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Abstract: This article presents the smoothed shock filter, which iteratively produces local segmenta-
tions in image’s inflection zones with smoothed morphological operators (dilations, erosions). Hence,
it enhances contours by creating smoothed ruptures, while preserving homogeneous regions. After
describing the algorithm, we show that it is a robust approach for denoising, compared to related
works. Then, we expose how we exploited this filter as a pre-processing step in different image
analysis tasks (medical image segmentation, fMRI, and texture classification). By means of its ability
to enhance important patterns in images, the smoothed shock filter has a real positive impact upon
such applications, for which we would like to explore it more in the future.

Keywords: image denoising; image enhancement; shock filtering; morphological operators; image
segmentation; classification; robustness

1. Introduction

Image enhancement and denoising consists of improving digital images by reducing
inherent noise, which has been addressed by a wide variety of approaches [1–4]. Very
popular or simple algorithms are generally employed for this task, such as Gaussian,
median, or bilateral filterings [5–7], as they are implemented in many libraries dedicated
to image processing (e.g., see OpenCV (http://opencv.org/—accessed on 12 March 2021),
Matlab (http://mathworks.com—accessed on 12 March 2021) or ITK—Insight ToolKit
(https://itk.org—accessed on 12 March 2021). The most recent advances deal with the
development of deep neural networks [8–10], designed to learn input (Gaussian) noise and
how to separate it from any new sample image.

Since the 1980s, numerous techniques based on PDE (Partial Differential Equations)
have been proposed, starting with the well-known anisotropic diffusion introduced by
Perona and Malik [11]. Other PDE-based approaches have been developed based on
the concept of shock filtering, originally introduced by Kramer and Bruckner [12] and
then popularized by Osher and Rudin [13]. Shock filters locally “shock” an image by
erosion and dilation to create ruptures between local maxima and minima, by applying
morphological operators depending on the sign of the Laplacian calculated on each pixel.
This algorithm has several relevant theoretical properties: the range of output image’s
values stays between the limits of the input image, contrary to other approaches such
as Fourier transform- or wavelet-based ones; border effects such as Gibbs phenomenon
cannot thus occur [14]; and it preserves the total variation of the processed signal and
approximates deconvolution [15]. Another interesting property of this filter is its ability to
enhance flow-like patterns, such as a fingerprints, a lion’s mane, or long hair. This principle
is deeply investigated in [14,16], proposing the coherence-enhancing shock filter. Even
if this PDE scheme is not originally able to process noisy signals, several authors have
proposed extended versions [15,17,18].

In [18], we introduced an original extension of the shock filter by replacing standard
morphological operators by smoothed dilation and erosion operators, following the work
of Kass and Solomon [19]. The present article aims at describing this algorithm and
the influence of parameters in Section 2. Then, we illustrate its application in diverse
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contexts. Firstly, we show how we measured its robustness against other similar PDE-
based approaches for image denoising, by exploiting a formal definition of robustness
in Section 3. Then, we present its positive impact as a pre-processing step in image
segmentation and classification tasks in Section 4. Finally, we conclude the article and give
future works in Section 5.

2. Smoothed Shock Filtering: Principle, Algorithm and Impact of Parameters
2.1. Algorithm Description

The original shock filter [13] processes each pixel p = (x, y) of an image I using the
PDE scheme, given at iteration t by:

It(p) = −sign
(
∆It−1(p)

)
|∇It−1(p)|, t > 0, (1)

where I0(p) = I(p). ∆It(p) is the Laplacian operator calculated at p, ∇I is the gradient
value at p. At each iteration t ≥ 0 of this process, the filter applies morphological operators
depending on the sign of ∆It−1(p):

{
∆It−1(p) < 0⇒ It(p) = It−1(p)⊕ D
∆It−1(p) > 0⇒ It(p) = It−1(p)	 D,

(2)

where D is a structural element of 1-pixel width and ⊕ and 	 are standard dilation and
erosion operators. The shock filter employs these at local maxima and minima for each
iteration, thus creating inflexion zones.

In [18], we proposed to improve this PDE scheme by integrating smoothed morpho-
logical operators inspired by the work of Kass and Solomon [19]. Those operators are
defined by smoothed local histograms that are formalized as:

f̂p(sk) = ∑
p′∈V(p)

K
(

I(p′)− sk
)
W
(
|| p− p′ ||2

)
, 1 ≤ k ≤ nb, (3)

where nb is the number of histogram bins, sk is the kth bin of this histogram, V(p) is the
spatial neighborhood of p, and K, W are generally Gaussian kernels. They affect the impact
of neighborhood on the current pixel in terms of intensity (K) and of position (W).

From this smoothed histogram, we obtain the integral by computing:

Rk(p) = 1−
(
C(I(.)− sk) ∗W

)
(p), 1 ≤ k ≤ nb. (4)

In this equation, C is the integral of K, expressed as an ERF (error function), and ∗ is a
standard convolution operator. To obtain a smoothed median filter, the algorithm consists
of finding the sk value s.t. Rk(p) = t, with t = 1

2 . We can even come back to a standard
median filter by defining the Gaussian kernel W with a std. equal to 0. Moreover, with this
formalism, we can compute a smoothed dilation if we choose 1

2 < t ≤ 1, and a smoothed
erosion with 0 ≤ t < 1

2 .
In our contribution, we employ the smoothed morphological operators in a shock

filter scheme. In particular, we replace the standard dilation and erosion operators (see
Equation (2)) by the calculation of the bin sk s.t.:

Rk(p) =
(

1
2 + ρ∆I(p)

)
, (5)

where ∆I(p) ∈ [−1; 1] and ρ ∈ [− 1
2 ; 1

2 ] is a parameter fixed by the user. This equation
means that we compute a smoother erosion of parameter t = 1

2 − ρ when the Laplacian is
positive (Equation (2)) and a smoothed dilation of parameter t = 1

2 + ρ otherwise. Then,
we impose that the processed pixel’s intensity I′(p) is equal to the value Rk(pi). By means
of this process, we are able to process noisy signal with only a few iterations [7,18].

The complete sequence of instructions of the algorithm is exposed in Algorithm 1.
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Algorithm 1: Smoothed shock filtering
input :An image I, number of iterations nit
output : I′, result obtained by smoothed shock filtering of I
begin

I0 ← I ;
for it = 1 to nit do

// Integral of smoothed histogram f̂p, Equation (4)
compute Rk(p) for every k ∈ {1, nb}, p ∈ Iit−1 ;
for each p ∈ Iit−1 do

// Compute smoothed dilation/erosion factor, Equation (5)
t← 1

2 + ρ∆Iit−1(p) ;
// Compute the value associated to t in the histogram
v← R1(p) + t(Rnb(p)− R1(p)) ;
for k = 1 to nb − 1 do

// Search for the bin in R w.r.t. v, pixel assigned
if Rk(p) ≤ v ∧ Rk+1(p) ≥ v then

Iit(p)← sk+(sk+1−sk)(v−Rk(p))
(Rk+1(p)−Rk(p))

;

end
end

endfor
end
return I′ = Iit ;

end

For a given iteration of the filter 0 ≤ it ≤ nit, the first step of this algorithm consists in
calculating, for each pixel p of the input image, the smoothed local histogram over the nb
bins, as depicted in Figure 1, by its integral Rk(p) obtained with Equation (4) (Line 4). We
then determine the percentage of smoothed erosion or dilation, represented by the value t
on Line 6, depending on the Laplacian operator calculated at p and on ρ value set by the
user (Equation (5)). We remind that, if t equals 50%, we apply a smoothed median filtering
at p, if t < 50% a smoothed erosion, and a smoothed dilation otherwise (see Figure 1 for an
illustration of those two latest processes). Line 7 represents the computation of v, which is
the value of the smoothed histogram associated to t. The last part of Algorithm 1 aims at
determining in the histogram R the sk bin associated to the v value. The last condition (Line
9) permits searching for the two bins sk, sk+1 in R that bound this searched value, associated
to v. Thanks to the operation on Line 10, we obtain an interpolated value between sk and
sk+1 corresponding to v.
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(a) Patch

(b) Dilation (c) Erosion
(d) (e)

Figure 1. From a part of Lena image (a), i.e., V(p) around the central pixel p, the standard histogram (d) and smoothed histogram f̂p

from Equation (3) (e) are respectively depicted. We also present examples of smoothed dilation (b) and erosion (c) obtained over the
whole patch.

Figure 1. From a part of Lena image (a), i.e., V(p) around the central pixel p, the standard histogram
(d) and smoothed histogram f̂p from Equation (3) (e) are, respectively, depicted. We also present
examples of smoothed dilation (b) and erosion (c) obtained over the whole patch.
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2.2. Impact of the Parameters

In this section, we present the influence of the parameters upon our smoothed shock
filter. For color images, we consider the H channel only (with respect to HSV colorspace).

By increasing the number of iterations nit, we obtain a scale-space representation of
the input image, composed of the calculated images [20]. As an illustration, we depict
in Figure 2 the successive outputs obtained from an image of the Brodatz dataset (http:
//www.ux.uis.no/~tranden/brodatz.html—accessed on 12 March 2021) [21], with nit = 20.
We can appreciate the noise reduction, thanks to residual images and associated height
maps, calculated from the difference between original and filtered images.

(a) Input

(b) nit=1 (c) nit=5 (d) nit=10 (e) nit=15 (f) nit=20

Figure 2. Scale-space representation obtained from input image (a), and the result from the filter for
20 iterations. The output images after 1, 5, 10, 15, and 20 iterations are presented, with a zoomed part
and a height map. At the bottom, residual images are depicted with their corresponding height maps
(b–f).

Figure 3 presents a flower picture from the Tela Botanica database (http://www.tela-
botanica.org/—accessed on 12 March 2021). We fixed here nit = 20, ρ = 0.1, and changed
the std. of the Gaussian kernel W (Equations (3) and (4)).

http://www.ux.uis.no/~tranden/brodatz.html
http://www.ux.uis.no/~tranden/brodatz.html
http://www.tela-botanica.org/
http://www.tela-botanica.org/
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(a) Input (b) σw = 3 (c) σw = 7 (d) σw = 11

Figure 3. Impact of smoothing by augmenting the Gaussian kernel W with a flower picture (top) and
a zoomed part of it (bottom).

We can increase the size of the smoothing effect thanks to our filter in homogeneous
regions (e.g., flower’s petals), while preserving contours. With high values of σw, the
smoothed shock filter could serve as a water colorization technique.

In our formalism, ρ adjusts the effect of the Laplacian operator upon the computation
of smoothed morphological operators (Equation (5)). Figure 4 shows an image available
under Creative Commons licence (https://commons.wikimedia.org/wiki/File:Rocher_
St_Michel_%C3%A0_Aiguilhe.JPG—accessed on 12 March 2021). We set nit = 20 and an
increasing ρ value, which decreases the smoothing effect. At the end, we obtained the
standard shock filtering with ρ = 0.5. In this experiment, we can notice that the algorithm
preserves structural patterns including shingles and bricks even with small values of ρ.

(a) Input

(b) ρ = 0.1 (c) ρ = 0.2 (d) ρ = 0.3

Figure 4. Impact of ρ parameter on smoothed morphological operators, with two zoomed parts of
the image.

https://commons.wikimedia.org/wiki/File:Rocher_St_Michel_%C3%A0_Aiguilhe.JPG
https://commons.wikimedia.org/wiki/File:Rocher_St_Michel_%C3%A0_Aiguilhe.JPG
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Table 1 summarizes the parameters of our algorithm that can be set up for different
applications.

Table 1. Different setups for smoothed shock filtering parameters.

Setup Gaussian Kernel Laplacian Operator Number of Iterations

Standard, for most applications σw = 3 ρ = 0.1 1 ≤ nit ≤ 5
Water colorization σw > 3 ρ = 0.1 nit ≥ 5
Sharpening – ρ > 0.1 nit ≥ 5
Scale-space representation – – nit ≥ 10
Original shock filtering – ρ = 0.5 –
Smoothed median filtering σw > 0 ρ = 0.0 –
Median filtering σw = 0 ρ = 0.0 –

3. A Robust Approach for Image Denoising

Whatever the application considered, a recurrent problem is the presence of an uncon-
trolled and destructive perturbation within image, coming from diverse sources: artifacts
in medical acquisition machines, jittering videos from cameras due to wind, etc. This
phenomenon comes from data uncertainties, such as image noise. The ability of an algorithm
to resist to this noise (i.e., the algorithm’s output has been experimentally or theoretically
guaranteed to be independent to noise) is commonly referred to robustness [7]. In [22], we
proposed a first original and foundational definition of robustness dedicated to image
processing algorithms, by getting inspiration from what has been introduced in computer
vision. By considering multiple scales of additive (Gaussian) noise (with respect to stan-
dard deviation), we defined the α-robustness as the calculation of the worst quality loss
(α) throughout the set of increasing noises. More recently, in [23], we introduced another
quality-scale definition of robustness, which considers a more general notion of data uncer-
tainties, and not only additive noise. As a consequence, we can consider more complex
phenomena, in relation with image processing tasks. To evaluate this new measure of
robustness, called (α, σ)-robustness, we still consider the α value presented above, together
with the uncertainty scale σ for which the tested algorithm reaches its worst loss of quality.

This general definition can be described as follows. We consider an algorithm A, for a
given image processing task, with an output X = {xi}i=1,n (generally the image directly
obtained from A). Let N be a data uncertainty specific to the target application of A, and
{σk}k=1,m the different scales of N. The outputs from A for each scale of N are denoted by
X = {Xk}k=1,m. In addition, the ground truth is Y0 =

{
Y0

k
}

k=1,m. Let now Q(Xk, Y0
k) be a

quality measure of A for the scale k of N. The parameters of Q are the result of A and the
ground truth for a noise scale k. An example can be the F-measure, combining true and
false positive and negative detections for a binary decision (e.g., as binary segmentation).
The definition of robustness that is employed hereafter can be expressed as:

Definition 1 ((α, σ)-robustness). Algorithm A is considered robust if the difference between the
output X and ground truth Y0 is bounded by a Lipschitz continuity of the Q function:

dY
(
Q(Xk, Y0

k), Q(Xk+1, Y0
k+1)

)
≤ αdX(σk+1, σk), 1 ≤ k < m, where

dY
(
Q(Xk, Y0

k), Q(Xk+1, Y0
k+1)

)
= Q(Xk+1, Y0

k+1)−Q(Xk, Y0
k),

dX(σk+1, σk) = |σk+1 − σk|. (6)

We calculate the robustness measure (α, σ) of A as the α value obtained and the scale σ = σk
where this value is reached.

In this definition, α measures the worst drop in quality throughout data uncertainty
scales {σk} and σ represents the scale leading to this α value. As a consequence, the most
robust algorithm should have both a low α value and a high σ value.
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In Figure 5b, we summarize the first approaches that we tested for image denoising.
These are several approaches extending the shock scheme by regularization schemes [15,17]
including ours [18]; the PDE-based coherence filtering discussed above [14]; the classic
median [5] and bilateral [6] filterings; and the smoothed median filter introduced by Kass
and Solomon [19].

In this experiment, we used the Denoiselab dataset [24], composed of 13 famous
images (Barbara, Airplane, etc.), altered with additive white Gaussian noise with kernel
std. ranging in the scales {σk} = {5, 10, 15, 20, 25}. This dataset thus contains 65 images
of size 512 × 512 pixels. The quality measure is the SSIM (structural similarity) originally
introduced by Wang [25].

5 10 15 20 25
Gaussian noise scale

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

SmoothedShock
SmoothedMedian
EnhancedShock
ComplexShock
OriginalShock
Coherence
Median 
Bilateral

(a)

Name Ref. (α, σ)
Median [5] (0.027,10)
OriginalShock [13] (0.025,10)
Coherence [14] (0.024,10)
EnhancedShock [17] (0.023,10)
Bilateral [6] (0.023,15)
ComplexShock [15] (0.022,10)
SmoothedMedian [19] (0.009,20)
SmoothedShock [18] (0.009,20)

(b)

Figure 5. Evaluation of (α, σ)-robustness for several image denoising algorithms, compared to
smoothed shock filtering, by studying quality function decrease through scales of noise (a) or
numerically by appreciating the (α, σ) values for each algorithm (b).

By applying Definition 1, we measure the robustness of those algorithms (Figure 5),
from a visual inspection with the graph in Figure 5a or by a quantitative approach by
considering the (α, σ) values as in Figure 5b. As we consider an additive noise in this
experiment, quality functions are decreasing monotonically over the set of noise scales.
As a consequence, the tested algorithms progressively lose their efficiency throughout the
scales of noise. We can observe that algorithms SmoothedMedian and SmoothedShock
have a very good robustness, with both a lower α value and a larger σ scale than the other
approaches. This means that the worst quality loss was observed when a more aggressive
Gaussian noise is applied to images. The production of these plots and calculation of
α and σ values can be reproduced thanks to a Python code diffused as a Github project
(https://github.com/antoinevacavant/robustimageprocessing—accessed on 12 March
2021).

https://github.com/antoinevacavant/robustimageprocessing
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We also numerically compared our method with the deep neural network DnCNN
introduced by Zhang et al. [9]. This architecture is composed of convolutional lay-
ers and learns the residual noise from images. For the learning phase, we employed
natural images from the BSDS500 dataset (https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/—accessed on 12 March 2021), composed of 500 images, resized
at 180 × 180 pixels, and then altered with additive white Gaussian noise with std. in the
range {0, 55} as the original article suggests. Then, we applied this model to denoise
images from Denoiselab for testing phase. We used two setups: after 7 epochs (DnCNN-7)
and after 10 epochs (DnCNN-10) of learning. The evaluation of robustness is depicted
in Figure 6 (with a similar presentation as in Figure 5). With seven epochs, the SSIM of
DnCNN-7 is higher than the one our SmoothedShock algorithm, for all noise scales of this
test. The (α, σ)-robustness is also slightly better for this deep neural network. However,
we can observe that a longer learning phase reduces the capability of generalization from
the network; the global image quality and robustness of DnCNN suffer from this setup
and are significantly lower than the ones of our approach.

In Figure 7, we present the outputs obtained for the first algorithms of our test. This
figure confirms numerical results and shows the efficient image enhancement achieved by
the most robust methods, SmoothedMedian and SmoothedShock.

Then, in Figure 8, we show the results obtained with the DnCNN approach, compared
to ours, with the same image as in Figure 7. This illustration highlights the good quality
of denoising from the DnCNN-7 model, which reduces noise from input image. Even if
some noise is still present in the output image, geometries are preserved (e.g., the eye in the
zoomed part), while our algorithm may modify boundaries by morphological operators.
We can also observe that the DnCNN-10 alters dramatically image intensities, due to an
inappropriate learning setup.

5 10 15 20 25
Gaussian noise scale

0.70

0.75

0.80

0.85

0.90

0.95

SS
IM

SmoothedShock
DnCNN-7
DnCNN-10

(a)

Name Ref. (α, σ)
DnCNN-10 [9] (0.010,15)
SmoothedShock [18] (0.009,20)
DnCNN-7 [9] (0.008, 5)

(b)

Figure 6. Evaluation of (α, σ)-robustness, by the graphical (a) and numerical (b) approaches, for the
smoothed shock filtering and the DnCNN network, learned with two configurations.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) Noisy image (b) Input image

(c) Bilateral (d) Median (e) Coherence

(f) OriginalShock (g) ComplexShock (h) EnhancedShock

(i) SmoothedMedian (j) SmoothedShock

Figure 7. First illustrations of the results obtained for image denoising algorithms of our test.
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(a) Noisy image (b) Input image

(c) DnCNN-7 (d) DnCNN-10 (e) SmoothedShock

Figure 8. More illustrations of the results obtained for image denoising algorithms of our test.

4. Image Enhancement for Improving Classification and Segmentation

We also exploited our algorithm in two main pattern recognition task: image segmen-
tation and texture classification. In these projects, we mostly used the setup of parameters
ρ = 0.1 and σw = 3 in our algorithm, while changing the number of iterations nit.

4.1. Image Segmentation

As a preliminary test, we first proposed in [18] to exploit our filter as a pre-processing
tool for medical image segmentation. As illustrated in Figure 9, we applied our filter
and two others (EnhancedShock and ComplexShock) on a CT scan slice. After 10, 20,
and 30 iterations, this evaluation revealed that our algorithm allows enhancing organs’
borders and internal tissues, which leads to an interesting segmentation, with a graph-
based algorithm from Felzenszwalb and Huttenlocher [26] applied on images filtered
30 times.

In [27], we then proposed a complete pipeline devoted to the segmentation of liver
cancer tissues in MRI slices. As exposed in Figure 10, it first consists of the extraction of
regions of interest (ROI) within MRI images by a radiologist, in order to highlight the
target cancerous nodule (HCC, hepatocellular carcinomas). This is a standard estimation of
tumor’s viable tissues that may have higher intensities in MRI thanks to specific contrast
agents. Smoothed shock filtering is the second step of our pipeline. Finally, we developed
a fuzzification/defuzzification algorithm to segment the tumor.
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(a) EnhancedShock

(b) ComplexShock

(c) SmoothedShock

Figure 9. Segmentation obtained from one CT slice, with different methods, after 10, 20, and 30
iterations. A part of the segmentation is also presented.

(a) Expert selection of ROI (b) ROI (c) Smoothed-
Shock

(d) Segmenta-
tion

Figure 10. The steps of HCC segmentation from MRI slices.
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This method first classifies image pixels into clusters by means of FCMVC (FCM
with variable compactness) [28], an extension of classic FCM in which the size of the
clusters is taken into account by a compactness parameter. As a defuzzification phase, we
developed an original method inspired from Sequential Forward Floating Selection [29,30].
Its principle is to add pixels to the core, i.e. the highest non-empty α-cut in the fuzzy image,
by considering geometrical and image intensity features (more details can be found in [27]).

We present in Figure 11 the results obtained with our system for seven MRI ROI,
representing different stages of HCC tumors: not treated and completely viable (first
column), totally treated (last column), and others composed of partial necrosis. We can
observe that the smoothed shock enhances the tissues and permits to extract efficiently the
contours of the nodules. In [27], we also showed that our segmentation process is accurate
for all these ROI, compared to other works selected from the literature.

Figure 11. Segmentation results of HCC, from top to bottom: ROI selected by an expert; smoothed
shock filter applied on these images; ground-truth of tumors’ contours; and segmentations obtained
with our pipeline.

4.2. Image Classification

In [7], we showed that our smoothed shock filter can be applied as an efficient pre-
processing step for the classification of fMRI volumes. The application was to recognize
brain activities from those images, and especially pleasure and disgust. In this context,
fMRI scans were acquired while subjects were exposed to pleasant, neutral and disgusting
pictures. Then, a classification system based on self-organizing maps was used [31,32] for
the classification.

Our objective was to study the impact of smoothed shock filtering on the 3D images for
a better recognition. To do so, we compared our filter with a standard fMRI pre-processing
algorithm, FLIRT [33,34] and with related works. Table 2 exposes the numerical evaluation
conducted with 10 fMRI sequences. Moreover, Figure 12 presents an example of fMRI
volume processed with our filter, which smoothes homogeneous regions while preserving
important patterns of brain activities.
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Table 2. Performance of fMRI data classifier with different pre-processing filters.

Method Recall Precision F-Measure

FLIRT 0.761 0.733 0.747
OriginalShock 0.797 0.777 0.787
Median 0.824 0.811 0.817
SmoothedShock 0.829 0.811 0.820

(a) Input

(b) SmoothedShock

Figure 12. Filtering fMRI data: 3D view (left); and selected X and Y slices (right).

We also used the smoothed shock filter to improve texture classification tasks in [35].
Firstly, we computed 20 new images from every texture belonging to a given dataset (one at
each iteration of filtering). Then, filtered images and the original one were used as input for
a feature descriptor selected from the literature: LBP (Local Binary Pattern), GLCM (Gray
Level Co-occurrence Matrix), GLDM (Gray Level Difference Method), SFTA (Segmentation-
based Fractal Texture Analysis), CLBP (Complete Local Binary Pattern), or LBPV (Local
Binary Pattern Variance). Finally, a feature vector was computed as the concatenation of
representations of filtered and original textures, obtained with our algorithm, compared to
standard Gaussian filtering and anisotropic diffusion [11]. For a large-scale comparative
study, we considered four datasets: Brodatz [21], composed of 111 textural classes with 10
samples each (the most used dataset for texture recognition in the literature and contains
a variety set of images extracted from a photo album); Outex [36], with 68 classes with
20 images each (with 128×128 pixels, about natural scenes and surfaces, with intraclass
variations such as viewpoint, scale and illumination); Vistex [37], with 864 images (the
smallest dataset, presenting natural scenes with different scales, illuminations, viewpoints);
and Usptex [38], composed of 2292 images, labeled in 191 classes (the largest dataset,
containing different types of textures such as wood, plants, fabrics, among others).

Table 3 depicts the classification rates (with KNN and Naive Bayes) obtained with
the three filters and without any pre-processing, together with the associated feature and
iterations that permit to lead to these rates. We can observe that the smoothed shock
enhances the texture at best for classification, for all the datasets. In most of the cases, local
binary pattern and its variant CLBP are the most suitable textural descriptor.
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Table 3. Performance of classifiers, KNN (a) and Naive Bayes (b) approaches, for four texture classification datasets, by
considering three pre-processing filters: smoothed shock filter, Gaussian filter, and anisotropic diffusion. For each filter, we
present the best Correct Classification Rate (CCR), together with the feature and the combination of iterations leading to this
rate. The leftmost column is the best rate without any pre-processing.

(a) KNN

Dataset Original Smoothed shock Gaussian Diffusion
CCR (feat.) CCR (feat.) It. CCR (feat.) It. CCR (feat.) It.

Outex 75.59 (LBPV) 84.78
(GLDM)

{2, 4, . . . , 18} 83.01 (CLBP) {9} 82.94 (CLBP) {19}

Brodatz 97.6 (CLBP) 98.11 (CLBP) {6} 97.20 (CLBP) {2} 97.84 (CLBP) {11, 14}
Usptex 83.1 (CLBP) 88.66 (CLBP) {1, 8} 85.21 (CLBP) {1} 88.57 (CLBP) {1, 3, . . . , 17}
Vistex 98.96 (CLBP) 99.31 (CLBP) {2} 98.96 (CLBP) {2, 3} 99.54 (CLBP) {14}

(b) Naive Bayes

Dataset Original Smoothed shock Gaussian Diffusion
CCR (feat.) CCR (feat.) It. CCR (feat.) It. CCR (feat.) It.

Outex 80.81 (LBP) 86.47 (LBP) {2, 7, . . . , 17} 83.01 (LBP) {8} 85.15 (CLBP) {4}
Brodatz 96.6 (CLBP) 98.02 (CLBP) {2} 96.85 (CLBP) {1} 97.47 (CLBP) {15}
Usptex 85.77 (CLBP) 91.49 (CLBP) {1, 3, 5} 86.43 (CLBP) {1, 3} 89.66 (CLBP) {8, 11, . . . , 20}
Vistex 97.33 (CLBP) 98.50 (CLBP) {2, 3} 98.50 (CLBP) {1, 3, 5} 97.92 (CLBP) {1, 8}

5. Discussion and Future Works

In this article, we review the smoothed shock filter and its application in various
image analysis tasks. Firstly, we explain the way to tune this algorithm in order to enhance
and denoise differently input images. We then show that this is a robust and efficient
approach for denoising and segmentation tasks improvement, thanks to its capability to
smooth homogeneous regions, while preserving important contours. Finally, its use as a
pre-processing step for image and texture classification is a real benefit.

There are several relevant advantages of using the smoothed shock filtering, compared
to related works. First, we can choose setups in order to produce different outputs of the
filter, for various applications (see Table 1). Thanks to the standard setup, we can achieve
accurate enhancement for most applications exposed in this article, and certainly even
more. By changing these parameters, we can also produce water colorization or sharpening
effects for instance. Second, it is generally very difficult to determine which number of
iterations should be set in most PDE-based algorithms, for achieving the best accuracy. Our
algorithm only requires a few iterations (between two and five, as we showed in previous
works [7,18]) to reach its best performance (in terms of, e.g., SSIM or PSNR). Third, our
algorithm may be applied for denoising, but it is not its main purpose. As a consequence,
it may be less efficient than a deep neural network such as DnCNN [9]. However, these
end-to-end architectures are massively learned for denoising and not for enhancement
as with ours. Furthermore, as observed in our experiments, their performance is highly
dependent on the configuration of learning, and hyperparameterization, while smoothed
shock filtering keeps a solid behavior with a simpler and faster tuning. Finally, by means of
the smoothed morphological operators and the shock approach, we can enhance important
patterns of images. This is an important feature for describing images’ content, as we did
with the scale-space representation by combining iterations of the filter to best describe
textures.

As future works, we first plan to compare our filter with more modern approaches
based on other deep neural networks, according to standard metrics and robustness we
define in this article. This comparison should take into account that those models require a
very long training process (e.g., for DnCNN, more than 80 h for seven epochs and more
than 110 h for 10 epochs with a standard PC), while our filter does not need any learning
phase and can be tuned rapidly to obtain relevant results. In addition, we would like
to exploit our filter in more contexts. As an example, we are working on its use as a
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pre-processing step for segmentation driven by a deep U-Net approach, so that we increase
more network’s accuracy in biomedical image analysis tasks.
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