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A B S T R A C T   

Mounting heavy precipitation events (HPEs) caused by the climate change have drawn wide attention. Increased 
incidences of infectious diseases are known as the common following health impact, while little has been studied 
about the extremal relationship in between. Therefore, this study aims to investigate the joint extremes of 
precipitation and infectious disease mortality rate in the USA, using publicly accessible data from the National 
Centers for Environmental Information and the Centers for Disease Control and Prevention. The study reveals the 
positive association between heavy precipitations and infectious diseases with slight national and regional dif-
ferences using multivariate Peaks-Over-Threshold modelling. The strength of extremal dependence is measured 
by the extreme parameter α from a logistic dependence model in multivariate extreme value theory. The Mid-
western USA shows an excessive impact of HPEs on infectious disease mortality (α = 0.7524), while the other 
regions show similar extremal dependence strength with the national one (α values all approximate 0.77). The 
study also discovered spatial disparities in the extremal dependences for five sub-categories of infectious diseases 
in each census region, among which mycoses show the strongest extremal dependence with precipitation in 
almost all regions. These spatial differences of extremal dependence may be attributed to geographic, social- 
economic factors and the self-inherited characteristics of certain diseases. The findings are expected to assist 
in developing strategies counteracting extreme risks resulting from weather events and health issues as well. The 
cutting-edge multivariate Peaks-Over-Threshold (POT) approach employed herein also shows promise for a wide 
range of extreme risk assessment topics.   

1. Introduction 

Climate change has been causing mounting threats from extreme 
weather events and environmental changes [1]. Heavy precipitation 
events (HPEs) are expected to become more frequent and intense due to 
global warming, leading to a rise in the water-carrying capacity of the 
atmosphere and convective storm events. This trend has resulted in 
increased occurrences of flooding and rainfall events, particularly in the 
Eastern USA [1,9,10]. These HPEs are more likely to increase with the 
climbing intensity of tropical cyclones [5]. 

According to Aune, Davis, and Smith [1], heavy precipitation events 
(HPEs) are often the primary cause of river and flash flooding, while 

coastal flooding events can also arise partly from tropical cyclone- 
induced precipitation or storms. These HPEs and resulting flooding 
events frequently lead to significant financial losses, displacement, 
psychological impacts, and increased mortality rates [1,22]. For 
instance, unpredictable heavy rainfall and the subsequent flooding 
event in Zhengzhou, China, in July 2021 resulted in economic losses of 
approximately RMB 53.2 billion [14,16,21]. 

Incidences of waterborne and vector-borne diseases are known to 
increase following HPEs in both developing and developed countries 
[1]. This is likely due to contamination of water resources, displacement 
and crowding resulting from flooding, and abundant breeding sites for 
vectors [5,7,11]. Municipal water systems, particularly the outdated 
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ones, are overloaded during HPEs, increasing the risk of contamination 
of the water supply for drinking and recreation through combined sewer 
outflows [1,5,11]. The displacement of affected populations often leads 
to crowded conditions, overburdening wastewater handling infrastruc-
ture. Bacterial and viral contaminants can spread to human communities 
and impact humans and animals in the aspects of facilitating the 
transmission of waterborne diseases such as diarrhea and cholera 
through dispersed surface water after flooding [1]. Vector-borne infec-
tious diseases also tend to surge following HPEs, with mosquito-borne 
illnesses being one of the most common examples, as optimal breeding 
sites are left for their growth [5,7]. 

Previous studies have investigated the existence of significant asso-
ciations between heavy precipitation and infectious disease morbidity in 
specific regions. Smith et al. [20] conducted a case-crossover study using 
logistic regression analysis to identify a positive association between 
extreme precipitation events (≥ 99th percentile) and influenza emer-
gency room visits in Massachusetts, USA with the odds ratio being 1.23 
(95% CI: 1.16, 1.30). Phung et al. [18] found significant increases in 
hospitalization due to infectious intestinal diseases following HPEs (≥
95th percentile) in Vietnam. Chen et al. [5] conducted Poisson regres-
sion analysis to categorize daily accumulated precipitation into four 
levels and found that the extreme torrential level (> 350 mm/d) posed 
the highest risks for waterborne infections in Taiwan. Singh et al. [19] 
focused on Pacific Islands and found a positive relationship between 
extreme rainfalls and diarrhea infections in Fiji. Curriero et al. [9] re-
ported a positive association in the USA between waterborne disease 
outbreaks and extreme precipitations (≥ 90th percentile) using Chi- 
squared and Fisher’s Exact Tests. 

Although previous research has generally shown a positive associa-
tion between HPEs and infectious diseases, definitions for extreme 
precipitation vary depending on different thresholds or quantiles, which 
may be subjective. Furthermore, studies have typically focused on out-
breaks and morbidity with few investigating the mortality of overall 
infectious diseases in recent years. Besides, basic mean association be-
tween advanced statistical modelling on the topic of extreme weather 
events and infectious diseases is rare. Extreme conditions on mortality 
are also seldom discussed at either country or regional levels [17]. 
Therefore, this paper aims to fill this research gap by focusing on the 
extreme associations between precipitation and the corresponding 
mortality of infectious diseases at both national and regional levels. 

The study will explore category-specific extremal relationships in 
each region to identify differences among sub-categories. The USA is the 
study object due to its high-quality database on both HPEs and infectious 
diseases. Considering the upward trends of heavy precipitation due to 
climate change in the USA in Figs. 2 and A.1, this study is in high de-
mand for exploring potential linked causes and for providing sugges-
tions for the environmental and public agency in public strategy at a 
regional level. 

The objective of our research is to study the joint extremes of pre-
cipitation and the corresponding mortality of infectious diseases. To 
better evaluate tail risks that are typically difficult to model due to the 
scarcity of extreme values, we will use extreme value theory (EVT), an 
ideal tool for such analyses [3,23]. In this paper, we will apply bivariate 
extreme value theory, specifically the bivariate Peaks-Over-Threshold 
(POT) method, to analyze the extremal dependence between monthly 
precipitation and mortality of infectious diseases at national and 
regional levels. Firstly, we will adjust seasonality or trends from these 
non-stationary time series data using autoregressive integrated moving 
average (ARIMA) models since the POT method is suitable for inde-
pendent and identically distributed variables [15]. The resulting re-
siduals will be fitted to the bivariate generalized Pareto (GP) 
distribution, and their extremal dependences will be quantified to un-
derstand short-term dynamics. The potential relationship explored could 
inform improvements in risk mitigation measures in the healthcare in-
dustry to handle increasing disease infections resulting from extreme 
weather events in the future. The results may also be useful for related 

fields, such as the insurance industry in designing catastrophic bonds, as 
well as policymakers, and possibly engineers and architects to alter 
structures that help mitigate risks [14,16]. 

2. Materials and methods 

2.1. Database 

This research utilized monthly regional precipitation and mortality 
rate data on infectious diseases in the USA from 1999 to 2019. The joint 
extreme analysis was conducted for the whole country as well as sepa-
rately for four census regions in the USA, namely the Northeast, Mid-
west, South, and West (excluding Hawaii) according to the divisions 
defined by the USA Census Bureau. The monthly precipitation data from 
1999 to 2019 is derived from the Climate At a Glance report released by 
National Oceanic and Atmospheric Administration (NOAA) National 
Centers for Environmental Information. National precipitation data was 
directly obtained. With regard to regional data, statewide data is first 
downloaded and then assigned to corresponding census regions. The 
monthly precipitations for each region were calculated as their arith-
metic mean. 

The mortality rate of infectious diseases is another research object 
herein, of which the whole category and sub-categories are considered 
separately. According to the International Classification of Diseases, 
Tenth Revision (ICD-10), the whole category refers to certain infectious 
diseases and parasitic diseases (ICD-10: A00-B99), which contains 22 
sub-categories. The death numbers of both whole and sub-categories are 
collected correspondingly from Underlying Cause of Death on Wide- 
ranging Online Data for Epidemiologic Research (WONDER) database 
available on the Centers for Disease Control and Prevention (CDC) 
official website (https://wonder.cdc.gov/). Because monthly population 
data is not available, assuming the overall population does not change 
greatly annually, annual population is adopted to calculate the mortality 
rate. The population data by country and by census region are requested 
from Bridged-Race Population Estimates on the same WONDER CDC 
platform. Considering the reliability of results, only the sub-categories 
with <20% missing values are passed to subsequent analysis, which is 
listed as Intestinal infectious diseases (ICD-10: A00-A09), Other bacte-
rial diseases (ICD-10: A30-A49), Viral hepatitis (ICD-10: B15-B19), 
Mycoses (ICD-10: B35-B49), and Sequelae of infectious and parasitic 
diseases (ICD-10: B90-B94). 

2.2. ARIMA and GARCH models 

The auto-regressive integrated moving average (ARIMA) models are 
widely used for time series analysis, which captures the autocorrelations 
in the data, and therefore is able to explain the underlying trend and 
seasonality [12]. If an ARIMA model could precisely capture these two 
components in a time series data, the residuals are supposed to be white 
noises (namely independent and identically distributed). Since the 
monthly precipitation and mortality rate data within a relatively wide 
year range are adopted herein, a yearly seasonality pattern, as well as 
upward or downward trends, could be possibly observed, resulting in 
the non-stationary time series data and thus against the assumption of 
POT methods. To solve this problem, the ARIMA model will be applied. 
It is an ideal choice here to generate white noises for subsequent POT 
analysis. If the residuals are not white noises (i.e., existing conditional 
variances), The premise of applying the bivariate POT method is that the 
samples should be independent and identically distributed. Thus, the 
ARIMA model is adopted herein to remove the trend, seasonality as well 
as non-stationarity from two time series. If heteroscedasticity remains in 
the residuals, the generalized autoregressive conditional hetero-
scedasticity (GARCH) model is then utilized to cope with such a situa-
tion. GARCH model could be applied to deal with such irregularity. 

Hyndman and Athanasopoulos [12] detailly described an ARIMA(p,d,
q) model with three components: Autoregressive (AR), Integrated (I), 

Z. Cai et al.                                                                                                                                                                                                                                      

https://wonder.cdc.gov/


One Health 17 (2023) 100636

3

and Moving average (MA) with order p, d and q, accordingly. It can be 
written as 

y′t = c+ϕ1y′t− 1 +⋯+ϕpy′t− p + θ1εt− 1 +⋯+ θqεt− q + εt,

where c is a constant value; y′t is the differenced data; p, d, and q are the 
order of the AR model, the order of differencing, the order of the MA 
model, respectively. The non-seasonal ARIMA model focuses on 
modelling non-seasonal data. With regard to seasonal data, the ARIMA 
model with an addition of seasonal terms is applied. A seasonal ARIMA 
model is presented as 

ARIMA(p, d, q)× (P,D,Q)S, (1)  

in which p, d, and q in the nonseasonal part have identical meanings to 
that in the non-seasonal ARIMA model; P, D, and Q denote the coun-
terparts in the seasonal part of the model with the time span of the 
seasonality S. The white noises of the residuals of (seasonal) ARIMA 
models might be checked according to the Ljung-Box test. If further the 
Autoregressive Conditional Heteroskedasticity (ARCH) effect is 
confirmed via Portmanteau Q and Lagrange Multiplier (LM) tests, then 
the addition of the GARCH component is required. A GARCH(p, q) model 
specifies the conditional variance of the error term ϵt as ϵt = σtzt , with 
standard variation σt following an ARMA(p, q). Finally, the white noise 
residuals of zt’s will pass to the extreme analysis. 

The procedures to fit the ARIMA model to two time series variables 
mostly follow the Box-Jenkins method [4]. Extra steps of examining 
whether the data is white noise or not are performed by applying the 
Ljung-Box test before stationary test and after differencing. The auto-
mated function auto.arima() in the forecast package in R is also used for 
the model fitting by proving more potential choices [24]. The model 
with the lowest Akaike information criterion (AIC) values would be 
chosen for obtaining the residuals. If the returned residuals are not white 
noises which means failing the Ljung-Box test with p- value <0.05, 
ARCH effect would be tested by Arch.test() function in aTSA package 
and a GARCH component would be added to the final model [25]. The 
detailed procedures of model fitting are shown in Fig. A.1. 

2.3. Bivariate POT approach 

After fitting ARIMA/ARIMA-GARCH models, residuals (i.e., white 
noises) of mortality and precipitation are extracted to apply with the 
bivariate POT method. Beirlant et al. [2] introduced systematically the 
multivariate extreme value theory (MEVT). MEVT is widely applied in 
handling many problems when we are interested in how extremes in one 
variable relate to those in another. The relationship between those 
extreme values of variables can be described by the approach of “tail 
dependence”, also known as “extremal dependence” or “asymptotic 
dependence”. Dependence may occur if the processes are studied at 
neighboring spatial locations during their temporal evolution or share 
common meteorological conditions. It is very convenient if we handle 
first the margins and then transform them to the common scale, e.g., unit 
Fréchet. Then the dependence structure will be studied independently. 
Below, we introduce first the univariate extreme value theory and then 
the bivariate extreme value theory with a focus on the dependence 
measure. 

Univariate extreme value theory. EVT aims to study rare events 
with extremely large influences. Its wide applications range from 
finance [26], environmental study [8] and pharmacometrics [27]. There 
are two common approaches to addressing extreme data and its distri-
bution behavior. One is the block maxima (BM) method, which char-
acterizes the maximum value in each block using the Generalized 
Extreme Value (GEV) distribution. Another one is the 
Peaks-Over-Threshold (POT) method, which analyzes the excesses over 
an appropriate threshold by generalized Pareto (GP) distribution. As the 
POT model can make full use of the extreme value data in comparison 
with the BM model, in this paper, we mainly employ the POT-based 

methods for analysing the extremal dependence of temperature and 
mortality of relevant diseases. 

Suppose that X1,X2,…,Xn,… is a random sample from parent 
X ∼ F(x), i.e., Xi’s are independently and identically distributed with 
common distribution function (df) F(x). Given a high threshold u, GP 
distribution is adopted to fit the threshold excess Y[u] = X − u∣X > u, 
namely [8] 

ℙ{X − u > y|X > u} ≈ GP(y; σ, ξ) =
(

1 + ξ
y
σ

)− 1/ξ
, y > 0.

Hence, the tail of the potential distribution F for x > u is approxi-
mated as below (recall F = 1 − F). 

F(x) = ζℙ{X > x|X > u} = ζ
(

1 + ξ
x − u

σ

)− 1/ξ
, x > u, (2)  

in which ζ = ℙ{X > u}. Here ξ ∈ ℝ and σ > 0 are the shape and scale 
parameters of GP distribution Gξ,σ(y) = 1 − [1 + ξy/σ]− 1/ξ

, y > 0. In 
practice, the exceedance probability F(x) gives insight into the potential 
risk. Its estimate can be obtained through the extrapolation approach via 
Eq.(2): to get the approximated tail probability of the GP model using 

the maximum likelihood estimation of ξ, σ based on excesses 
(
x(i) − u

)′s 
with x(1) ≥ ⋯ ≥ x(nu) exceeding the threshold u and the estimate of ζ =

F(u) as nu/n. 
With regard to the POT method, threshold selection is of the key role 

which represents a trade-off between variance and bias. Both the mean 
residual life plot and parameter stability plot could assist in the selection 
of a proper threshold, namely, we first get a range of thresholds where 
the empirical mean excess function is likely to vary linearly in threshold 
u 

en(u) =
1
nu

∑nu

i=1

(
x(i) − u

)

and its derived stable estimates of both scale and shape parameters. 
Bivariate threshold excess model. As mentioned before, we will 

focus on the dependence for a bivariate vector (X,Y) ∼ F(x, y) with 
margins of FX and FY . These marginal distributions can be transformed 
to be a common unit Fréchet distribution as follows. For proper 
threshold ux and uy, the margin has an approximation of Eq.(2) with 

parameter sets of (ζx, σx, ξx) and 
(

ζy, σy, ξy

)
. Denote by 

X̃ = −

(

log

{

1 − ζx

[

1 +
ξx(X − ux)

σx

]− 1/ξx
})− 1  

and 

Ỹ = −

(

log

{

1 − ζy

[

1 +
ξy
(
Y − uy

)

σy

]− 1/ξy
})− 1

.

Consequently, the transformed vector 
(

X̃, Ỹ
)
∼ F̃(x̃, ỹ) has the mar-

ginal distribution function which is approximately standard Fréchet for 
x > ux and y > uy. 

Suppose that F is in the max-domain of attraction of a bivariate 
extreme value distribution, i.e., the limiting normalized componentwise 
maxima of observation from F follows a bivariate extreme value distri-
bution. This is equivalent to 

F(x, y) =
{

F̃
n
(̃x, ỹ)

}1/n
≈ G(x̃, ỹ) = exp{ − ℓ(1/x̃, 1/ỹ) }, x > ux, y > uy,

where ̃x and ̃y are defined in terms of x and y by the same transformation 
between X and X̃. Here ℓ is the so-called stable tail dependence function 
([2], chap. 8). In contrast with univariate extreme value theory, there 
are infinite parametric forms for ℓ such that G is a multivariate extreme 
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value distribution. Another equivalent form of measuring the depen-
dence is to utilize spectral measure (d.f.) H on [0, 1] such that 

ℓ(v1, v2) = 2
∫ 1

0
max(ωv1, (1 − ω)v2 )dH(ω),

where H satisfies the mean restraint of 1/2, namely, 
∫ 1

0 ωdH(ω) = 1/2. 
The sample form (i.e., the spectral measure plot) based on this restric-
tion can assist in the selection of threshold [3]. There are several clas-
sical choices for the parametric family of G such as logistic, negative 
logistic, and bilogistic. Among these models, the logistic model is the 
most popular one given its simplicity. It is commonly used as the 
dependence model in the survival analysis literature and other appli-
cations [28,29] 

ℓ(v1, v2) =
(

v1/α
1 + v1/α

2

)α
, α ∈ (0, 1], (3)  

where the smaller value of α indicates a stronger dependence between 
the two margins. The limiting case of α→0 corresponds to the variables 
being totally dependent with 

ℓ(v1, v2) = max(v1, v2);

when α = 1, the variables are independent: ℓ(v1, v2) = v1 + v2. Ac-
cording to [13], the 1 − α value can be interpreted as the probability that 
the maximum values occur simultaneously in a sequence of observations 
for the same size larger enough, which also equals Kendall’s rank cor-
relation coefficient τ. Many alternative approaches to describe the 
dependence structure of G have been developed in the literature. Quite 
popular is Pickands’ dependence function 

A(ω) = ℓ(1 − ω,ω) : [0, 1]↦[0, 1],

which equals 
(

ω1/α + (1 − ω)
1/α
)α 

corresponding to bivariate logistic 

model. We have 

max(ω, 1 − ω) ≤ A(ω) ≤ 1, ω ∈ (0, 1).

Note the lower and upper bounds of the Pickands dependence 
functions above correspond to the total dependence and independence, 
respectively. Therefore, we can show graphically the dependence by 
examining the closeness of the Pickands’ dependence function. In 
addition, a tractable quantity to summarize the main properties of the 
dependence structure is the upper tail dependence coefficient (UTDC) 
χ ∈ [0, 1], giving a rough but representative picture of the full depen-
dence structure [32]. The UTDC is a limiting measure of the tendency for 
one variable to be large conditional on the other variable being large, i. 
e., 

χ = lim
u→1

ℙ{FY(Y) > u |FX(X) > u }.

In the case that χ = 0, the variables are said to be asymptotically 
independent, and χ = 1 corresponds to the total dependence. It can be 
given through the Pickands’ dependence function as χ = 2 − 2A(1/2),
which equals 2 − 2α,α ∈ [0,1] for bivariate logistic dependence model 
[8]. 

In the application of bivariate POT method, the selection of a pair of 
suitable thresholds (ux, uy) is of vital importance in this method. There is 
no universal threshold selection method for bivariate POT. The spectral 
measure plot of is one of the potential choices developed by [3], which 
was developed [29]. The evd package in R could achieve this [30]. 
Spectral measure plot helps decide k0, which is the rank of upper order 
statistics of the radius ri = x̃i + ỹi. In other words, there should be at 
least k0 observations which exceed at least one marginal threshold for 
analysis. The pair of thresholds with their values corresponding to the 
(n − k1)

th data ranked in ascending order can then be selected, where 
k1 = ⌊(k0 + 1)/2 ⌋. With the properly selected thresholds, excess re-
siduals are fitted by bivariate GP distribution adopting the logistic model 

as its dependence model using POT package [31]. The strength of the 
extremal dependence is measured by the value of α and finally visualized 
via Pickands’ dependence function plots. 

3. Results 

3.1. Descriptive analysis 

Figs. 1 and A.2 displayed the trends and seasonality of monthly 
precipitation and mortality rate of infectious diseases at the national and 
regional scales, respectively. The red smoothing lines indicate the un-
derlying trends. In regard to monthly precipitation, a clear upward trend 
was observed at the national level and in the Midwestern and Southern 
USA. Although an overall downward trend is presented in the monthly 
mortality rate, at the regional level, mortality rates increase in almost all 
regions, excluding the Northeastern USA. Seasonal patterns are also 
visible from these time series plots as regularly repeated variations. The 
yearly seasonality in monthly precipitation is only seen in the Mid-
western and Western USA, where precipitation surges in the mid of the 
year in the Midwestern USA whereas relatively low in a similar period in 
the Western USA. The yearly pattern for the mortality rate of the whole 
infectious diseases category is almost identical at both national and 
regional levels, with the valley occurring in the middle of the year and 
peaks reaching in the winter. 

In Fig. A.3, we examine the seasonality and trends of monthly mor-
tality rate for sub-categories of infectious diseases at the national and 
regional levels for the Northeastern and Southern USA (the other regions 
are deferred in the Appendix). All sub-categories generally show similar 
patterns all over the country and in the Northeastern USA. Aside from 
intestinal infectious diseases and other bacteria disease categories, the 
mortality rate of other categories shows a decreasing trend. The annual 
seasonality exhibits only in the mortality rate of intestinal infectious 
diseases and other bacteria diseases. Regarding the sub-categories in the 
Southern USA, with similar overall trends, the trend changes for all sub- 
categories are more prominent compared to those at the national and 
Northeastern levels. The data ranges for each sub-category are wider in 
this region as well. 

Table 1 presents the descriptive statistics of monthly precipitation 
and mortality rate of the whole category at both national and regional 
levels. The distributions of all monthly precipitation and mortality rates 
are right-skewed, with greater mean than median values. The range of 
monthly precipitation is wider in the Northeast and narrower in the 
South. The monthly mortality rate of the general infectious diseases 
category in the South is much higher than the national level, while the 
mortality rate in the West is lower than the national level. Table A.1 
shows measurements for the mortality rate of sub-categories. Among the 
five sub-categories, A30-A49 (other bacterial diseases) has a relatively 
higher mortality rate in all regions. The mortality rates of other bacteria 
diseases and viral hepatitis vary among all regions with higher values in 
the Southern USA but are similar for the remaining diseases. 

3.2. Seasonality and trends of precipitation and mortality 

The premise of applying the bivariate POT method is that the sam-
ples should be independent and identically distributed. Thus, the ARIMA 
model is adopted herein to remove the trend, seasonality as well as non- 
stationarity from two time series. If heteroscedasticity remains in the 
residuals, the GARCH model is then utilized to cope with such a 
situation. 

The stationary tests for monthly precipitation and mortality rate at 
the national level show p-values >0.05, indicating the presence of trends 
in both data, as well as the seasonality in mortality data revealed from 
Fig. 1, A.2 and A.3. For regional data, monthly precipitation in the 
Northeastern USA passes the Ljung-Box test with p-value of 0.08, 
implying that the raw data is already white noise. However, non- 
stationarity presents in other regional data with non-significant 

Z. Cai et al.                                                                                                                                                                                                                                      



One Health 17 (2023) 100636

5

p-values. Differences for removing such non-stationarities in both 
regional and national data are required and their orders are shown in 
Table 2, presenting the final ARIMA model parameters for the whole 
infectious diseases case. The orders of AR and MA components are 
determined based on the ACF and PACF plots of stationary data after 
differencing, coupled with results provided by the automated algorithm. 

All residuals of these models pass the Ljung-Box test indicating they are 
white noises. 

Table A.2 provides selected parameters of ARIMA models for the 
mortality rate of sub-categories of infectious diseases obtained following 
the same procedures as previous models. Apart from the mortality rate 
of sequelae of infectious and parasitic diseases in the Northeast, the time 
series for other diseases all contain seasonal components. It can be 
inferred from the orders of differencing in these models that different 
diseases share similar trend and seasonality patterns in all regions, 
except for some exceptions in the Northeastern and Southern regions for 
intestinal infectious diseases, mycoses, and sequelae of infectious and 
parasitic diseases. The residuals of these models are all white noises with 
p-values of Ljung-Box tests >0.05. 

3.3. Extreme association of excess precipitation and mortality 

Spectral measure plots were employed to assist with threshold se-
lections for bivariate data for whole category case and resulted corre-
sponding k0 are presented in Table 3. Pairs of thresholds are selected via 
calculating and mapping their indexes to the data in ascending order, 
following the instruction in Methods section. These thresholds are listed 

Fig. 1. National monthly precipitation (a) and mortality rate (b). Sources: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/ for precipitation and 
https://wonder.cdc.gov/ucd-icd10.html for mortality. 

Table 1 
Descriptive statistics of monthly mortality of the whole category per 1000 people and precipitation in mm (Size = 252).  

Variable Region1 Min Median Mean Max IQR SD 

Precipitation 

National 33.53 65.02 65.50 113.54 17.34 14.04 
R1 27.21 95.79 101.23 300.31 49.64 38.65 
R2 15.73 66.70 70.00 164.27 46.98 31.56 
R3 28.57 102.38 102.38 175.59 41.33 29.64 
R4 26.48 44.71 48.42 93.51 16.49 13.14 

Mortality 

National 0.0150 0.0180 0.0183 0.0234 0.0021 0.0016 
R1 0.0156 0.0219 0.0222 0.0304 0.0304 0.0025 
R2 0.0149 0.0198 0.0199 0.0291 0.0030 0.0023 
R3 0.0342 0.0432 0.0434 0.0606 0.0606 0.0042 
R4 0.0042 0.0134 0.0136 0.0184 0.0022 0.0016  

1 R1: Northeast; R2: Midwest; R3: South; R4: West. 

Table 2 
Selected seasonal ARIMA models for monthly precipitation in mm and mortality 
rate of whole categories per 1000 people at both national and regional levels.  

Variable Region Non-seasonal Seasonal 

p d q P D Q 

Precipitation 

National 3 1 1 0 0 2 
R1 – – – – – – 
R2 0 0 0 2 1 0 
R3 2 0 2 2 0 0 
R4 0 0 2 0 1 1 

Mortality rate 

National 2 1 2 2 1 0 
R1 1 0 1 0 1 1 
R2 2 0 0 1 1 3 
R3 2 1 2 2 1 0 
R4 3 1 1 2 1 1  
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in Table 3 alongside marginal and joint proportions above them. The 
values in the rightmost column α, the maximum likelihood estimate of 
the parameter involved in the logistic model in Eq.(3), imply the 
strength of extremal dependence. The extremal dependence between 
monthly precipitation and mortality rate of the whole infectious diseases 
category at the national level could be considered weak, with the α being 
0.7736 which is closer to 1. The α values for the Northeast, South, and 
West are similar to the national value, whereas the α value is slightly 
smaller in the Midwest. This indicates that although still showing a weak 
pattern, the extremal dependence is relatively stronger in the Midwest 
than in other regions and at the national level. 

Pickands’ dependence function plots are helpful to illustrate the 
strength of dependence (Figs. 2 and 3). The colored lines in these plots 
represent calculated extremal dependence. The horizontal line at the top 
of the triangle indicates independence, and the other two grey lines 
forming the triangle indicate full dependence. Fig. 2 demonstrates that 
the Midwest (represented by the green dashed line) is more inclined 
towards the two sides of the triangle, while other lines almost overlap 
with each other, indicating the same finding. 

Table A.3 presents the results of bivariate POT analysis for the sub- 
categories of infectious diseases at both national and regional levels. 
The strengths of extremal dependence for different sub-categories in 
each region are compared and visualized in Fig. 3. In general, the dif-
ferences in the strength of the extremal dependence for different sub- 
categories are minor, with lines being compact in each subfigure in 

Fig. 3. However, in the Northeastern and Western regions, all sub- 
categories have the same or stronger extremal dependence with 
monthly precipitation than the whole category, with mycoses having the 
strongest in the Northeast. A similar situation occurs in the West as well. 
In the Midwest, intestinal infectious diseases show relatively strong 
extremal dependence, while no prominent sub-categories were observed 
with stronger dependence. Among all sub-categories in all regions, the 
viral hepatitis category (shown by the blue dotted line) has weaker 
dependence. 

4. Discussion 

In this study, a combined bivariate Peaks-Over-Threshold and 
ARIMA methodology was employed to identify a strong positive asso-
ciation between HPEs and infectious diseases. The extremal dependence 
identified herein differs from mean associations in past studies. The 
analysis is scientifically significant because it suggests extreme 
cascading effects which need contingency response strategies. These 
findings provide new insights for comprehensive risk management in the 
healthcare industry, public authorities, and environmental agencies. 

The study’s novelty lies in developing and illustrating bivariate 
extreme value modelling methods that identify extreme weather envi-
ronments and their post-influences on public health issues like infectious 
diseases. Further research on the influence of extreme environments on 
public health can be examined using this modelling framework, which 
employs objective threshold selection based on spectral measure plots 
from extreme value theory. The strength of extremal dependence is 
quantitatively analyzed using tail dependence index and graphical 
toolbox, such as Pickands’ dependence plots. However, caution is 
needed when drawing conclusions from this study due to limited data 
size. Likewise, infectious diseases in animals with higher induced mor-
tality in rainy period could also be investigated in terms of their 
extremal dependences following a similar framework owing to their 
natural transmissions from animals to humans, especially zoonoses [6]. 

In addition, cross-region and cross-disease comparisons revealed that 
the strongest dependence was present in the Midwestern USA among the 
four census regions, with mycoses showing the strongest extremal 

Table 3 
Thresholds and results for bivariate POT analysis of whole infectious diseases 
category.  

Region k0 Thresholds Proportion above 
threshold 

α 

Precipitation Mortality Marginal Joint 

National 145 7.6524 0.0002 0.2900 0.0754 0.7736 
R1 92 129.9351 0.0006 0.1825 0.0397 0.7744 
R2 118 15.1134 0.0008 0.2341 0.0595 0.7524 
R3 152 13.5832 0.0005 0.3016 0.0754 0.7727 
R4 125 5.8657 0.0004 0.2500 0.0397 0.7732  

Fig. 2. The plot of Pickands’ dependence function for whole infectious diseases category nationally and regionally.  
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dependence among the five sub-categories. The findings are in accor-
dance with the geographic, socio-economic factors, and self-inherited 
disease characteristics. For example, the Western USA’s coastal moist 
subtropical mid-latitude climate experiences frequent extreme precipi-
tation, which can boost infectious disease transmission. Mycoses tend to 
grow in humid environments with moderate temperature and moisture, 
making them more prevalent after heavy precipitation events. Addi-
tionally, social-economic factors, such as access to quality treatments 
and income, may vary across Northeastern, Western, Midwestern, and 
Southern regions, leading to slight differences in extremal dependence 
between HPEs and infectious diseases in terms of region-specific and 
disease-specific relationships. 

5. Conclusion 

Extreme weather events can cause negative consequences, including 
health issues. This study utilizes multivariate Peaks-Over-Threshold 
models to examine joint extremes of monthly precipitation and infec-
tious disease in the USA from 1999 to 2019. The extremal dependence 
found at regional/national levels for various diseases can inform the 
development of prediction system for health management after disasters 
caused by extreme events. Moreover, the multivariate extreme value 
analysis methodology can be useful in studying the extremal depen-
dence structure between multiple extreme weather events and their 
various health-related consequences. 
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