
the-art analysis of CLIP-seq data.
INTRODUCTION

RNA-binding proteins (RBPs) conduct a vast array of essential

functions in living cells. RNA synthesis, processing,modification,

translation, and decay all require diverse RBPs that act in spe-

cific temporal, spatial, and cell type contexts.1,2 Currently, cross-

linking and immunoprecipitation (CLIP) followed by sequencing

(CLIP-seq) methods are the gold standard for probing transcrip-

tome-wide RNA-protein interactions in cells. However, CLIP-seq

methods have continued to evolve and diversify,3,4 requiring

concomitant development of new tools for statistical modeling

and data visualization.

CLIP-seq analysis must confront challenges inherent to

analysis of both RNA sequencing (RNA-seq), where target se-

quences from transcript isoforms vary in expression by orders

of magnitude, and chromatin immunoprecipitation sequencing

(ChIP-seq), where read signal aggregates into peaks against

roughly even unbound chromatin background. CLIP-seq anal-

ysis tools generally identify candidate binding sites by calling

peaks5–7 or modeling positional enrichment.8–10 Regardless of

the approach taken, few tools attempt to test for binding to

multi-mapping sequences and repetitive elements in the human

transcriptome,7,11 even though repetitive elements are in some

cases the principal targets of RBPs.12

Peak calling approaches are ill-suited to handle diverse RBP

binding modes. Results from peak calling approaches are
This is an open access article under the CC BY-N
susceptible to false negatives due to masking of intronic signal

by exonic reads at exon-intron boundaries,13 bias against calling

peaks on low-abundance transcripts,10 and a mismatch be-

tween the length of bound regions and the bandwidth used for

peak calling.9 Apparent enrichment can vary either incrementally

or abruptly over the course of a few nucleotides, but the sliding

windows used to detect peaks are fixed in size. Even when

binding profiles abide by expectations, reconciling partially

overlapping peaks across samples and interpreting peaks that

overlap multiple known transcripts is nontrivial.

Conversely, positional models can be underdetermined when

binding sites are densely packed together and signals from

distinct binding events overlap. More broadly, they require

extensive parameterization that may be susceptible to biases

related to CLIP-seq library fragment length or GC content.

CLIP signal surrounding corresponding motifs often spans tens

of nucleotides before decaying due to idiosyncratic patterns of

RBP crosslinking to target sequences.5,8 Cooperative and

competitive RBP binding at nearby or overlapping binding sites

can also alter RNA occupancy and regulatory outcomes.14–16

Thus, interpretation of enrichment scores or binding affinity at

nucleotide-level resolution remains challenging.

Here, we introduce an end-to-end solution for analyzing

CLIP-seq data (Skipper) that skips peak calling by tiling windows

over annotated transcripts. Skipper processes both uniquely

mapping and multi-mapping reads to report bound elements
Cell Genomics 3, 100317, June 14, 2023 ª 2023 The Authors. 1
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transcriptome-wide. Tiled windows and repetitive elements are

tested for enrichment in immunoprecipitated over input samples

using abeta-binomial distribution that accounts for overdispersion

in read counts. We develop benchmarks for evaluating CLIP-seq

data and compare Skipper with existingmethods using enhanced

CLIP (eCLIP) data available through the ENCODE project website.

Furthermore, we demonstrate the broad applicability of Skipper

output bycollectingneweCLIPdataonamedleyof translation fac-

tors and identifying selective constraint acting on translation factor

occupancy as inferred from nucleotide sequence.

DESIGN

Achieving rapid, accurate, and adaptable analysis of
CLIP data
The RBPs that shape cellular transcriptomes rely on RNA primary,

secondary, and tertiary structure aswell as subcellular localization

and co-complexes with other RBPs to bind their target sites, but

most CLIP studies exclusively evaluate primary sequence enrich-

ment, and few incorporate information fromnon-uniquelymapping

reads that can contain structural motifs for multicopy sequences

such as Y RNA, tRNA, and G-quadruplex-containing targets.

Furthermore, existing tools that call RNA-protein interactions

fromCLIP data seldom provide annotations for candidate binding

sites aside from overlapping transcript accessions. With Skipper,

we implement automated annotation of transcriptomic regions

and demonstrate performance across CLIPs for diverse RBPs.

Existing tools that discover RNA-protein interactions from CLIP

data often exhibit long runtimes. To enable a major speedup,

Skipper first tiles windows over annotated transcripts to create

fixed bins for efficiently aggregating read start signal across

samples before processing anyCLIP readdata. Skipper optionally

filters out genes that are not expressed in the cell typeof interest to

improve the accuracy of annotating overlapping features such as

coding sequences, introns, or splice sites (Figure 1A). For any cus-

tomizable set of transcript annotations, Skipper iterates over

ranked features and transcript types to create variable-length

windowsthatdonot traverseexon-intron junctionsorgenebound-

aries. Skipper partitions the transcriptome into <100-nt windows,

corresponding to the length of library fragments generated by

eCLIP (Figure 1A).

Skipper then begins sequence read processing (Figure 1B).

Reads are trimmed and aligned, andmulti-mapping reads are re-

tained. Skipper tallies the counts per window for each sample.

Furthermore, reads are aggregated by repetitive element to

consolidate multi-mapping sequences and permit quantification

of binding to repetitive sequences. To test for enrichment in

immunoprecipitation (IP) samples over input samples, a beta-

binomial model is fit to the data. Overdispersions in read counts

and GC bias are learned for transcriptomic windows and repet-

itive elements separately, and p values are calculated from the fit

beta-binomial distributions.

Extensive quality control summaries are generated for the

resulting enriched elements. Output includes tables and visualiza-

tions of the number of bound genes (Figure 1C), number of en-

riched transcriptomic windows (Figure 1D), and the concordance

between pairs of replicates (Figure 1E). After processing all repli-

cates separately, reproducible enriched elements are ascertained
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forboth transcriptomicwindowsand repetitiveelementsbyselect-

ing windows that pass a 20% false discovery in two or more repli-

cates per experiment. Reproducible enriched elements undergo

additional, optional, and customizable visualization and analysis

as part of a Snakemake workflow17 (Figure S1; Document S1).

RESULTS

Evaluating candidate binding site detection for diverse
RBPs
We find that Skipper’s tiled window approach enables efficient

analysis of CLIP datasets. Skipper’s total runtime is approximately

8-fold reduced compared with our previous peak calling pipeline

based on CLIPper18 (Figure S2A; Table S1). Overdispersion and

GC content vary across replicates of eCLIP experiments and

complicate significance testing (Figures S2B and S2C). In some

cases, bias correction radically alters the calling of enriched win-

dows (Figure S2D). Because many RBPs favor AU-rich or GC-

rich sequences,18,19 GC content is typically confounded with

true signal, but correction for�100-nt windows does not preclude

short GC-rich motif enrichment.

To gain insight into Skipper output for diverse RBP binding

profiles, we ran Skipper on all eCLIP fastqs available on the

ENCODE project website.18 Across 219 eCLIP datasets, Skipper

called an average of 21,310 reproducible enriched windows that

serve as candidate binding sites. We compared Skipper’s en-

riched window output with results from running Piranha6 on the

same windows and overlapping reported CLIPper peaks. For

72% of RBPs, Skipper detected more enriched windows than

both Piranha (average of 5,039 windows) and CLIPper (average

of 6,904 windows). The disparity between Skipper and the other

methods was greater for mRNA-binding RBPs than non-coding

RNA-binding RBPs (Figure 2A, Table S2).

Whether measured by number of enriched windows (Fig-

ure 2B) or agreement between observed enrichment values (Fig-

ure 2C), enriched windows detected by Skipper resembled

CLIPper output. Skipper rarely increased the number of targets

for RBPs that bind small noncoding RNAs such as transfer

RNAs (tRNAs), small nucleolar RNAs (snoRNAs), small nuclear

RNAs (snRNAs), and Y RNAs: they are usually few in number

but with robust IP enrichment.5 Effect sizes between the two

methods were typically correlated around R = 0.6. RBPs that

preferred mitochondrial transcripts, snoRNAs, and 50 UTRs

were slightly more consistent (Pearson correlations of 0.77,

0.65, and 0.63, respectively) whereas splice sites and tRNAs or

snRNAs (Pearson correlations of 0.50 and 0.51) weremore diver-

gent (Figure 2C).

We noticed that some identified candidate binding sites were

shared across many RBPs. To mitigate the potential for false

positives due to biases in sequence alignment or library prepara-

tion, we derived a blacklist from the ENCODE project eCLIP data

and filtered out themost common candidate binding sites. RBPs

that principally bind small noncoding RNAs (including SBDS,

AARS, and SMNDC1) were most affected by filtering: most

Skipper-enriched windows were removed and only a small num-

ber of snoRNA, tRNA, and snRNAwindows remained (Figure 2D).

By contrast, for intron and splice site binding proteins, only a

small fraction of candidate binding sites were removed.
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Figure 1. Calling RNA-protein interactions with Skipper

(A) Illustration of Skipper binding calls. Unexpressed genes (gray) are removed. The transcriptome is with <100-nt windows. Crosslink sites (lime) are tallied for

input and immunoprecipitated samples. Bins are stratified by GC decile. Significant windows (orange) are detected by beta-binomial testing.

(B–E) (B) Outline of the full Skipper workflow, from fastqs (blue) to enriched loci (green) to annotated reproducible loci (orange). Example output from running

Skipper on AQR eCLIP in HepG2 including (C) number of bound genes, (D) number of enriched windows, and (E) concordance between replicates.
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Blacklisting eliminates putatively uninformative candidate bind-

ing sites that do not depend on the identity of the RNA-binding

protein but may also interfere with quantification of binding to

small noncoding RNAs.

Skipper outperforms competing methods for calling
RNA-protein interactions
Five RBPs with distinct molecular and cellular features were

selected for more rigorous evaluation of candidate binding sites:

FASTKD2, which binds coding sequences; PUM2, which

binds 30 UTRs; PRPF8, which binds splice sites; TARDBP (or

TDP-43), which binds introns; and TROVE2, which binds Y

RNAs. Annotations orthogonal to eCLIP data were further used
to ascertain true binding sites, specifically mitochondrial tran-

script identity for FASTKD2, biochemically inferred binding affin-

ity for PUM2,20 annotated 50 splice sites for PRPF8, presence of

the GURUGmotif for TARDBP,18,19 and Y RNA transcript identity

for TROVE2 (Figure 2E).21

The number of ascertained true-positive sites called by each

method varied drastically across RBPs (Figure 2F; Table S3).

PUM2 (6,801 Skipper candidate binding sites in 3,086 genes)

was the most consistent across the three methods: nearly half

of detected true binding sites were called by Skipper, CLIPper,

and Piranha. For PRPF8 (100,581 Skipper candidate binding

sites in 8,259 genes), however, Skipper called seven times as

many sites as CLIPper and ten times as many sites as Piranha.
Cell Genomics 3, 100317, June 14, 2023 3
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Figure 2. Benchmarking Skipper candidate binding sites

(A) Ternary plot of the proportion of enriched windows called by CLIPper, Piranha, or Skipper from ENCODE eCLIP data.

(B) ENCODE eCLIP experiments visualized by number of bound windows as called by CLIPper (x axis) and Skipper (y axis).

(C) Empirical CDF of the agreement in enrichment values between CLIPper and Skipper as measured by Pearson correlation, stratified by target preference of the

RNA-binding protein.

(D) Number of blacklisted nonspecifically bound windows per eCLIP.

(E) Ascertainment of true binding site windows for example eCLIPs.

(F) Counts of true binding site windows per example eCLIP.

(G) Example eCLIP precision, recall, and F1 score per method.
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TARDBP (29,330 Skipper candidate binding sites in 5,550 genes)

exhibited a similar, albeit attenuated, trend: three times more

sites with Skipper than with CLIPper or Piranha. In the case of

FASTKD2 (486 Skipper candidate binding sites in 251 genes),

mitochondrial transcripts were blacklisted and contributed zero

candidate binding sites under Piranha’s algorithm. TROVE2

(138 Skipper candidate binding sites in 63 genes) was the only

eCLIP dataset for which Skipper did not call the most candidate

binding sites.

Although Skipper reported the greatest number of ascertained

true binding sites, the purity of true positives among called bind-
4 Cell Genomics 3, 100317, June 14, 2023
ing sites (the precision) is essential for judging performance. Con-

trary to our expectation thatmethodswith higher sensitivitywould

attain lower specificity, the three methods exhibited similar

precision across large differences in the number of sites called

(Figure 2G). Skipper attained the highest precision for FASTKD2

and TROVE2, Piranha for TARDBP, and CLIPper for PUM2 and

PRPF8. Three cases exhibited very low precision: Piranha and

CLIPper on TROVE2 andPiranha on FASTKD2due to blacklisting

of mitochondrial transcripts. Increasing the stringency for repro-

ducible windows slightly improved the precision of Skipper calls

but gravely reduced recall (Figure S2E).
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Figure 3. Comparing CLIP tool performance

(A) Precision-recall curves for Skipper, Piranha, CLIPper, CTK, PureCLIP, and omniCLIP for example CLIPs.

(B) Relative density of the distance from predicted crosslink sites, peak, or window centers to TDP-43 (TARDBP) motif occurrences for the above methods.

(C) Knockdown-sensitive RBFOX2 exons sorted (x axis) by average reported SepScore (y axis) for proximity to both 50 (left) and 30 (right) splice sites.
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Having established competitive levels of precision for Skipper,

we assessed Skipper candidate binding sites via other metrics.

We calculated the percentage of binding sites detected out of

the union of ascertained true binding sites across all methods

(the relative recall) and the harmonic mean of the precision and

relative recall (the F1 score) for each eCLIP (Figure 2G). Skipper

attained the highest F1 score across all examples. CLIPper

output for FASTKD2 and PUM2 were the only cases where Skip-

per’s improvement did not exceed other methods’ F1 score by

more than 10%. We next investigated how CLIPper, Skipper,

and Piranha candidate binding sites varied across transcript

abundance levels by binning transcripts and calculating the

average probability of enrichment across all eCLIPs per bin.

For CLIPper and Skipper, windows tiling the top decile of ex-

pressed transcripts were more than twice as likely to be candi-

date binding sites on average (Figure S3A). Piranha exhibited

even more extreme bias: the majority of all candidate binding

sites are in transcripts in the top decile of expression.

Because Skipper attained the greatest improvement in perfor-

mance for TROVE2 binding Y RNAs, we also evaluated eCLIP of

SLBP (439 Skipper candidate binding sites in 114 genes), which

binds another unique class of transcripts: histone mRNAs

harboring stem loops. Precision was comparable for all three

methods, but Skipper again demonstrated the greatest F1 score

(Figures S3B and S3C).

For more context, we investigated CLIP analysis tools that

employ approaches distinct from Skipper’s, CLIPper’s, or Pira-
nha’s. We processed the six example eCLIP datasets above

with CLIP Tool Kit (CTK),22 which calls local maxima in CLIP

read signal tracks, and PureCLIP9 and omniCLIP,10 which use

a nucleotide-resolution hidden Markov model to segment the

transcriptome into no read signal, background read signal, and

bound sites. Both omniCLIP and PureCLIP use a generalized

linear model to adjust emission probabilities based on back-

ground read signal; however, although PureCLIP uses a zero-

truncated binomial model of read starts to discriminate between

authentic and inauthentic binding signals, omniCLIP uses a Di-

richlet-multinomial distribution of varied diagnostic events

(read starts, insertions, and all possible mismatches).

Skipper attained comparable or superior performance across

all example eCLIPs and tools (Figure 3A; Table S4). Blacklisting

was not performed to put all tools on equal footing. For all exam-

ples, CTK performed strictly worse than CLIPper, and PureCLIP

identified very few ascertained true-positive windows. omniCLIP

appeared to perform marginally better than Skipper for PUM2

and PRPF8, and marginally worse for TARDBP. However, omni-

CLIP reported zero mitochondrial windows for FASTKD2 and

predominantly reported false positives for TROVE2 and SLBP.

FASTKD2, TROVE2, and SLBP possess a small number of as-

certained true-positive windows in the transcriptome, which

may pose a particular challenge for approaches that assess

the likelihood of the whole dataset.

Curious about the differences across tools for detecting

true-positive windows, we further examined tool output. We
Cell Genomics 3, 100317, June 14, 2023 5
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Figure 4. Skipper quantification of repetitive element binding

(A) Counts of enriched repetitive elements per CLIP experiment, colored by type of repetitive element. Asterisks denote LARP7, RBFOX2, MATR3, SAFB2, and

NSUN2, which are visualized in greater detail.

(B) LARP7 enrichments per repetitive element.

(C) The top six RBFOX2 binding motifs within enriched simple repeats.

(D) Skipper binding enrichment plotted against evolutionary age of LINE1 sequences for MATR3 (left) and SAFB2 (right), antisense in green and sense in blue.

(E) Repetitive element targets of NSUN2. tRNA targets exhibit greater enrichment than other RNAs (p = 2e–13)
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visualized the density of TARDBP GUGUG motif occurrences

within peaks or windows containing one GUGUG occurrence.

Because Skipper windows are tiled in advance irrespective of

read signal, we implemented a fine-mapping approach to center

75-nt windows on local maxima enrichment within Skipper win-

dows, which we confirmed increased GURUGmotif density 1.4-

fold for TARDBP in K562 (t test p = 5e�138, N = 18,508windows)

and GCAUG motif density 1.3-fold for RBFOX2 in HepG2 (t test

p = 1e�123, N = 15,794 windows).

We found that the maximum motif density of each tool ap-

peared to be anticorrelated with true-positive window F1 scores

(Figure 3B). PureCLIP exhibited the most focal signal: identified

crosslink sites exhibited maximum motif density more than dou-

ble the average. CTK exhibited the next greatest localization of

motif density, but the maximum density was slightly upstream

of the center of called peaks. omniCLIP, CLIPper, and Skipper

after fine mapping all exhibited a mild increase in motif density

upstream of inferred crosslink sites. Piranha and Skipper before

fine mapping exhibited flat distributions. From this, we posit that

less sensitive tools more precisely register foci of enrichment but

struggle to detect broad stretches ofmoreweakly enriched bind-

ing sites that may contain secondary binding motifs. Examina-

tion of binding near alternative exons sensitive to knockdown
6 Cell Genomics 3, 100317, June 14, 2023
also revealed that Skipper detected more RBFOX2 candidate

binding sites flanking knockdown-sensitive alternative exons

than CLIPper (Figure 3C).

A compendium of repetitive element binding
Our past work mapped reads to repetitive elements and exam-

ined information content across eCLIPs but did not report bound

elements and limited its investigation of repetitive element

enrichment to 65 eCLIP datasets.12 With Skipper, we identify

bound repetitive elements in eCLIP data using the same overdis-

persion and GC-content modeling framework. Nearly all (216 out

of 219) eCLIP datasets exhibited enrichment of repetitive ele-

ments (Figure 4A; Table S5). Repetitive element-binding proteins

achieved high specificity for known RNA templates, such as

LARP7 to its targets 7SK and U6 (Figure 4B).

Across all RBPs, the most frequently bound class of repetitive

elements were simple repeats of 1–12 nt. Althoughwe previously

reported RBP motifs from reads transcriptome-wide, it was not

established whether long motif repeats show comparable spec-

ificity.18We clusteredmono-, di-, and tri-nucleotide repeat-bind-

ing profiles and found both broad- and fine-scale patterns of

selectivity (Figure S4). GU-rich sequences were the most

frequently bound repeats, but some RBPs (e.g., LIN28B and
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LSM11) bound (UGG)n and not (GU)n repeats, whereas others

(e.g., SRSF7 and TIAL1) bound (GU)n and not (UGG)n repeats.

Even when RBPs bound both (UGG)n and (GU)n repeats, they

differed in whether they bound (GUU)n repeats (e.g., HNRNPM

and SUBP2), (AUG)n repeats (e.g., EFTUD2 and FAM120A), or

neither (e.g., NCBP2 and FUS).

Somerepeatsexhibitednuancedspecificity for groupsof similar

k-mers. Inspection of RBFOX2 simple repeats binding in K562

cells revealed that all six of the top simple repeats contained one

of eight established motifs directing canonical binding23 (Fig-

ure 4C), and, out of all 16 simple repeats called, 11 contained

one. QKI exhibited very high enrichment for (UAC)n repeats.

QKI’s canonical binding motif UACUAACN1-20UAAY
24 may

commonly arise within annotated (UAC)n repeats (Figure S4).

Finally, C homopolymers were bound by a small number of

factors known to favor C-rich sequences including HNRNPK and

PCBP2.

Other classes of bound repetitive elements generally agreed

with known biology. MATR3, which extensively binds antisense

LINE1 transcripts,25 was among the top antisense LINE1

RBPs, and SAFB2, which represses LINE1 transcripts,26 among

sense LINE1 RBPs. Skipper tests binding to annotated sets of

repetitive elements and robustly calculates aggregate enrich-

ment regardless of read depth. We found that the reported

enrichments strongly correlated with evolutionary age of the

LINE1 element for both RBPs, and all bound LINE1 elements

were of the expected strand (Figure 4D).27,28 Antisense SINE

elements were bound most by HNRNPC29 and sense SINE ele-

ments by ILF3.30 We identified three main biological processes

governing tRNA interactions: translation (EIF3G, RPS3, and

SBDS), RNAi (SND1, DGCR8, and DROSHA), and tRNA modifi-

cation (NSUN2, PUS1, and SSB). In some cases, quantitative

enrichment level strongly implicated the most salient targets

even when multiple types of repetitive elements were identified

(Figure 4E). Finally, snRNA-binding proteins included splicing

regulators such as SMNDC1 and EFTUD2.

A modest number of RBPs principally interacted with long ter-

minal repeats (LTRs), which was not apparent using our previous

enrichment filters.12 Motif analysis with HOMER yielded mostly

G- and GU-rich binding motifs. Notably, several of the RBPs in

this class contain RGGmotifs known to mediate RNA-protein in-

teractions31: FUS, HNRNPA1, HNRNPU1, and HNRNPUL1.

HNRNPK, which clustered with simple repeat-binding proteins,

also contains an RGG motif and bound numerous LTR se-

quences. RGG domains are thought to mediate binding to G

quadruplexes,32–34 and recent work posits that stabilization of

viral LTRs by RGG domain-containing proteins could play an

important role in suppressing viral protein expression.35,36

Thus, in addition to their posited role in viral defense, RGG

domain-containing proteins may also guard against reactivation

of endogenous retroviruses.

Archetypes of alternative exon binding

Past studies have established enrichment of RBP binding sites at

splice sites flanking alternative cassette exons and a depletion of

RBP binding sites residing in alternative cassette exons.18,37 In

aggregate, these binding profiles appear to promote intermedi-

ate splicing; however, the identity of the bound RBP is critical

in determiningwhether splice site usage is enhanced or silenced.
Indeed, mutation of RBP binding sites induce splicing changes in

accordance with the corresponding RBP’s distinct gene regula-

tory role.38–41

To examine alternative splicing regulation at the level of

individual RBPs, we overlapped 50 and 30 splice sites flanking

alternative cassette exons with the expanded set of enriched

windows called by Skipper. We stratified the alternative exons

by whether an RBP of interest bound the alternative splice site

window, the constitutive splice site window, or both and

searched for stereotyped RBP binding patterns (Figure 5A).

Four patterns stood out, exemplified by SF3B4, RBM22,

BUD13, and HNRNPC (Figure 5B). RBPs such as SF3B4 princi-

pally bound 30 splice site windows and favored constitutive 30

splice site windows (8,916 enriched splice site windows). RBPs

such as RBM22 principally bound 50 splice site windows and

favored both constitutive 50 splice site windows and alternative

30 splice site windows (2,403 windows). RBPs such as BUD13

commonly bound both 50 and 30 splice site windows with a

constitutive bias for both splice site windows (19,100 windows).

Finally, RBPs such as HNRNPC bound both 50 and 30 splice site

windows with mild to moderate alternative window bias (354

windows).

We then inspected the level of inclusion of skipped exons

stratified by whether each RBP bound 50 and/or 30 splice

site windows (Figure 5C). Alternative 30 splice site binding by

SF3B4 appeared to increase exon inclusion. Binding by

RBM22 appeared to increase exon inclusion in alternative 50

splice site windows and decrease exon inclusion in alternative

30 splice site windows. In contrast, BUD13 binding appeared to

increase cassette exon inclusion in the vicinity of either the 50

or 30 splice site. Conversely, HNRNPC binding appeared to

decrease cassette exon inclusion when binding in the window

containing either the 50 or 30 splice site.

Across all eCLIP experiments, most RBPs exhibited a binding

profile that aligned with one of the four archetypes we described

(Figure 5D, Table S6). 30 splice site regulators including U2AF2

and SF3A3 were represented in the 30 splice site enhancing

archetype. Essential splicing factors such as AQR and PRPF8

comprised the 50 and 30 splice site enhancing archetype. Splice

modulators such as HNRNPM and SUGP2 belonged to the 50

and -30 splice site silencing archetype. RBPs that affect mature

mRNA stability, such as DGCR8, PUM1, CPSF6, and UPF1,

may be acting on overlapping alternative exons rather than in-

tronic splicing elements.

Members of the 50 splice site enhancing/30 splice site silencing

archetype are less often associated with regulation of alternative

exon abundance (Figure 5D). Several RBPs in this class bind 50

UTRs (e.g., FTO, DDX3X, and NCBP2) or G- and GU-rich repeats

(e.g., FUS, NKRF, andGTF2F1), andwe found instances of RBPs

that favor 30 constitutive splice sites without associated changes

in exon inclusion (e.g., LSM11 and CSTF2). We conclude that

alternative splice site binding preferences may sometimes relate

to proximity to UTRs rather than alternative RNA splicing or

decay.

We repeated the binding site analysis using alternative 30 splice
sitesand found thatmostsignificantdifferences insplicesiteoccu-

pancy reflect exon-binding proteins that bind alternative exons of

mature mRNA in the cytosol and not intronic windows in the
Cell Genomics 3, 100317, June 14, 2023 7
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Figure 5. Archetypes of RNA-protein interactions near alternative cassette exons

(A) Schematic of splicing regulator binding of 30 and 50 alternative splice site windows.

(B) Frequency of alternative cassette exons bound to alternative (red), constitutive (blue), or both (purple) 50 and 30 Skipper splice site windows.

(C) Empirical CDFs of alternative cassette exon inclusion stratified by enriched window overlap with 50 splice sites, 30 splice sites, or both.

(D) Typical and alternative binding profiles of the four archetypes associated with skipping (top) and inclusion (bottom), respectively. Heat shows alternative (red)

and constitutive (blue) exon-biased RBPs. Significant bias is denoted by asterisks and significant covariance by boxes.
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nucleus (Figure S5; Table S7). Even so, splice-repressive RBPs

HNRNPL and HNRNPK silenced splicing in both alternative and

constitutive windows, and splicing RBPs AQR and PRPF8 pro-

moted splicing in both alternative and constitutive windows.

RBPs associated with alternative splicing, including RBFOX2,

EFTUD2, and SMNDC1, bound the window flanking the alterna-

tive, longer exon regardless of inclusion level.

We crosschecked the 31 RBPs for which binding correlated

with isoform abundance against RBPs known to regulate RNA
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splicing or decay. Members of our list of candidates were three

times more likely to be known RNA splicing factors than other

RBPs that bound splice site windows (p = 0.01, N = 100

total RBPs, Fisher’s exact test).42–44 Four other RBPs (YBX3,

EXOSC5, UPF1, and MATR3) were annotated as playing a role

in post-transcriptional gene regulation.

After removing the RBPs known to contribute to post-tran-

scriptional regulation of gene expression, seven candidates for

unannotated regulation of RNA splicing and decay remained:
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Figure 6. Determinants of translation factor occupancy
(A) Illustration of profiled translation factors.

(B) Skipper t-SNE query of translation factors against ENCODE eCLIP data colored by target preference.

(C) Skipper t-SNE points recolored by subcellular localization: nucleoli (orange), cytosol (blue), nucleoplasm (dark green), and mitochondria (lime).

(D) Significant Skipper Gene Ontology enrichments for translation factors filled by log2 enrichment. The top cellular component, biological process, andmolecular

function term for each eCLIP is shown.

(E) HOMER motifs for each translation factor.
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UCHL5, binding of which was recently linked to splicing changes

via a multiplex splicing minigene screen45; GRWD1, binding of

which is often disrupted by splicing quantitative trait loci

(sQTLs)38; and ZNF622, ZNF800, BCLAF1, DDX24, and

SDAD1, for which binding has not been associated with RNA

splicing or decay. ZNF622, ZNF800, BCLAF1, YBX3, and

GRWD1 are putative transcriptional regulators that could influ-

ence nascent RNA processing.46 DDX24 has been linked to

RNA trafficking,47 and SDAD1 is almost entirely unannotated.48

Notably, review of the repetitive element targets of UCHL5,

GRWD1, ZNF622, ZNF800, BCLAF1, and DDX24 revealed

primarily sense LINE1 transcripts (odds ratio [OR] = 14 for the

candidates over all other RBPs, p = 9e�5, Fisher’s exact test,

Figure 4A), suggesting that these factors may alter excision of in-

trons containing LINEs.

eCLIP of translation factors captures diverse molecular
interactions
To demonstrate application of the Skipper pipeline, we gener-

ated eCLIP data on a batch of translation factors with validated

IP-grade antibodies: EIF2D, EIF2S2, EIF2B5, EIF3J, RPL35A,

RPL29, RPS3A, RPS14, and RPS19 (Figure 6A). The binding

preferences reported by Skipper varied widely: RPL29 and
EIF2B5 favored coding sequences, EIF3J and RPL35A favored

50 UTRs, RPS14 and EIF2S2 favored snoRNAs, RPS3A favored

tRNAs, EIF2D favored 30 UTRs, and RPS19 favored introns

(Figure 6B).

To interrogate the binding preferences of the selected transla-

tion factors further, we annotated the RBPs with their observed

protein subcellular localization49 (Figure 6C). RPS19 localized

principally to the nucleoplasm, consistent with its strong intronic

binding preference. EIF2S2 and RPS3A were detected in

nucleoli, consistent with their preference for binding snoRNAs

and tRNAs. The other translation factors localized to the cytosol,

consistent with mRNA binding.

To discern which gene pathways were most enriched for

translation factor binding, we performed a weighted Gene

Ontology enrichment that tallied the number of enriched win-

dows per term aggregating across the transcriptome (Figure 6D;

Table S8). Among the translation factors we profiled, the most

frequently enriched term was ‘‘cytoplasmic translation.’’ Related

top terms include ‘‘structural constituent of the ribosome,’’

‘‘cytosolic ribosome,’’ and ‘‘ribosomal subunit.’’ Two other

groups of genes were highly enriched: histone genes (‘‘DNA

packaging complex’’ and ‘‘DNA replication dependent chro-

matin organization’’) and respiration (‘‘ATP synthesis coupled
Cell Genomics 3, 100317, June 14, 2023 9
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electron transport’’ and ‘‘oxidoreduction driven active trans-

membrane transporter activity’’).

We next ran HOMER to call sequence motifs underlying RBP

binding. EIF2S2’s fine-mapped windows returned the snoRNA

C box motif UGAUGA,50 consistent with its snoRNA binding

preference. RPL35A and EIF3J, both selective for 50 UTR, ex-
hibited motifs that reflect KYCKKCG binding. EIF2B5 and

RPL29, both selective for coding sequences, both exhibited

purine-rich motifs. RPS19 yielded a GU-rich motif similar

to other intron-binding proteins: UGGUNGU. RPS3A was

associated with GCGGU sequences, and EIF2D, known to

regulate ribosome recycling near stop codons,51 was associ-

ated with G-rich sequences in 30 UTRs. RPS14 yielded no

apparent motif.

Despite comprising many of the same protein complexes,

different translation factors interacted with distinct sites in

the human transcriptome. Binding profiles appeared distinct

both from each other (Figure S6A) and from published

ENCODE binding profiles (Figure S6B). Thus, translation factor

binding profiles can reflect distinct biological processes that

occur in varied subcellular compartments and exhibit distinct

sequence preferences.

Depletion of genetic variation nominates transcripts
with constrained binding
Given the diverse sequence preferences of our panel of transla-

tion factors, we wondered whether perturbation of occupied

sites would interfere with regulation of translation. To test for

constraint acting on sequence-driven translation factor occu-

pancy, we trained a gapped k-mer support vector machine

(gkm-SVM) on fixed 75-nt windows centered on signal overlap-

ping enriched windows from Skipper and evaluated whether

disruptive genetic variants were depleted in the gnomAD genetic

database.37,38,52–54

gkm-SVMs for all translation factors but RPS14 exhibited sig-

nificant separation betweenboundandcontrol sites (FigureS7A).

EIF2B5 and RPS19 target sites attained the greatest perfor-

mance (area under the precision-recall curve [AUCPR] of 0.691

and 0.625), while the others exhibited low to moderate perfor-

mance (AUCPR from 0.21 to 0.429). We moved forward with

assessing potential constraint for all models but RPS14’s.

We queried gnomAD for genetic variants in fine-mapped win-

dows for each RBP and binned variants by allele frequency:

singleton, very rare (<0.1%), rare (0.1%–1%) or common (>1%)

(Figure 7A). Reference and variant 75-nt sequences correspond-

ing to Skipper fine-mapped windows were scored by the corre-

sponding gkm-SVM to yield a delta score representing the pre-

dicted change in binding from the reference to the variant

sequence. Delta scores were fit per transcript using linear

regression against variant frequency bin as an ordinal variable.

We interpreted greater slope in the linear regression as reflecting

greater selective constraint on translation factor occupancy.

Some significant translation factor-transcript pairs were espe-

cially intriguing. Constrained RPS19 binding to LAMP1 and

MAN1B1 transcripts was driven by multiple intronic windows.

Singleton variants in fine-mapped windows had far lower delta

scores than the transcriptome-wide average, whereas variants

above 0.1% frequency had far higher delta scores (Figure 7B,
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upper boxplots). The same trend was observed for EIF2B5 bind-

ing to coding sequences of GRSF1 and RPL5, even without a

transcriptome-wide trend disfavoring variants with lower delta

scores (Figure 7B, lower boxplots).

Overall, we detected 65 transcripts that exhibited constrained

binding by a translation factor under a 10% FDR (Figure 7C;

Table S9). Hits included long noncoding RNAs (e.g., Chaserr),

demonstrating potential for discovery of functional noncoding

binding sites even for translation-associated proteins. For

RBPs that principally bound mRNAs, we also investigated char-

acteristics that increased the likelihood of calling constrained

transcript binding. RPL29, EIF2B5, EIF3J, and RPL35A were

more likely to exhibit constrained binding in 50 UTRs and less

likely in introns and coding sequences (Figure S7B). By contrast,

transcripts with reproducible enriched windows for RPS19 were

much more likely to be constrained for intronic windows than

coding windows. Thus, our nominated constrained binding

events appear to recognize different gene regulatory roles acting

on different transcript regions.

In order to link changes in RPS19 binding to altered risk for

Diamond-Blackfan anemia, we exogenously expressed wild-

type and mutant RPS19 constructs in HEK293T cells and per-

formed CLIP for the RPS19 missense mutations most common

among Diamond-Blackfan anemia cases: dominant-negative

mutations R62W and R101H (Figure 7D).55–57 Large-scale

changes in RNA interactomes were observed for both mutant

RPS19 constructs: an increase in the proportion of coding se-

quences (CDSs) from 33% to 45% and a decrease in the propor-

tion of deep introns from 20% to 7% (p < 2.2e�16, chi-square

test; Figure 7E) and greater enrichment of tRNA targets (R62W

p = 6e�9, R101H p = 2e�27, N = 61 tRNA genes, paired t test;

Figure 7F). Other elements annotated by RepeatMasker did

not show enrichment in the mutant CLIP samples (Figure S7C).

To better understand global changes in RPS19 binding induced

by Diamond-Blackfan anemia mutations, we aggregated signal

gene-by-gene for deep introns and CDSs separately and corre-

lated signal across all pairs of replicates. The mutant RPS19

CLIP replicates exhibited highly correlated binding profiles

(R > 0.95) with each other, for both CDSs and deep introns (Fig-

ure S7D). However, the divergence of mutant from wild-type

RPS19 interactions was much more pronounced for deep in-

tronic binding (R � 0.5) than for CDS binding (R � 0.85) (Fig-

ure S7D). Overall, the two Diamond-Blackfan anemia mutations

induced similar changes in CLIP signal, which suggests a shared

mechanism for disruption of erythroid development.

DISCUSSION

Our CLIP-seq processing tool Skipper offers fast, customizable,

and comprehensive analysis of CLIP-seq data by assessing read

starts in windows for IP versus matched input samples. Skipper

matches or exceeds previous methods in precision and calls

more than three times as many candidate binding sites from

eCLIP data available on the ENCODEproject portal.With respect

to interpretation of post-transcriptional functional consequences

of genetic variation, Skipper increases the number of overlapping

windows 2.5-fold for GTEx lead eQTLs and sQTLs (Figure S7E,

left two panels), and 4-fold for lead 30 UTR alternative
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Figure 7. Identification of sequence-constrained translation factor binding

(A) Schematic of constraint detection procedure from gnomAD variants to linear regression of predicted binding change against allele frequency bin.

(B) Transcripts with apparent sequence constraint bound by RPS19 and EIF2B5.

(C) The 65 RBP-transcript constrained pairs detected colored by the principal feature bound.

(D) Schematic of RPS19 CLIP experiments in HEK293T cells.

(E) Percentage of enriched windows deriving from coding sequences, 30 UTRs, and introns for wild-type and mutant RPS19 CLIPs.

(F) Enrichment for tRNA transcripts in mutant (y axis) versus wild-type (x axis) CLIP experiments.
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polyadenylation QTLs (30 aQTLs) (Figure S7E, right two panels).

Unlike existing methods, Skipper also aggregates reads across

instances of repetitive RNA elements and reports statistically en-

riched elements. Skipper’s automated visualizations expedite

quality control of CLIP-seq data, and the corresponding tabular

output provides a launching pad for exploration of RNA-protein

interactions in high throughput.

Evaluation of CLIP-seq data quality has overwhelmingly

focused on detecting and quantifying motif binding,6–9,58 but

this approach overlooks many known determinants and conse-

quences of RNA-protein interactions: subcellular localization

that physically separates transcripts from RBPs, differences in

binding affinity that defy position weight matrix predictions,

essential regulatory proteins such as ribosome subunits that

can translocate along RNA in a motif-independent manner,

and specialized modifications or conformations that proteins

recognize independent of sequence. We found that use of a

size-matched input control improves performance dramatically
in the case of the last group: in particular, Y RNAs by TROVE2

(Figure 2G), tRNAs by NSUN2 (Figure 4E), and histone mRNAs

by SLBP (Figures S3B and S3C).5 The relatively small number

of authentic targets for these RBPs increases vulnerability of an-

alyses to false positives.

Similarly, the value of Skipper repetitive element output should

not be overlooked. Binding to simple repeats was widespread

(89.5% of RBPs exhibited 10-fold enrichment in binding to one

or more simple repeats) but also distinct for each RBP (59.4%

of RBPs possessed at least one simple repeat that no other

RBP bound). Thus, our compendium should aid future efforts

to use decoy RNAs59 to sequester RBPs at variable levels of

specificity for diverse regulatory RBPs. Conversely, evaluation

of potential decoy RBPs60 to block binding sites should be

greatly facilitated using Skipper’s assignment of simple repeat

preferences.

Investigation of RBP binding near alternative exons offers a

complementary approach to post-transcriptional regulation.
Cell Genomics 3, 100317, June 14, 2023 11
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Characterizing RBP function using gene knockouts is often

made impractical by the broad essentiality of RBP-regulated

processes. While integration of eCLIP data with knockdown

RNA-seq can define a causal link between binding and regulato-

ry outcomes, siRNA knockdown is prone to off-target effects,61

and imperfect calls for both RBP binding and isoform quantifica-

tion (e.g., from GC bias and insufficient coverage) reduce the

number of intersecting sites.18 By correlating binding signal

with alternative exon inclusion, we can infer many of the same

relationships between RBP occupancy and RNA processing

without collecting an independent knockdown RNA-seq

dataset (Figure 5D). Our association of YBX3, ZNF622,

ZNF800, BCLAF1, and GRWD1 differential binding to changes

in isoform abundance suggests that the role of putative chro-

matin modulators in regulating RNA splicing and decay may be

an underrecognized source of co- or post-transcriptional gene

regulation.

Finally, our approach for detecting constraint acting on bind-

ing sites at the level of individual transcripts offers a roadmap

for probing different layers of regulation by RBPs. Chaserr, an

essential long non-coding RNA (lncRNA), serves as an example.

Regulatory mechanisms for lncRNAs occur at myriad levels in

gene regulatory networks from enhancer competition to post-

translational modifications.62 Chaserr is thought to regulate its

neighboring gene CHD2 in cis, but the precise ways in which

the CHASERR gene body fulfills its gene regulatory role are un-

known.63 Selective constraint on sequences in loci occupied

by translation factors suggests novel molecular mechanisms

for regulation by Chaserr at the level of translation. The diverse

types of transcripts, subcellular localizations, motifs, and RNA

regions we identified under constraint per translation factor

occupancy (Figures 6 and S6) reinforce the broad applicability

of our approach.

Testing for transcript-level constraint can also nominate mech-

anisms responsible for human disease. Mutations in RPS19 are

the most common single-gene cause of Diamond-Blackfan

anemia. The molecular pathophysiology of Diamond-Blackfan

anemia entails defective rRNA maturation, reduced translation of

GATA1,64 and impaired erythroid development, but why themuta-

tions disproportionately occur in RPS19 has not been estab-

lished.55 Furthermore, patients exhibit considerable heterogeneity

in clinical presentation.65 Enrichment of disease variants occurring

in RNA-binding protein binding sites is well documented, yet such

work usually aggregates signal at the level of whole transcrip-

tomes.34,39,53 By contrast, the transcripts with sequence-depen-

dent RPS19 intron bindingwe identified under selective constraint

could point to pathways that underlie erythroid susceptibility to

mutations found in Diamond-Blackfan anemia patients as well as

differing clinical presentations.

Our results point tomultiple grounds for future investigation. The

transcript with the most constrained RPS19 binding, LAMP1 (Fig-

ure 7C), could conceivably play a role in Diamond-Black anemia

pathophysiology. LAMP1 is one of the main constituents of lyso-

somalmembranes.Erythroblasts relyonautophagy via lysosomes

to eliminate organelles that impede erythrocyte maturation and

function.66 One study found that knockout of factors essential for

autophagy causes anemia in mice,67 and an unbiased chemical

screen revealed that induction of autophagy with the small mole-
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cule SMER28 enhanced erythropoiesis in induced pluripotent

stemcellsderived fromDiamond-Blackfananemiapatients.68Pre-

vious work has shown that RPS19 R62W persistently localizes to

the nucleus56 but alters cellular morphology even at moderate

expression levels.57Deeper insight into the linkbetweenperturbed

interactionswithRNAandalteredcellularmorphologycould illumi-

nate the mechanism underlying the apparent dominant-negative

mode of inheritance.

As methodological and computational approaches to cata-

loging RNA-protein interactions continue to improve, understand-

ing the functional significance of RBP binding will grow only more

important. Determining whether an individual RBP binding site is

under selective constraint remains challenging because a genetic

variant’s predicted change inRBPbinding depends on the precise

nucleotide variant and its genomic context. Our results show that

aggregating constraint at the level of transcripts is a well-powered

intermediate approach to generate hypotheses for functional tran-

script binding using publicly available datasets.

Limitations of this study
Skipper analyzes read start signal in fixed windows using a sim-

ple discrete annotation framework. Other tools measure signal

relative to features of interest such as exon-intron bound-

aries,69,70 model signal with nucleotide level resolution,9,10,58 re-

assign reads that map to multi-mapping genomic loci that do not

appear to be expressed,11 or weigh signal from other types of

diagnostic events such as mismatches.10 Users can blacklist

reproducible regions of their choosing, but further work on

best practices for blacklisting is warranted. Our post hoc fine-

mapping broadens the utility of Skipper output but does not learn

sequence motifs or binding affinity directly from CLIP data.7,8

Furthermore, Skipper requires a matched input sample to

construct the beta-binomial model for statistical testing: CLIP

datasets lacking these controls currently cannot be analyzed us-

ing Skipper.

Our functional interrogation of translation factor binding sites

is not definitive. The gapped k-mer SVM we use to model trans-

lation factor binding site occupancy is easy to use but less so-

phisticated than emerging tools based on deep learning.53,58,71

We believe that future work will prove more sensitive to detect

evolutionary constrained binding at the level of individual exons

and transcripts. Our follow up work on RPS19 function relied on

expressing variant open reading frames (ORFs) in HEK293T cells

that may not reflect the true disease state, and eCLIP data alone

do not answer whether observed changes in binding are due to

differences in complex formation, localization, binding prefer-

ence, or another mechanism altogether.
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Antibodies

Rabbit anti-eIF2B5 Bethyl Laboratories Cat# A302-556A; RRID:AB_2034833

Rabbit anti-Ligatin Bethyl Laboratories Cat# A303-006A; RRID:AB_10750476

Rabbit anti-eIF2beta/EIF2S2 Bethyl Laboratories Cat# A301-743A; RRID:AB_1210964

Rabbit anti-eIF3J/EIF3S1 Bethyl Laboratories Cat# A301-746A; RRID:AB_1210975

Rabbit anti-RPS14 Bethyl Laboratories Cat# A304-031A; RRID:AB_2621280

Rabbit anti-RPL35A/Ribosomal Protein L35a Bethyl Laboratories Cat# A305-106A; RRID:AB_2631501

Rabbit anti-Ribosomal Protein S3A/RPS3A Bethyl Laboratories Cat# A305-001A; RRID:AB_2621195

Rabbit anti-RPL29/ Ribosomal Protein L29 Bethyl Laboratories Cat# A305-056A; RRID:AB_2621250

Rabbit anti-RPS19 Bethyl Laboratories Cat# A304-002A; RRID:AB_2620351

Rabbit anti-V5 Tag Bethyl Laboratories Cat# A190-120A; RRID:AB_67586

Critical commercial assays

Q5� Site-Directed Mutagenesis Kit NEB E0554S

Deposited data

Translation factor eCLIP This paper GEO: GSE213867

ENCODE 3 CLIP Skipper code and output This paper Figshare: https://figshare.com/articles/dataset/

Skipper_RNA-protein_interaction_profiles/

21206009 (https://doi.org/10.6084/m9.

figshare.21206009.v1 and https://doi.org/

10.6084/m9.figshare.21272991.v1)

RPS19-V5 eCLIP This paper GEO: GSE224998

Figshare: https://figshare.com/articles/

dataset/RPS19_construct_eCLIP_data/

22097072

Experimental models: Cell lines

Human Lenti-XTM 293T Cell Line Takara Bio USA 632180

Human K562 ATCC Related to CCL-243

Oligonucleotides

RPS19_SDM_R62W_ F: TTCCACAGCGtGGCACCTGTA N/A

RPS19_SDM_R62W_R: GCAGCTCGCGTGTAGAAC N/A

RPS19_SDM_R101H_F:

AGTGTGGCCCaCCGGGTCCTC

N/A

RPS19_SDM_R101H_R: CTTGGAGCCTCGGCTGAAG N/A

Recombinant DNA

p223-RPS19 Orfeome v8.1 BC000023

p223-RPS19-R62W This paper N/A

p223-RPS19-R101H This paper N/A

Software and algorithms

Skipper v1.0.0 This paper https://github.com/YeoLab/skipper/

Piranha v1.2.1 Uren et al.6 http://smithlabresearch.org/software/piranha/

CLIPper v1.0 (and merge_peaks) Lovci et al.72 https://github.com/YeoLab/clipper;

https://github.com/YeoLab/merge_peaks

CTK v1.1.4 Shah et al.22 https://zhanglab.c2b2.columbia.edu/

index.php/ECLIP_data_analysis_using_CTK

omniCLIP v0.2.0 Drewe-Boss et al.10 https://github.com/philippdre/omniCLIP

PureCLIP v1.3.1 Krakau et al.9 https://github.com/skrakau/PureCLIP

samtools v1.15.1 Li et al.73 http://www.htslib.org/
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Skewer v0.2.2 Jiang et al.74 https://github.com/relipmoc/skewer

Fastp v0.23.2 Chen et al.75 https://github.com/OpenGene/fastp

bedtools v2.30.0 Quinlan et al.76 https://github.com/arq5x/bedtools2

UMICollapse Liu, 201977 https://github.com/Daniel-Liu-c0deb0t/

UMICollapse

STAR v2.7.10a Dobin et al.78 https://github.com/alexdobin/STAR

LS-GKM v0.1.1 Lee, 201679 https://github.com/Dongwon-Lee/lsgkm
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Dr. Gene Yeo (geneyeo@

ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d ENCODE eCLIP fastqs and CLIPper processed data are available on the ENCODE Project website: https://www.

encodeproject.org/encore-matrix/?type=Experiment&status=released&internal_tags=ENCORE

d Translation eCLIP raw fastqs and reproducible enriched window output are available at GEO: GSE213867 and GSE224998.

d Additional summary data for Skipper output are available on Figshare (https://doi.org/10.6084/m9.figshare.21206009.v1):

https://figshare.com/articles/dataset/Skipper_RNA-protein_interaction_profiles/21206009

d The Skipper pipeline including example input are available under a BSD license at https://github.com/YeoLab/skipper/ and

deposited on Figshare.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

K562 (chronic myelogenous leukemia; 53-year-old female) was cultured in RPMI1640 with 10% FBS at 37C. HepG2 (hepatocellular

carcinoma; 15-year-old male) was cultured in DMEMwith 10% FBS at 37C. K562 was authenticated by STR profiling through ATCC.

HepG2 was not authenticated.

METHOD DETAILS

Tiling windows across the transcriptome
HepG2 and K562 total RNA-seq were downloaded from the encodeproject.org website. Transcript abundance was evaluated using

Salmon80 per documented guidelines. GENCODE version 38 gene annotations were downloaded from the gencodegenes.org web-

site, and transcripts with less than 1 transcript per million were filtered using the pyranges package in our custom script subset_gff.py

for K562 and HepG2 cell lines separately.

We use the custom script parse_gff.R with a manual rankings of GENCODE accession types (roughly small noncoding RNAs first,

then mRNAs, then lncRNAs, then pseudogenes) and feature types (ranges containing small noncoding RNA exons first, then both

start and stop codons, start codons, stop codons, other CDS regions, 30 UTRs, 50 UTRs, noncoding isoforms of mRNA, lncRNA

exons, 30 and 50 splice siteswithin 100 nucleotides, 30 splice sites only, 50 splice sites only, 30 and 50 splice sites within 500 nucleotides,

30 splice sites only, 50 splice sites only, primary transcript miRNAs, and finally introns) to tile windows. We iterate over ranked features

and retrieve contiguous coordinates that are split into evenly sized windows not exceeding 100 nucleotides in length. For example, a

50-nucleotide exon would yield a 50-nucleotide long window, but a 210-nucleotide exon would be split into three 70-nucleotide win-

dows. The resulting disjoint windows are annotated with all overlapping transcripts and features and numbered uniquely.

Skipper data processing
Skipper utilizes a singlemanifest of samples to preprocess, model, visualize, and summarize read start signal from anyCLIP-seq data

with matched input samples. For preprocessing, Skipper trims fastq files using skewer,74 cuts and pastes unimolecular identifiers

using fastp,75 aligns reads with STAR,78 and deduplicates unimolecular identifiers using UMIcollapse.77
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For beta-binomial modeling, counts of 50 ends of reads per strand andGC content per tiledwindow andRepeatMasker element are

calculated using SAMtools73 and bedtools.76 Genomic positions that span multiple repetitive elements are ignored. Read counts are

placed into ten GC content bins for genome-mapped reads and twenty bins for repetitive elements where elements are binned in

accordance with the average GC content of all instances of a particular repetitive element. Enrichment odds ratios are calculated

by adding a pseudocount equal to the average rate of success per bin to avoid division by zero. A null overdispersion parameter

(rho) and mean fold change parameter (mu) is estimated across bins by Cr1; r2D � s1;b
�
s2;b

via the vglm function and beta-binomial

family from the VGAM package,81 where ri is the counts per window or element in replicate i, and si,b are the sums of counts in repli-

cate i in GC bin b. With the overdispersion parameter estimated under the null, p values are calculated for immunoprecipitated versus

input samples with the pbetabinom function from VGAM. P-values less than 10�12 were replaced with 10�12 to address floating point

imprecision. A false discovery rate is enforced by filtering windows for the sum of immunoprecipitated and input reads passing a

dynamically determined threshold to maximize the number of hits and using the p.adjust function in R. Windows and repetitive ele-

ments that passed a 20% FDR in both replicates are called as reproducibly enriched, but reproducible enriched windows that were

called in more than 17% of either HepG2 or K562 eCLIP samples are blacklisted and removed. Concordance between pairs of rep-

licates is then assessed by Fisher’s Exact Test.

Automated analysis of Skipper’s reproducible enriched windows
For clustering, transcriptomic windows counts are summarized as belonging to one of the following ranked categories: rRNA,

snoRNA, snRNA, MtRNA, 7SK, Y RNA, and finally a combination of transcript type defined by the GENCODE gff and the feature

type as defined above. Because of the large number of simple repeats, only repetitive elements enriched by at least 2.5 units of

log2 fold change are included in clustering. Repeats that are not one of snRNAs, Y RNAs, tRNAs, LINE 1 sense or antisense, Alu sense

or antisense, LTR, 7SK, or another LINE element are grouped together as ‘‘Other repetitive elements’’. Each category is assigned an

entropy contribution defined at pi log2
pi

qi
where p is the fraction of windows for category i in the queried CLIP sample and q is the frac-

tion of windows in category i across all CLIPs. Reference data was clustered using Pearson correlation distance and the McQuitty

agglomeration method via the hclust function in R. The nine classes of RBPs were created by cutting the tree into ten subgroups and

reassigning a singleton clade. Each class was labeled according to the category with the greatest entropy contribution.

Skipper reproducible enriched windows are fine mapped by recentering on local maxima of binding enrichment (i.e. immunopre-

cipitated over input reads summed over 75 nt intervals) and extended to a fixed 75 nt size. 75 nt windows overlapping the original

reproducible enriched windows are iteratively selected until no local maxima remain or enrichment falls below the median across

all positions. For motif calling, 75 nt control windows are created first by selecting a random window in the partitioned transcriptome

of the same feature group – noncoding exons, mRNA exons, proximal introns (within 500 nt of exon-intron boundary), or distal in-

trons – and then randomly selecting a center. The findMotifsGenome.pl script from HOMER is run on fine-mapped windows with

the following options: -preparsedDir <directory> -size given -rna -nofacts -S 20 -len 5,6,7,8,9 -nlen 1 -bg <background windows>

For gene ontology analysis, windows lying in genes belonging to each term are tallied and compared to the representation of each

term across all ENCODE 3 CLIPs to control for expression, library preparation bias, andmappability. P values are calculated by bino-

mial test with the rate of success equal to the representation of the term in the ENCODE 3 CLIPs. P-values are Bonferroni corrected

for multiple hypotheses. For t-SNE visualization, tallies of feature type and transcript type windows from CLIP-seq query data are

pooled with ENCODE reference data and plotted in two dimensions using the Rtsne package.82

Use of CLIP analysis tools
To prioritize transcript annotations for all tools, the gene_type and transcript_type fields in GENCODE were manually ranked and

stored in the accession_type_rankings.txt file. Piranha v1.2.1 (no covariates) and CTK v1.1.4 (eCLIP with statistical significance)

were downloaded and run by following instructions on their corresponding lab software webpages. Counts were aggregated using

Skipper tiled windows for Piranha, as the instructions did not recommend a procedure for calling peaks or aggregating counts.

PureCLIP v1.3.1 was installed using Conda with an activated Bioconda channel as directed on its GitHub page. We followed the

PureCLIP Read the Docs page for incorporating input control data, adding the -nt 12 option to enable completion within 2 hours

per CLIP. We downloaded omniCLIP v0.2.0 via GitHub and edited the source code as suggested by users on the GitHub Issues

page to allow it to compile. generateDB, parsingBG, and parsingCLIP were run as directed on the GitHub. The run_omniCLIP com-

mand was used with the –nb-cores 12 option to enable completion within 12 hours per CLIP. CLIPper v1.0-processed IDR peaks

were downloaded from the ENCODE Project website.

For CTK, CLIPper, and omniCLIP, the center of each hit region was overlapped with the Skipper transcriptome-tiled windows For

PureCLIP, the called crosslink site was used.

For CLIPper, CTK, PureCLIP, windows containing hits from both replicates were called candidate binding sites. omniCLIP merges

replicates and outputs one file of hits which was used for candidate binding sites.

Precision and relative recall calculations for CLIP-seq benchmarking
FASTKD2 enriched windows were ascertained as true positive binding sites if they aligned to chrM and false positives otherwise.18

Scripts for assessing PUM2 binding affinity20 were modified to score arbitrary sequences. Enriched windows and matched control

regionswere extended 7 nt and scored. Scores above the 95th percentile in the control regionswere ascertained as true positives and
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scores below the 50th percentile as true negatives. PRPF8 enriched windows were ascertained as true positives if they were anno-

tated as GENCODE 50 splice site proximal (within 500 nt) and true negatives otherwise. TARDBP enriched windows were extended 5

nt and queried using bedtools nuc for the GURUG motif. Enriched windows containing the GURUG motif were ascertained as true

positives and true negatives otherwise.18 TROVE2 enriched windows were ascertained as true positives if they derived from Y RNAs

and true negatives otherwise.12

CLIPper peaks are much narrower than the tiled transcriptomic windows used by Skipper and do not respect boundaries around

UTRs and exon junctions. CLIPper peaks were reassigned the transcriptomic window that overlapped the center of the CLIPper

peak. Thus, multiple CLIPper peaks within the same transcriptomic window were not double counted.

Because the full set of all true binding events is not known, we calculated a relative recall measure for eachCLIP analysismethod as

follows: the number of ascertained true positives detected by the method divided by the number of unique true positives ascertained

across all methods.

RBFOX2 knockdown-sensitive exon analysis
RBFOX2 knockdown-sensitive exons were downloaded from Van Nostrand et al. 2016 by downloading source data to Figure S10

(mislabeled as source data for Figure S13 on the Nature Methods online article) and lifted over to GRCh38. Skipper windows or

CLIPper peaks within 500 nucleotides of knockdown-sensitive exons were retrieved using bedtools flank and intersect commands

and labeled with the corresponding exon SepScore.

LINE1 evolutionary analysis
LINE1 specificity to primates was defined as the percent of individual instances of each LINE1 type that were novel to primates.27 The

GC-corrected log2 enrichment per element reported by Skipper was then plotted against the specificity to primates.

Evaluating RBP binding near alternative splice sites
Total RNA-seq for HepG2 and K562 cell lines was downloaded from the ENCODE Project website encodeproject.org. Alternative

splicing was assessed using rMATS with the following options: –gtf gencode.v38.annotation.gtf –bi <STAR reference> -t paired

–readLength 50 –od rmats –statoff. Alternative 50 and -30 splice sites were converted to BED format and intersected with all repro-

ducible enriched windows called using ENCODE Project eCLIP data. Alternative exons with fewer than 20 total exon junction reads

were discarded. Bias toward alternative or constitutive splice sites was calculated for each eCLIP experiment using the binom.test

function with a probability of success (enriched windows overlapping the alternative splice site) of 0.5. Testing alternative versus

constitutive splice site binding bias stratified by alternative exon usage was performed using the chisq.test function.

Known regulators of RNA splicing and decay were identified as belonging to the Gene Ontology terms ‘‘RNA splicing’’ and ‘‘Post-

transcriptional regulation of gene expression’’, plus CPSF6. TIAL1 and CPSF6 were not annotated with RNA splicing or post-tran-

scriptional regulation of gene expression, but are well known to play those respective roles.83,84

Assessing subcellular localization
RBP subcellular localization49 was downloaded from the Human Protein Atlas website proteinatlas.org. RBPs were noted for binding

to the nucleoli, nucleoplasm, cytosol, or mitochondria in either the ‘‘Main location’’ or ‘‘Additional location’’ fields.

eCLIP of translation factors
eCLIP was performed according to our published protocol.85 eCLIPs were performed using antibodies from Bethyl Laboratories

against EIF2B5 (A302-556A), EIF2D (A303-006A), EIF2S2 (A301-743A), EIF3J (A301-746A), RPS14 (A304-031A), RPL35A (A305-

106A), RPS3A (A305-001A), RPL29 (A305-056A), and RPS19 (A304-002A) in K562 cells. The ribosome schematic was derived

from entry 4V6X on PDB.86

Selective constraint testing
LS-GKM79 was trained on 75-nt fine-mapped windows centered on binding signal within Skipper reproducibly enriched windows for

translation factor eCLIPs and approximately 20,000 randomly sampled control windows used as background. Gapped kmer SVMs

were trained using the following command: gkmtrain -m 6000 -l 10 -t 3 -k 6 ${id}.finemapped_windows.fa ${id}.sampled_windows.fa

gkm_models/${id}. Area under the precision recall curve was assessed via the ROCR R package87 using 5-fold cross validation

estimates.

Genetic variants in gnomAD overlapping 75-nt fine-mapped windows were queried remotely using bcftools looping across CLIP

experiments and chromosomes:

bcftools query -R $CLIP_bed -f ‘%CHROM\t%POS\t%ID\t%REF\t%ALT\t%INFO/AC\t%INFO/AN\n’ $https://gnomad-public-

us-east-1.s3.amazonaws.com/release/3.1.2/vcf/genomes/gnomad.genomes.v3.1.2.sites.${chromosome}.vcf.bgz

Variant fasta files were created from reference fastas by substituting single nucleotide variants one at a time. Variant and reference

fastas were scored for all chromosomes using the gkmpredict command: gkmpredict -T 1 gnomad/${id}/${chromosome}.mut.fa

gkm_models/${id}.model.txt gkm_out/${id}.${chromosome}.mut.txt. Delta scores were computed as the difference between gkm-

SVM predictions on variant and reference fastas. Variants were placed into four bins: singletons, allele frequency < 0.1%, allele
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frequency between 0.1% and 1%, and allele frequency >1%, and delta scores were regressed against bin rank using the lm com-

mand in R to determine relative constraint. To assess significance, delta scores were permuted within allele frequency bins 5000

times to create a null distribution of relative constraint such that constrained transcripts were required to exceed the transcrip-

tome-wide average trend. Instances in which no permutation exceeded the relative constraint of the observed values were replaced

with 10-4, and the p.adjust function in R was used to enforce a 10% false discovery rate.

Enrichment for feature types in constrained transcripts was detected by Fisher’s Exact Test stratifying enriched window counts by

whether the transcript passed statistical significance and whether the window derived from a particular feature type.

Wild type and mutant RPS19 plasmid cloning
The RPS19 ORF from the Orfeome 8.1 collection was inoculated into LB with 200 ug/mL hygromycin b and purified by Qiagen mini-

prep. We cloned wild type RPS19 into pEF5/FRT/V5-DEST in a single step LR Clonase reaction with 100 ng RPS19 ORF plasmid,

300 ng pDONR 221 Vector, 300 ng pEF5/FRT/V5-DEST, and 2 uL of LR Clonase II enzymemix (Thermo 11791020) in a 10 uL reaction

volume and incubated for 2 hours at room temperature before adding 1 uL proteinase K solution and incubating at 37C for ten mi-

nutes. Gateway product was transformed into One Shot Stbl3 chemically competent cells (Thermo C737303) by heat shock for 45

seconds at 42C. Cultures were purified by Miraprep.88 Site-directed mutagenesis primers were designed using NEBaseChanger to

create R62WandR101H constructs.Mutationswere induced using theQ5 Site-DirectedMutagenesis Kit (NEBE0554S) according to

manufacturer’s instructions. All plasmids were sequenced by Primordium Labs.

eCLIP of wild type and mutant V5-tagged RPS19
Twelve 10 cm plates were seeded with Lenti-XTM 293T cells in 10 mL of DMEM media. Plated cells grew undisturbed until �80%

confluency as determined by microscopy. Then cells were transfected with the LipofectamineTM 3000 Transfection Reagent (Invitro-

gen); first, 30 uL of each V5 tagged RPS19 plasmid (WT, R62W, R101H) was added to 84 uL of p3000 reagent followed by 130.2 uL of

Lipofectamine 3000 under a laminar flow hood and vortexed for 15 seconds. Tubes then incubated at room temperature for 15 mi-

nutes. 80 uL of each plasmid transfection mix was added dropwise to the plated cells by micropipette. Cells for eCLIP size-matched

inputs were not transfected. 48 hours after the transfection, cells were irradiated at 400mJ/Cm2 in a UV crosslinker and pelleted. Cell

pellets were stored at -80C before proceeding with the eCLIP protocol with anti-V5 antibody (Bethyl Laboratories A190-120A).

RPS19 construct eCLIP analysis
Skipper was run by pairing each CLIP sample with one of the three input samples and estimating overdispersion from the three input

samples. tRNA enrichment was evaluated per replicate by performing a paired t-test on mutant enrichments versus wild type enrich-

ments for all tRNA genes. Gene-wise signal was aggregated by taking the sum of the log2 enrichments for all enriched windows per

gene separately for intronic windows and CDS windows. Correlation was calculated by using the cor function in R with the comple-

te=TRUE option.

Overlaps between enriched windows and QTLs
eQTL and sQTL40 v8 datasets were downloaded from the GTEx portal. SNPs with the most significant p-value per gene or splice

graph were retained as lead eQTL or sQTL, respectively. Lead 30 alternate polyadenylation QTL (3aQTL)89 were downloaded from

Synapse ID syn22131046. Polyadenylation sites90 were downloaded from GEO ID GSE138197. Skipper enriched windows and win-

dows containing CLIPper IDR peaks were intersected SNP positions using bedtools.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests and test details are listed in the results section. Significance testing for beta-binomial distributions was performed

using the VGAM package in R. Other statistical tests were performed using base R functions. See method details for more

information.
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