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Abstract Biological clocks have been developed at different molecular levels and were found to

be more advanced in the presence of somatic illness and mental disorders. However, it is unclear

whether different biological clocks reflect similar aging processes and determinants. In ~3000

subjects, we examined whether five biological clocks (telomere length, epigenetic, transcriptomic,

proteomic, and metabolomic clocks) were interrelated and associated to somatic and mental health

determinants. Correlations between biological aging indicators were small (all r < 0.2), indicating

little overlap. The most consistent associations of advanced biological aging were found for male

sex, higher body mass index (BMI), metabolic syndrome, smoking, and depression. As compared to

the individual clocks, a composite index of all five clocks showed most pronounced associations

with health determinants. The large effect sizes of the composite index and the low correlation

between biological aging indicators suggest that one’s biological age is best reflected by

combining aging measures from multiple cellular levels.

Introduction
Aging can be conceptualized in different ways. While chronological age is measured by date of birth,

biological age reflects the relative aging of an individual’s physiological condition. Biological aging

can be estimated by various cellular indices (López-Otı́n et al., 2013). Commonly used indices are

based on telomere length, DNA methylation patterns (epigenetic age), variation in transcription

(transcriptomic age) as well as alterations in the metabolome (metabolomic age) and in the prote-

ome (proteomic age) (see Han et al., 2019; Xia et al., 2017 and Jylhävä et al., 2017 for recent

reviews). Biological aging is defined as the residuals of regressing predicted biological age on chro-

nological age: a positive value indicates that the biological age is larger than the chronological age.

Advanced biological aging (i.e. an increased biological clock) has been associated to poor somatic

health, including the onset of aging-related somatic diseases such as cardiovascular disease, diabe-

tes, and cognitive decline (Xia et al., 2017). Advanced biological aging has also been correlated to

mental health: childhood trauma (Li et al., 2017), psychological stress, and psychiatric disorders

(Darrow et al., 2016; Han et al., 2018). Specifically, telomere length has been most extensively

researched and was found to be shorter in various somatic conditions (Jin et al., 2018), all-cause

mortality (Mons et al., 2017; Wang et al., 2018) and a range of psychiatric disorders

(Lindqvist et al., 2015). Advanced epigenetic aging has also been linked to worse somatic health,

mortality (Marioni et al., 2015), depressive disorder (Han et al., 2018; Whalley, 2017), and post-

traumatic stress disorder (Wolf et al., 2018), although some studies have found associations with

the opposite direction of effect (Verhoeven et al., 2018; Boks et al., 2015). Advanced transcrip-

tomic aging was found in those with higher blood pressure, cholesterol levels, fasting glucose, and
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body mass index (BMI) (Peters et al., 2015). Advanced metabolomic aging increases risk on future

cardiovascular disease, mortality, and functionality (Akker et al., 2019).

While all biological clocks aim to measure the biological aging process, there is limited evidence

for cross-correlations among different clocks. Belsky and colleagues (Belsky et al., 2017) recently

showed low agreement between eleven quantifications of biological aging including telomere

length, epigenetic aging, and biomarker-composites. In contrast, Hastings et al., 2019 showed rela-

tively strong correlations (r > 0.50) between three physiological composite biological clocks (i.e.

homeostatic dysregulation, Klemer and Doubal’s method and Levine’s method), but not with telo-

mere length. Other studies showed that telomere length was not correlated with epigenetic aging

(Han et al., 2018; Marioni et al., 2018), although cell type composition adjustments revealed a

modest association (Chen et al., 2017). Further, both Hannum and Horvath epigenetic clocks

(Hannum et al., 2013; Horvath et al., 2012) showed modest correlations to a transcriptomic clock.

Most previous studies, however, have separately considered the relation between a single biolog-

ical clock and different somatic and mental health conditions. To date, extensive integrated analyses

across multiple cellular and molecular aging markers in one study are lacking and it remains unknown

to what extent different biological clocks are similarly associated to different health determinants. In

addition, most studies did not examine health in its full range and, consequently, whether both

somatic and mental health are associated with biological aging remains elusive. As it is unlikely that

a single biological clock can fully capture the complexity of the aging process (Cole et al., 2019), a

composite index, that integrates the different biological clocks and thereby aging at several molecu-

lar levels, may reveal the strongest health impact. Therefore, there is an additional need to integrate

different biological clocks and test whether such a ‘composite clock’ outperforms single biological

blocks in its association with health determinants.

To develop a better understanding of the mechanisms underlying biological aging, this study

aimed to examine (1) the intercorrelations between biological aging indicators based on different

molecular levels ranging from DNA to metabolites, namely telomere length, epigenetic, transcrip-

tomic, proteomic and metabolomic clocks; (2) the relationships between different biological aging

indicators with both somatic and mental health determinants; and (3) whether a composite biological

clock outperforms single biological aging indicators in its association with health. For the five biolog-

ical aging indicators and the composite clock, associations were computed with a wide panel of life-

style (e.g. alcohol use, physical activity, smoking), somatic health (functional indicators, BMI,

metabolic syndrome, chronic diseases) and mental health (childhood trauma, depression status)

determinants.

Results

Sample characteristics
To create indicators for biological aging we used whole blood derived measurements from the Neth-

erlands Study of Depression and Anxiety (NESDA) baseline assessment: telomere length (N = 2936),

epigenetics (DNA methylation, N = 1130, MBD-seq, 28M CpGs), gene expression (N = 1990, Affy-

metrix U219 micro arrays, >20K genes), proteomics (N = 1837, Myriad RBM DiscoveryMAP 250+,

171 proteins) and metabolites (N = 2910, Nightingale Health platform, 231 metabolites), with 653

overlapping samples (see Table 1 for sample characteristics). Each subsample included around 66%

female, with mean age of around 42 years.

Computing biological clocks
The methods for creating the biological clocks are described in detail in the Materials and methods

section. In brief, for each of the four omics measures (epigenetic, transcriptomic, metabolomic and

proteomic) we estimated biological age using ridge regression and cross validation (see Figure 1 for

study design). As telomere length values usually decline with increasing chronological age, this indi-

cator was multiplied by �1 to be able to compare directions of effects consistent with the other bio-

logical clocks. Correlations between chronological age and predicted biological age were 0.30 for

telomere length, 0.95 for epigenetic age, 0.72 for transcriptomic age, 0.85 for proteomic age, and

0.70 for metabolomic age (Figure 1). For each omics-based biological clock, biological aging is

defined as the residuals of regressing predicted biological age on chronological age: a positive value
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means that the biological age is larger than the chronological age. The individual clocks residualized

for chronological age are also referred to as biological aging indicators. Correlations between bio-

logical aging indicators, corrected for sex, are presented in Figure 2. Correlations were significant

for 3 out of 10 pairs; proteomic vs metabolomic aging (r = 0.19, p=2e-16), transcriptomic vs epige-

netic aging (r = 0.15, p=3e-06) and transcriptomic vs proteomic aging (r = 0.08, p=2e-06).

Associations between individual biological aging indicators and health
determinants
For each of the five biological aging indicators, we computed associations with several demographic

(sex, education), lifestyle (physical activity, smoking, alcohol use), somatic health (BMI, hand grip

strength, lung function, physical disability, chronic diseases), and mental health (current depression,

depression severity, childhood trauma) determinants. Except for proteomic aging, sex was associ-

ated with all biological aging indicators: women were biologically younger than men (p=3e-4 for

telomere length, p=5e-4 for epigenetic aging, p=4e-11 for transcriptomic aging, p=1e-5 for metabo-

lomic aging). Education was not associated with any biological aging indicator. We controlled for

sex by using it as a covariate in all following models (except for in the model where sex was the out-

come). Table 2 and Figure 3 give an overview of all associations. Correction for multiple testing was

done using permutation-based FDR (Materials and methods), resulting in a p-value threshold of 2e-2

for an FDR of 5% for all tests.

Table 1. Sample description.

Telomere
Length

Epigenetic
Aging

Transcriptomic
Aging

Proteomic
Aging

Metabolomic
Aging

Composite
Index

# Subjects 2936 1130 1990 1837 2910 653

Demographic Sex (%female) 66.00 65.00 67.00 67.00 66.00 66.00

Education years (mean) 12.15 11.93 12.07 12.07 12.15 11.71

Age (mean) 41.81 41.53 38.71 41.37 41.94 41.23

Lifestyle Alcohol use (units per week, mean) 6.24 6.54 6.38 6.39 6.29 6.48

Smoking (pack years, mean) 11.00 11.43 11.84 10.37 11.12 10.90

Physical activity
(MET minutes per week, mean)

3679.72 3638.54 3729.20 3741.00 3668.13 3525.05

Somatic
Health

BMI (mean) 25.60 25.67 25.68 25.66 25.60 25.82

Physical disability (score, mean) 24.40 29.45 26.00 23.22 24.45 30.27

Lung capacity
(PEF in liter/minute, mean)

477.74 479.75 478.42 477.19 477.23 475.23

Hand grip strength (kg, mean) 37.06 37.77 37.08 37.46 37.05 37.74

Cardiometabolic disease (%cases) 18 18 18 18 18 17

Respiratory disease (%cases) 9 9 9 9 9 10

Musculoskeletal disease (%cases) 10 10 10 9 10 9

Digestive disease (%cases) 9 9 9 8 9 8

Neurological disease (%cases) 3 2 3 3 3 2

Endocrine disease (%cases) 3 3 3 3 3 4

Cancer (%cases) 7 8 7 7 7 8

Metabolic syndrome
(# components, mean)

1.36 1.39 1.37 1.33 1.36 1.41

# Chronic diseases (mean) 0.61 0.62 0.62 0.58 0.61 0.63

Mental Health Current MDD (%cases) 27 72 34 26 27 76

Depression severity (IDS, mean) 21.46 25.80 22.91 20.96 21.48 26.67

Childhood Trauma
(score from 0-4, mean)

0.91 0.97 1.00 0.87 0.92 1.01
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Figure 1. Study design. The upper part of the figure shows the five biological layers. From each of the four omics layers (epigenetic, transcriptomic,

proteomic, and metabolomic data), biological age was estimated, and biological age was regressed on age to obtain measures of biological aging.

Only telomere length was not age-regressed. The five biological aging indicators were associated with multiple demographic, lifestyle, somatic health

and mental health determinants.
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Among the lifestyle determinants, alcohol use was associated with advanced proteomic aging

(p=3e-3) and smoking (packs per year) was associated with shorter telomere length (p=3e-3), and

advanced transcriptomic (p=2e-2), proteomic (p=1e-5) and metabolomic aging (p=5e-3). Physical

activity was not associated with any biological aging indicator.

From the somatic health determinants, high BMI was strongly associated with advanced biological

aging of all indicators (p=2e-2 for telomere length, p=4e-3 for epigenetic aging, p=6e-10 for tran-

scriptomic aging, p=1e-7 for proteomic aging, and p=2e-35 for metabolomic aging). Physical disabil-

ity was associated with advanced epigenetic aging (p=1e-4). Within the domain of chronic diseases,

the presence of digestive diseases and endocrine diseases were associated with advanced proteo-

mic aging (p=2e-2 and p=1e-2, respectively). Subjects with cardiometabolic disease showed

advanced metabolomic aging (p=4e-3) and subjects with digestive disease exhibited advanced tran-

scriptomic aging (p=1e-2). Those with metabolic syndrome showed advanced biological aging

across four indicators (p=6e-4 for telomere length, p=1e-8 for transcriptomic aging, p=5e-9 for

proteomic aging, p=5e-29 for metabolomic aging).

The presence of current depression and depression severity were associated advanced epigenetic

(p=2e-3 and p=9e-5) and proteomic aging (p=8e-3 and p=6e-3, respectively). Current depression

was also associated with advanced transcriptomic aging (p=2e-2) and those with childhood trauma

showed advanced epigenetic aging (p=8e-5). To verify if the results were confounded by medication

Figure 2. Correlations between the biological aging indicators. The heatmap represents Spearman rank

correlations between the five biological aging indicators, all corrected for sex. Out of 10 pairs, three are

significant: transcriptomic vs epigenetic aging, metabolomic vs proteomic aging and proteomic vs transcriptomic

aging. All biological aging indicators were age-regressed, only telomere length was not.
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use, we computed associations between antidepressant medication (SSRIs, TCAs, or other antide-

pressants), metabolic-syndrome-related medication (‘metabolic medication’: anti-diabetic, fibrates,

or anti-hypertensives) and biological aging (Supplementary file 1). After FDR correction, we found

that metabolomic aging was associated with the increased use of metabolic medication

(Beta = 0.153, p=2.35e-3), and antidepressant use with proteomic (Beta = 0.208, p=7.16e-5) and

transcriptomic aging (Beta = 0.129, p=8.1e-3). The design of the current observational study cannot

conclusively prove whether this is a direct medication effect or confounding by indication.

Association between biological aging indicators and mortality in
longitudinal analysis
We conducted post-hoc analyses on the relationship between the biological aging indicators and

subsequent outcomes after 6 years of follow-up duration. Mortality data and self-reported somatic

disease onset (in the categories cardiometabolic, respiratory, musculoskeletal, digestive, neurologi-

cal, and endocrine diseases, and cancer) was gathered at each measurement wave. There were no

significant associations between chronic disease onset or mortality and baseline biological aging,

likely due to the low numbers of mortality and disease onset (Supplementary file 3).

Associations between the biological aging composite index and all
health determinants
The composite index was computed as the sum of the five scaled biological aging indicators in the

653 samples with data of all five biological levels. Correlations between the five biological aging

indicators and the composite index were between 0.43 and 0.51. We found more and stronger asso-

ciations for the composite index than for any of the individual biological aging indicators: including

sex (p=2e-6), BMI (p=2e-10), smoking (p=2e-2), metabolic syndrome (p=9e-13), current MDD (p=6e-

3), depression severity (p=7e-4), and childhood trauma (p=2e-2). As an alternative approach, Princi-

pal Component Analysis (PCA) was used to compute an alternative composite index. We used the

first principle component (PC) of this analysis, which was a weighted sum of the biological aging indi-

cators (for telomere length the weight (w) = 0.042, epigenetic aging w = 0.094, transcriptomic aging

w = 0.220, proteomic aging w = 0.707, metabolomic aging w = 0.664), reflecting the highest correla-

tions between the biological aging indicators, which is between metabolomic and proteomic aging.

Compared to the composite index that was based on the sum and thus gives equal weight to all five

biological aging indicators, the PC-based index had less significant associations with sex, smoking,

BMI, and metabolic syndrome. The PC-based index was not significantly associated with physical dis-

ability, or mental health outcomes, as opposed to the summed index. The five PC’s each explain

Figure 3. Forest plot of associations between biological aging and health determinants. For each of the associations between biological aging

indicators and health determinants, the standardized beta and standard deviation derived from linear models were plotted. The significant associations

(p<2e-2, FDR < 5%) are shown with red stars. The composite index, which is the scaled sum of the five biological aging indicators, clearly shows most

associations and often largest effect sizes. Biological aging was used as outcome in the linear models. Beta for telomere length was multiplied by �1 to

compare with other biological clocks. Red stars indicate FDR < 5%. All biological aging indicators were age-regressed, only telomere length was not.
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more than 15% of variance (the first 2 PC’s more than 25% each), indicating the multidimensionality

and non-redundancy of the five biological aging indicators.

To allow for direct effect size comparisons between the composite (summed) index and the indi-

vidual aging indicators, we compared the findings for the composite index to those of each individ-

ual biological aging indicator with the same subsample. In this analysis, p-values and effect sizes

were often more pronounced for the composite index (Figure 4, Supplementary file 2). For exam-

ple, sex, BMI, metabolic syndrome and current MDD, were significantly associated with the compos-

ite index, but the betas for the composite index were larger than the betas from any individual

indicator. For the other five variables significantly associated with the composite index (smoking,

physical disability, cardiometabolic disease, depression severity, and childhood trauma) the betas for

the composite index were larger than four out of five betas from the individual biological aging

indicators.

Discussion
In this study, we examined five biological clocks based on telomere length and four omics levels

from a large, clinically well-characterized cohort. We demonstrated significant intercorrelations

between three pairs of biological aging indicators, illustrating the complex and multifactorial pro-

cesses of biological aging. Furthermore, we observed both overlapping and unique associations

between the individual biological aging indicators and different lifestyle, somatic and mental health

determinants. Separate linear regressions showed that male sex, high BMI, smoking, and metabolic

syndrome were consistently associated with more advanced levels of biological aging across at least

four of the biological clocks. Strikingly, depression was associated to more advanced levels of epige-

netic, transcriptomic and proteomic aging, signifying that both somatic and mental health are associ-

ated with advanced biological aging. Finally, by integrating a composite index of all biological aging

indicators we were able to obtain larger effect sizes with for example physical disability and child-

hood trauma exposure, underscoring the broad impact of determinants on cumulative multi-system

biological aging.

The range of correlations among the biological aging indicators considered in this study indicates

that the correlates of chronological age in different molecular layers were not strongly correlated,

suggesting that biological aging may be differently manifested at certain cellular levels. Consistent

with prior studies, we showed weak correlations between different biological aging indicators

(Li et al., 2020) and we confirm the absent relationship between telomere length and epigenetic

aging (Marioni et al., 2018; Belsky et al., 2017; Breitling et al., 2016), but also show lack of associ-

ations with transcriptomic, proteomic or metabolomic aging. However, we do confirm an earlier find-

ing showing a significant but modest correlation between epigenetic and transcriptomic aging

(Peters et al., 2015). The correlation between metabolomic and proteomic aging may partly be

explained by the fact that both data were obtained from platforms that were aimed at probing cen-

tral inflammation lipid processes, rather than the full proteome or metabolome. Nevertheless, we

can infer that only some biological aging indicators show overlap, while most of them seem to be

tracking distinctive parts of the aging process, even if they are associated with the same somatic or

health determinants.

Our study showed that several of the determinants considered exhibited consistent associations

with different biological aging indicators. First, male sex was associated with shorter telomere length

and advanced epigenetic, transcriptomic, and metabolomic aging, in line with a large body of litera-

ture that shows advanced biological aging and earlier mortality in males compared to females

(Austad and Fischer, 2016). Second, high BMI was consistently related to all biological aging indica-

tors, showing that the more overweight or obese, the higher the biological age (Gielen et al.,

2018), also after controlling for sex. Earlier studies showed similar associations between high BMI

and shorter telomere length (Gielen et al., 2018), and older epigenetic (Horvath and Raj, 2018)

and transcriptomic aging signatures (Peters et al., 2015). Third, our analyses showed similarly con-

sistent associations between the prevalence of metabolic syndrome and advanced levels of aging.

Further, all but epigenetic aging was advanced with respect to cigarette smoking.

Major depressive disorder (MDD) status was consistently related to advanced aging in three (epi-

genetic, transcriptomic, proteomic) out of the five biological aging indicators. In contrast, a recent

study (N > 1000) in young adults (20–39 years) did not show associations between mental health (as
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Figure 4. Barplots of betas from associations between biological aging and health determinants. For each of the associations between biological aging

and health determinants, the standardized beta and standard deviation derived from linear models were plotted. Only samples that had data for all five

biological clocks (N = 653) were used. All biological aging indicators were age-regressed, only telomere length was not.
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measured by the CIDI) and biological aging (indicated by telomere length, homeostatic dysregula-

tion, Klemer and Doubal’s method and Levine’s method) (Hastings et al., 2019), but it seems possi-

ble that this sample was too young to fully develop aging-related manifestations of mental health

problems, or lacked age variation. It is likely that our data (obtained from participants 18–64 years)

may have been more sensitive in picking up associations with mental health due to increased varia-

tion in both chronological age (i.e. inclusion of older persons), as well as symptom severity. To fur-

ther examine whether the results were consistent across participants with and without depressive

psychopathology, we repeated all models in post-hoc analyses and added an interaction term

between current depression status and health determinants. There was an overall consistent pattern

of non-significant interaction terms for most health determinants and biological aging, although only

higher BMI was significantly associated to advanced epigenetic aging in the psychopathology group.

However, taken together, the results suggest that findings are not different in persons with and with-

out mental disorders. We observed some significant associations between biological aging and med-

ication use. The design of the current observational study cannot conclusively prove whether this is a

direct medication effect or confounding by indication: the patient group using antidepressant medi-

cation is also the group that is more chronically and severely depressed. This is similar for the meta-

bolic syndrome related medication. Future studies using randomized clinical trial designs are

needed to investigate the mechanism of action of direct pharmacological effects of medication on

biological aging.

Furthermore, we computed a composite index by summing up the five biological aging indicators

studied here. In other words, this integrative metric contains cumulative independent signal from the

individual markers and dependent shared signal – with possible reduced noise due to the summation

– between them. Given that this composite index demonstrates larger effect sizes for BMI, sex,

smoking, depression severity, and metabolic syndrome than the individual aging indicators, it is sug-

gested that being biologically old at multiple cellular levels has a cumulative multi-systemic effect.

When integrated, the composite index reveals stronger (i.e. greater cumulative betas for the com-

posite index than individual clocks) converging associations with sex, BMI, metabolic syndrome and

current MDD. This provides further support for the hypothesis that not one biological clock suffi-

ciently captures the biological aging process and that not all clocks are under the control of one uni-

tary aging process. There is abundant room for further progress in determining whether biological

aging can be modified by intervening on these determinants.

Nonetheless, the question remains which biological mechanism could plausibly link the current

quantification of biological aging and its lifestyle, somatic, and mental health determinants. Part of

this answer requires discussion on the features used to build the different clocks: the proteomic and

metabolomic clocks mostly measure inflammatory or metabolic factors, two highly integrated pro-

cesses in aging and aging-related diseases (Frasca et al., 2017). Previous studies suggest immune-

mediated mechanisms (specifically inflammatory signaling) connecting metabolic syndrome

(Révész et al., 2015), mental health disorders (Wohleb et al., 2016), and aging (Révész et al.,

2018). Moreover, MDD is a condition in which inflammation, obesity, and premature or advanced

aging co-occur and converge. It might therefore be speculated that immunity and ’inflammaging’

(Franceschi et al., 2018) may tie together the currently observed associations.

This study did not include existing biological clocks. While the application of established algo-

rithms would increase generalizability of our findings, there are several reasons why it was not opti-

mal to implement previously published algorithms in the NESDA data. First and foremost,

generated omics data are platform-dependent and the existing epigenetic (Horvath, 2013) and

gene expression (Peters et al., 2015) clocks rely on arrays with different coverage of probes as was

used in NESDA, that also target different parts of genes. Second, a subsample of NESDA was part

of the previously published metabolomic clock (Akker et al., 2019), thus application of this model

to the current dataset would result in overfitting. The current proteomic platform has not been used

before to train a biological clock. Moreover, there is currently no validated gold standard for calcu-

lating transcriptomic, proteomic, or metabolomic clocks. Importantly, in spite of these limitations,

we have followed an alternative but consistent methodological approach for training our omics-

based biological clocks, leveraging the advantage to compare, combine, and integrate these clocks

within the same population. However, we emphasize the need for epidemiological replication of

these determinants in other datasets (e.g. those including different ethnicities) and we recognize
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that data harmonization and pooling are important strategies on the scientific research agenda that

may overcome this limitation in the future.

Since no previously published algorithms were used, we trained our own clocks using ridge

regression with cross-validation. This approach relies on the assumption that the determined cross-

sectional correlation between the omics patterns and chronological age arise mainly as a conse-

quence of biological aging, and is independent from potential secular trends (Nelson et al., 2020;

Belsky, 2015; Belsky et al., 2020). As common to cross-sectional studies, it is, however, impossible

to completely rule out potential cohort effects or uncontrolled individual differences and results

should be interpreted in light of this limitation. Future longitudinal studies are needed to identify

patterns of biological changes that go beyond their ability to predict age at the time of sampling.

While the current study only used chronological age as criterion endpoint, it is important to mention

that other epigenetic clocks exist that are trained to predict other potential criteria such as pheno-

typic markers of age (DNAm PhenoAge) (Levine et al., 2018) or a composite biomarker that was

derived from DNAm surrogates and smoking in pack-years (GrimAge) (Hillary et al., 2019). Such

clocks were developed to lead to improved predictions of risk of mortality.

More research is needed to elucidate whether: (1) physiological disturbances, such as loss of

inflammatory control associated with somatic and psychopathology, accelerate biological aging over

time, (2) advanced biological aging precedes and constitutes a vulnerability factor that causes

somatic and psychopathology, or (3) somatic and psychopathology and biological aging processes

are not causally linked, but share underlying etiological roots (e.g. shared genetic risks or environ-

mental factors) (Han et al., 2019). Yet, it could conceivably be hypothesized that dysregulation of

immunoinflammatory control may be related to metabolic outcomes, aging, and depression

(Diniz and Vieira, 2018), providing scope as to why some of these determinants converge across

different platforms and multiple biological levels.

Here, we used a large cohort that was well-characterized in terms of demographics, lifestyle, and

both somatic and mental health assessments, to study and integrate five biological clocks across

multiple levels of analysis. This is particularly important as we show that the determinants of biologi-

cal aging encompass several different domains. Moreover, our sample was adequately powered to

detect statistically significant associations, limiting the possibility for chance findings and increasing

probability for identifying robust biological age determinants. On the other hand, an obvious limita-

tion is the cross-sectional nature of this study that prevents us from drawing any conclusions on

whether the determinants accelerate the aging trajectory over time, the other way around, or

whether ‘third’ variables effect this association.

Another aspect that limits the interpretability of our findings in the context of increased risk of

developing aging-related diseases and mortality was the relatively young age of the current sample.

To illustrate, we were unable to predict future incidence of chronic disease or mortality from baseline

biological aging, likely due to the low numbers of mortality and disease onset (Supplementary file

3), for example the number of deceased cases ranged from 64 (TL) to 27 (proteomic clock). Previous

studies that have associated biological aging with mortality risk commonly include aging cohorts

(Danish longitudinal twin study with mean age of 86.1 years; Framingham Offspring Study with mean

age 61.0 years; Swedish population cohort SATSA with mean age 63.6 years; German population

cohort ESTHER with mean age 62.5 years; Lothian Birth Cohorts with mean age >69.5 years; Norma-

tive Aging Study with mean age 71.7 years) (Marioni et al., 2018; Li et al., 2020;

Christiansen et al., 2016; Perna et al., 2016; Murabito et al., 2018; Chen et al., 2016). Before

definitively interpreting a ‘clock’ as a measure of biological aging, further independent studies are

needed to establish that the clock changes with advancing age and forecasts disease, disability and

mortality.

Conclusions
In conclusion, this study examined the overlap between five biological aging indicators and their

shared and unique associations with somatic and mental health. Our findings indicate that they

largely track distinct, but also partially overlapping aspects of this aging process. Further, we dem-

onstrated that male sex, smoking, higher BMI and metabolic syndrome were consistently related to

advanced aging at multiple biological levels. Remarkably, our study also converges evidence of

depression and childhood trauma associations across multiple platforms, cellular levels, and sample

sizes, highlighting the important link between mental health and biological aging. Taken together,
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our findings contribute to the understanding and identification of biological age determinants,

important to the development of end points for clinical and epidemiological research.

Materials and methods

Study design and participants
Data used were from the Netherlands Study of Depression and Anxiety (NESDA), an ongoing longi-

tudinal cohort study examining course and consequences of depressive and anxiety disorders. The

NESDA sample consists of 2981 persons between 18 and 65 years including persons with a current

or remitted diagnosis of a depressive and/or anxiety disorder (74%) and healthy controls (26%). Indi-

viduals were recruited from mental health care settings, general practitioners, and the general popu-

lation in the period from September 2004 to February 2007. Persons with insufficient command of

the Dutch language or a primary clinical diagnosis of other severe mental disorders, such as severe

substance use disorder or a psychotic disorder were excluded. Participants were assessed during a 4

hr clinical visit, consisting of the collection of all somatic and mental health determinants in the cur-

rent study, as well as a fasting blood draw. All omics data was obtained from the same blood sam-

ple, drawn at the same time point as the health determinant examination during the face-to-face

visit. The study was approved by the Ethical Review Boards of participating centers, and all partici-

pants signed informed consent. More than 94% of the NESDA participants were from North Euro-

pean origin. The population and methods of the NESDA study have been described in more detail

elsewhere (NESDA Research Consortium et al., 2008).

Data to derive different biological clocks was available for different subsamples and all based on

the same fasting blood draw from participants in the morning between 8:30 and 9:30 after which

samples were stored in a �80˚C freezer or – for RNA - transferred into PAXgene tubes (Qiagen,

Valencia, California, USA) and stored at �20˚C. To create biological clocks, we used telomere length

(N = 2936), DNA methylation (N = 1130, MBD-seq, 28M CpGs), gene expression (N = 1990, Affyme-

trix U219 micro arrays, >20K genes), proteins (N = 1837, Myriad RBM DiscoveryMAP 250+, 171 pro-

teins) and metabolites (N = 2910, Nigthingale platform, 231 metabolites), see Table 1 and details in

the following sections.

Biological clock assessments
Telomere length
Leukocyte telomere length was determined at the laboratory of Telomere Diagnostics, Inc (Menlo

Park, CA, USA), using quantitative polymerase chain reaction (qPCR), adapted from the published

original method by Cawthon, 2002. Telomere sequence copy number in each patient’s sample (T)

was compared to a single-copy gene copy number (S), relative to a reference sample. The resulting

T/S ratio is proportional to mean leukocyte telomere length. The detailed method is described else-

where (Verhoeven et al., 2014). The reliability of the assay was adequate: eight included quality

control DNA samples on each PCR run illustrated a small intra-assay coefficient of variation

(CV = 5.1%), and inter-assay CV was also sufficiently low (CV = 4.6%).

DNA methylation (epigenetic clock)
To assay the methylation levels of the approximately 28 million common CpG sites in the human

genome, we used an optimized protocol for MBD-seq (Han et al., 2018; Aberg et al., 2020). With

this method, genomic DNA is first fragmented and the methylated fragments are then bound to the

MBD2 protein that has high affinity for methylated DNA. The non-methylated fraction is washed

away and only the methylation-enriched fraction is sequenced. This optimized protocol assesses

about 94% of the CpGs in the methylome. The sequenced reads were aligned to the reference

genome (build hg19/GRCh37) with Bowtie2 (Langmead and Salzberg, 2012) using local and

gapped alignment. Aligned reads were further processed using the RaMWAS Bioconductor

package (Shabalin et al., 2018) to perform quality control and calculate methylation scores for each

CpG.
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Gene expression (transcriptomic clock)
RNA processing and assaying -done at Rutgers University Cell and DNA repository- have been

described previously (Jansen et al., 2014; Jansen et al., 2017; Wright et al., 2014). Samples were

hybridized to Affymetrix U219 arrays (Affymetrix, Santa Clara, CA). Array hybridization, washing,

staining, and scanning were carried out in an Affymetrix GeneTitan System per the manufacturer’s

protocol. Gene expression data were required to pass standard Affymetrix QC metrics (Affymetrix

expression console) before further analysis. We excluded from further analysis probes that did not

map uniquely to the hg19 (Genome Reference Consortium Human Build 37) reference genome

sequence, as well as probes targeting a messenger RNA (mRNA) molecule resulting from transcrip-

tion of a DNA sequence containing a single nucleotide polymorphism (based on the dbSNP137 com-

mon database). After this filtering step, data for analysis remained for 423,201 probes, which was

summarized into 44,241 probe sets targeting 18,238 genes. Normalized probe set expression values

were obtained using Robust Multi-array Average (RMA) normalization as implemented in the Affy-

metrix Power Tools software (APT, version 1.12.0, Affymetrix). Data for samples that displayed a low

average Pearson correlation with the probe set expression values of other samples, and samples

with incorrect sex-chromosome expression were removed.

Proteins (proteomic clock)
As described previously (Lamers et al., 2016), a panel of 243 analytes (Myriad RBM DiscoveryMAP

250+) involved in various hormonal, immunological, and metabolic pathways was assessed in serum

using multiplexed immunoassays in a Clinical Laboratory Improvement Amendments (CLIA)-certified

laboratory (Myriad RBM; Austin, TX, USA). After excluding analytes with more than 30% missing

data (mostly due to values outside the ranges of detection), 171 of the 243 analytes remained for

analysis (with values below and above detection limits imputed with the detection limit values).

Metabolites (metabolomic clock)
Metabolite measurements have been described in detail previously (Akker et al., 2019; BBMRI-

NL Metabolomics Consortium et al., 2020). In short, a total of 232 metabolites or metabolite ratios

were reliably quantified from Ethylenediaminetetraacetic acid plasma samples using targeted high-

throughput proton Nuclear Magnetic Resonance (1H-NMR) metabolomics (Nightingale Health Ltd,

Helsinki, Finland) (Soininen et al., 2015). Metabolites measures provided by the platform include (1)

lipids, fatty acids and low-molecular-weight metabolites (N = 51); (2) lipid composition and particle

concentration measures of lipoprotein subclasses (N = 98); (3) metabolite ratios (N = 81). This

metabolomics platform has been extensively used in large-scaled epidemiological studies in the field

of diabetes, cardiovascular disease, mortality and alcohol intake (Akker et al., 2019; Würtz et al.,

2016; Wurtz et al., 2012; Würtz et al., 2015; Fischer et al., 2014). The data contained missing val-

ues due to detection limits. Samples with more than 25 missings were removed (N = 71), metabo-

lites with more than 250 missings were removed (N = 1). Other missing values were replaced with

the median value per metabolite. In total 231 metabolites in 2910 samples remained for analysis.

Building biological clocks for multiple omics domains
Telomere length was multiplied by �1 to be able to compare directions of effects consistent with

that of other biological clocks. For each of the other four omics domains (epigenetic, transcriptomic,

metabolomic, and proteomic data) the same approach was used to compute biological clocks. First,

the omics data were residualized with respect to technical covariates (batch, lab). Second, data per

omics marker were normalized using a quantile-normal transformation. Finally, biological age was

computed using cross-validation by splitting the sample in 10 equal parts. For each of the 10 groups,

nine parts were used as training set and the 10th as test set. In the training set the biological age

estimator was computed using ridge regression (R library glmnet), with chronological age as the out-

come, and the omics data as predictors. Only for methylation and gene expression a selection of

predictors (CpGs for methylation-based models and genes for gene-expression-based models) was

made for each cross validation step: we increased the number of sites included in the elastic net in

steps (steps for CpGs: 0, 100, 1000, 10,000, 80,000, 100,000, steps for gene expression 100, 500,

1000, 1200, 1400). CpGs/genes were selected in the order of their ranks derived from the associa-

tion with age in the training sample. We selected the number of CpGs/genes where the cumulative
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association signal reached a stable plateau. This approach is based on the rationale that adding

more markers should theoretically never decrease predictive power. We previously performed tests

where the number of CpGs/genes was included in the loop over the k-folds. However, as it pro-

duced very similar results but is much more computer intensive (Clark et al., 2020), this latter

approach was not used. This approach resulted in 80,000 CpGs (mapping to 2976 genes) for the epi-

genetic clock, and 1200 probes (mapping to 767 genes) for the transcriptomic clock. For the proteo-

mic and metabolomic data, all markers were used to predict age, because leaving markers out

decreased the prediction accuracy. The predictor was then used in the test set to create an unbiased

omics-based biological age. For each omics domain, biological aging was defined as the residuals of

regressing biological age on chronological age (Han et al., 2018; Peters et al., 2015). Thus, in the

terminology we use here, the biological aging indicators represent the biological age acceleration: a

positive value means that the biological age is larger than the chronological age. A composite index

of biological aging was made by scaling each of the five biological indicators and taking the sum, in

the 653 samples that had data for all five omics levels.

Health determinants
Lifestyle
Alcohol consumption was assessed as units per week by using the AUDIT (Babor et al., 1989).

Smoking status was assessed by pack years (smoking duration * cigarettes per day/20). Physical

activity (Gerrits et al., 2013) was assessed using the International Physical Activity Questionnaire

(IPAQ) (Craig et al., 2003) and expressed as overall energy expenditure in Metabolic Equivalent

Total (MET) minutes per week (MET level * minutes of activity * events per week).

Somatic health
BMI was calculated as measured weight divided by height-squared. Functional status is one of the

most potent health status indicators in predicting adverse outcomes in aging populations

(Guralnik et al., 1996), including depression (Milaneschi and Penninx, 2014). Assessment of func-

tional status includes measures of physical impairments and disability, reflecting how individuals’ lim-

itations interact with the demands of the environment. Two measures of physical impairments were

available: Lung capacity was determined by measuring the peak expiratory flow (PEF in liter/minute)

using a mini Wright peak flow meter. Hand grip strength was measured with a Jamar hand held

dynamometer in kilograms of force and was assessed for the dominant hand. Furthermore, physical

disability was measured with the World Health Organization Disability Assessment Schedule II

(WHODAS-II)s the sum of scale 2 (mobility) and scale 3 (self-care). The number of self-reported cur-

rent somatic diseases for which participants received medical treatment was counted. We used

somatic disease categories as categorized previously (Gerrits et al., 2013; Gaspersz et al., 2018):

cardiometabolic, respiratory, musculoskeletal, digestive, neurological and endocrine diseases, and

cancer. Metabolic syndrome components included waist circumference, systolic blood pressure, HDL

cholesterol, triglycerides, and glucose levels, which measurement methods are described elsewhere

(Révész et al., 2014).

Mental health
Presence of current (6 month recency) major depressive disorder was assessed by the DSM-IV Com-

posite International Diagnostic Interview (CIDI) version 2.1. Depressive severity levels in the week

prior to assessment were measured with the 28-item Inventory of Depressive Symptomatology (IDS)

self-report (Rush et al., 1996). Childhood trauma was assessed with the Childhood Trauma Interview

(CTI) (de Graaf et al., 2002). In this interview, participants were asked whether they were emotion-

ally neglected, psychologically abused, physically abused or sexually abused before the age of 16.

The CTI reports the sum of the categories that were scored from 0 to 2 (0: never happened; 1:

sometimes; 2: happened regularly), which was categorized into five categories.

Statistical analyses
For each of the five biological aging indicators we computed associations with demographic (sex,

education), lifestyle (physical activity, smoking, alcohol use), somatic health (BMI, hand grip strength,

lung function, physical disability, chronic diseases), and mental health (current depression,
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depression severity, childhood trauma) determinants using linear models with health determinants as

predictors and biological aging as outcome (for each health determinant separately). All models

included a covariate for sex, except for when sex was the outcome. For telomere length, chronologi-

cal age was used as covariate in the models, for the other biological aging indicators age was not

used as covariate because they are independent of chronological age by design. Standardized betas

from these models are reported (by scaling predictor and outcome). Correction for multiple testing

was done using permutation based FDR (Fehrmann et al., 2011). Subject labels were permuted

1000 times and associations were computed using the permuted data (all biological aging indicators

vs all health determinants). For each of the observed p-values (p) the FDR was computed as the aver-

age number of permuted p-values smaller than p, divided by the amount of real p-values smaller

than p, resulting in a p-value threshold of 2e-2 for a FDR of 5% for all tests. In the 653 overlapping

samples with data in each biological clock domain, we scaled (mean 0, standard deviation 1) and

summed up the five biological aging indicators in order to create a composite index of biological

aging.

Longitudinal analysis of mortality and chronic disease onset
As NESDA is a longitudinal study, with several follow-up measurement waves, we conducted post-

hoc analyses on the relationship between the biological aging indicators and subsequent outcomes

after six years of follow-up duration. The average chronological age of our cohort (mean = 41 years,

sd = 13, range = 18–65 years) is rather young, so high rates of mortality and morbidity were not

expected. Mortality data was gathered at each measurement wave. Also, at each wave self-reported

somatic diseases for which participants received medical treatment were assessed. Based on this, we

created somatic disease categories as categorized previously (Gerrits et al., 2013; Gaspersz et al.,

2018): cardiometabolic, respiratory, musculoskeletal, digestive, neurological and endocrine diseases,

and cancer. For these categories, we computed chronic disease onset defined as the disease not

being present at baseline (time of biological aging assessment) and present at the latest wave (6

years after baseline). For each biological clock, we computed longitudinal analyses, using a linear

model with mortality or chronic disease onset as outcome, and the biological clock residualized for

chronological age as predictor, while correcting for sex.
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