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Conclusions: Our work demonstrates the utility of tear protein biomarkers in classifying
oGVHD severity and adds further evidence indicating ocular surface inflammation as a
main driver of oGVHD clinical phenotype.
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: logic disorders.! Ocular involvement of GVHD occurs
Introduction in approximately 50% of AHCT recipients.> Contin-
i ) uous improvements in long-term survivorship of

Graft versus host disease (GVHD) is a common  ,qcttransplant patients has led to an increase in

complication that occurs in patients after allogenic the number of individuals living with ocular GVHD

hematopoietic cell transplantation (AHCT), which is (0GVHD). Manifestations of chronic oGVHD include
performed increasingly to treat a variety of hemato-
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extensive inflammation and fibrosis at the ocular
surface, which can lead to severe ocular surface
dryness (sicca).’ Inadequately-treated sicca can result
in corneal keratopathy, vascularization, ulceration, and
eventual loss of vision. Subjective symptoms, which
include ocular surface pain and photophobia, signifi-
cantly reduce patient quality of life (QOL).*

Currently, diagnosis of oGVHD depends largely on
observation of symptoms and clinical signs, many of
which have low specificity for the disease.® Success of
early detection depends on the skill of the attending
physician, as well as the regular engagement of the
patient with the ophthalmology team. The burden of
treatment for other, more life-limiting, complications
of their condition often precludes patients from attend-
ing specialist ophthalmology clinics. Despite this, it is
widely accepted that late intervention with corticos-
teroids or other anti-inflammatory therapies substan-
tially reduces the efficacy of treatment of oGVHD.?
Therefore there remains an unmet need for the identifi-
cation of objective diagnostic or prognostic biomarkers
that could be used to determine risk of disease progres-
sion. Because of the possibility for noninvasive and
repeated sampling, the use of tear proteins as biomark-
ers of ocular surface disease is an area of growing
research interest.%’

Biomarker studies, particularly those using omics
technologies, can generate large amounts of data per
patient sample. Machine learning (ML) techniques,
which lie at the interface of mathematics, statistics, and
computer science, can be applied to make predictions
about future datasets based on models created using
known data.® Supervised ML models are trained to
generate predictions about future data through provi-
sion of input data that is labeled with classifier informa-
tion. In recent years, ML and deep learning approaches
have been applied to diverse problems in medicine to
aid physicians in diagnosis of patients.” !! In ophthal-
mology, such methods have been applied to OCT
and color fundus images'? and tear proteomic data!’
to classify diabetic retinopathy patients and to color
fundus photographs to classify glaucoma patients.'*
Biomarker studies in conjunction with ML represent
an important potential future avenue for disease classi-
fication.

To date, several studies have proposed panels of
biomarkers for the diagnosis of oGVHD. These
groups have focused solely on measuring inflamma-
tory marker expression at the protein level in tears
and as mRNA in conjunctival cells.!>~!7 We previously
described the tear proteomic profile of AHCT recipi-
ents with moderate-to-severe o0GVHD compared with
those without oGVHD, in a cross-sectional analysis.'®
In that study, we used an unbiased mass spectrom-
etry discovery-proteomics workflow to uncover the
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protein content of tear samples from oGVHD patients,
versus 0GVHD-negative controls. In the current study,
we report tear proteomic analysis from patients with
oGVHD through all severity grades, rated according
to the NIH disease burden scale.!” Using the large
number of tear protein expression data obtained from
each patient, the study aimed to evaluate whether ML
methods can effectively classify disease severity based
on a predictive tear protein expression signature.

Patients

This cross-sectional study was performed at the
Department of Ophthalmology, University Hospital
Basel, Basel, Switzerland. The study was approved
by the local ethical review board (Ethikkommission
Nordwest- und Zentralschweiz) and adhered to the
tenets of the Declaration of Helsinki. All participants
gave informed consent.

Participants were recruited during outpatient clinics
at the Department of Ophthalmology, University
Hospital Basel. The study enrolled 49 participants
who had previously undergone AHCT for hematolog-
ical disorders. All patients were examined by a single
attending physician (DG). After ocular examination,
patients were classified by oGVHD status according
to the National Institutes of Health (NIH) consensus
criteria: grade 0 (n = 14), grade 1 (n = 9), grade 2
(n = 16), grade 3 (n = 10). In brief, the NIH grading
system classifies 0 GVHD based on severity of impair-
ment of activities of daily living (ADL), extent of
therapy required and degree of vision loss arising from
sicca (0 = normal, no symptoms; 1 = mild, no effect
on ADL, hydrating drops <3 times/day; 2 = moder-
ate, some effect on ADL, hydrating drops >3 times/day
or punctal plugs, no vision loss; 3 = severe, significant
effect on ADL, loss of vision caused by KCS).! In this
study, all data and analyses are presented for one eye
per patient. Eye selection was not randomized; sample
choice was based on the overall clinical profile observed
by taking into account the results of the Oxford score
and Schirmer and Tear Break Up Time diagnostic tests.
For the patients with o GVHD (NIH 1-3) the worse eye
was chosen. For patients without o GVHD (NIH 0), the
best eye was chosen.

Clinical Examination and Sample Collection

Patients underwent a full clinical ocular surface
examination (best corrected visual acuity, slit lamp
examination of ocular surface, Oxford score grading,
tear break up time), including clinical and therapeutic
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history. Patients provided information on quality of
life using the ocular surface disease index (OSDI)
questionnaire (Allergan Inc, Irvine, CA, USA).
Tear samples were collected using Schirmer strips
(Schirmer-Plus; Gecis, Neung-sur-Beuvron, France).
To reduce the risk of contamination, gloves were worn
throughout the procedure. No topical medication was
used before the Schirmer test was performed. Strips
were inserted at the lateral third of the lower eyelid
according to standard procedure, without the use of
topical anesthesia, and collected after five minutes.
Tear volume was noted, and strips were immediately
frozen on dry ice and stored at —80°C until analysis.

Proteomic Analysis of Tear Samples

Mass spectrometric analysis of tear proteins was
performed as described in detail previously.'® In brief,
tryptic digests were prepared from small pieces of
Schirmer test strips and acidified with trifluoroacetic
acid (TFA; Applied Biosystems, Rotkreuz, Switzer-
land) at a 1% final concentration. Peptides were
desalted on C18 SepPak cartridges (Waters, Déattwil,
Switzerland) and washed with a solution of 0.1% TFA.
Forty-microliter aliquots of sample were prepared
for analysis by liquid chromatography tandem mass
spectrometry (LC-MS/MS) using an Orbitrap FT
hybrid system (Thermo Fisher Scientific, Waltham,
MA, USA). Full details of the injection and flow
parameters are provided by Gerber-Hollbach et al.!®

Tryptic digests from a group of healthy volunteers
without ocular surface disease were pooled to provide
material for use as an internal standard in the analysis.
The LC-MS/MS data were searched with proteomics
software (Proteome Discoverer 1.4; Thermo Fisher
Scientific) set to Mascot search engine with 10 ppm
precursor ion tolerance, whereas the fragment ions
were set to 0.6 Da tolerance. The following modifica-
tions were used during the search: carbamidomethyl-
cysteine was set as a fixed and oxidized methion-
ine as a variable modification. Match-searches were
carried out at a 1% false-discovery rate. To analyze
equal amounts of peptides, pairwise digests (patient
sample versus pooled control) were run. An initial
run was carried out on the mass analyzer instru-
ment (Thermo Fisher Scientific), and the resulting
chromatogram was integrated. To compensate for
individual differences in peptide amount obtained from
the Schirmer strips, the integrated chromatogram from
patient and internal standard were adjusted to ensure
equal peptide material was injected. Three technical
replicates were run for each sample. The search files
from Proteome Discoverer were loaded into Scaffold
(Proteome Software, Portland, OR, USA) and the
proteins were quantitated by spectral counting. The
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peptide false-discovery rate was set to 1%, whereas the
protein threshold was 95%. For protein quantification,
the number of usable peptides was set to 3. Protein
expression was calculated as ratios versus the inter-
nal standard, and these data were used in downstream
analysis.

Statistical Analyses

Demographic and Clinical Data

Statistical analysis was performed by a biostatis-
tician (A.S.). Demographic and clinical data were
summarized as mean =+ standard deviation or as
percentages, where appropriate. When data were
normally distributed, ordinary one-way ANOVA with
Tukey’s post-hoc test was used to detect significant
differences between groups. In cases of nonparamet-
ric data, the Kruskal-Wallis test was used to compare
between groups.

Development and Validation of Predictive Tear
Protein Models

We used two methods to generate predictive models
for o GVHD severity based on tear protein expression.
In the first approach, the scikit-learn Python library
(version 0.21.1) was used to train a random forest
(RF) model with 20 estimators and a maximum depth
of 10. Missing values (below level of detection) were
imputed by providing a value that was half of the
lowest detected value. Importantly, in this approach,
no data were removed from the dataset to be analyzed.
To prevent overfitting, the unfiltered data were divided
into two parts: 80% used for model training and 20%
used for model testing. The training set was further
divided using stratified 10-fold cross validation, with
20% kept for validation. Classification performance
was reported as a confusion matrix and the individ-
ual feature importance was reported for the top 100
proteins.

In the second method, any variables with more
than 20% missing values (below level of detection)
were removed before analysis. Missing values in the
remaining dataset were imputed using an algorithm
for left censored data, according to the method of
Wei et al.>’ Additionally, data were log-transformed
for further analysis. To compare protein expressions
among all severity grades (NIH 0-3), nonparamet-
ric analysis (Kruskal-Wallis Test) was performed, and
corresponding P-values were reported. P-values were
FDR-controlled using the BH procedure.’’ Results
were sorted by adjusted P-values to give a top list of the
proteins with statistically significant differential expres-
sion and visualized using boxplots.

To create a predictive model for oGVHD sever-
ity based on tear protein expression, penalized logistic
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Demographic Data of Patients Included in the Study
Group 2 (NIH 1)

Group 3 (NIH 2) Group 4 (NIH 3)

Characteristic n=14 n=9 n=16 n=10
oGVHD severity None Mild Moderate Severe
Age, yrs

Mean =+ SD 56.1 +9.6 484+ 154 52.6 +14.0 5264+ 15.2

Range 38-73 25-69 28-74 24-69
Female, n (%) 5(36) 2(22) 7 (44) 1(10)
Primary diagnosis, n (%)

NHL 0(0) 1(11) 4 (25) 1(10)

MM 2(14) 0(0) 0(0) 2 (20)

ALL 0(0) 2(22) 3(19) 2(20)

AML 8(57) 3(33) 7 (44) 3(30)

MDS 2(14) 0(0) 2(13) 0(0)

CML 1(7) 0(0) 0(0) 1(10)

CLL 0(0) 1(11) 0(0) 0(0)

Other 1(7) 2(22) 0(0) 1(10)
HCT source, n (%)

PB 12 (86) 9(100) 16 (100) 10 (100)

BM 2(14) 0(0) 0(0) 0(0)
No. of HLA-mismatch, n (%)

1 1(7) 1(11 2(13 1(10)

2 0(0) 1(11 2(13 0(0)
Unrelated donor, n (%) 3(21) 8 (50 5(50)
Time elapsed between AHCT

and ocular exam (mo)

Mean + SD 82.7 +£85.7 66.1 + 50.8 88.9+62.6 90.6 + 68.7

Range 2-265 20-170 16-206 27-199

No statistically significant differences were detected in age or time elapsed since AHCT between the groups.

regression was performed using the package “Glmnet”
in the statistical software R.>> Details are described
elsewhere.”> The model was optimized using tear
proteome data from patients with mild disease (group
2, NIH 1) versus those with no disease (group 1,
NIH 0). To prevent overfitting, regression was inter-
nally optimized using 20 iterations of five-fold cross-
validation. Optimization was done using the AUC of
the corresponding ROC curves. Results were reported
indicating median and quantiles of the AUCs. A
feature selection based on “Glmnet” was presented
reporting odds ratios (OR). Sensitivity and specificity
were not reported because they are not appropriate
for small sample sizes. Subsequently, the model was
validated on group 1 (NIH 0) versus groups 3 and
4 (NIH 2 and 3), presenting predicted probabilities
with corresponding boxplots and descriptive statistics.
Internal cross-validation and prediction was done using
the package “caret” within R.

To quantify correlation between the expression
levels of the selected proposed biomarker proteins
and clinical parameters, Spearman’s ranked correla-

tion coefficient was calculated. A P-value < 0.05 was
considered significant. All evaluations were done using
R software version 3.5.2 (2018, https://www.r-project.
org/).

Functional analysis was carried out to determine the
biological significance of the features selected by the
model. The list of selected protein IDs were converted
to gene IDs using the www.uniprot.org database
conversion tool (release February 2019). Gene Ontol-
ogy (GO) term enrichment was assessed using the GO
and panther databases (www.pantherdb.org, release
October 2019) with the human reference genome as the
background dataset. GO terms for biological process
were ranked according to fold enrichment.

Demographics of Study Population

The demographic data are outlined in Table 1.
All participants had previously undergone AHCT for
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Table 2. Ocular Characteristics of Patients Included in the Study

Group 1 (NIH0)

Group 2 (NIH 1)

Group 3 (NIH 2) Group 4 (NIH 3)

Diagnostic Criteria n=14 n=9 n=16 n=10
Oxford Score
Mean + SD 0.1+04 14+£0.5 32+1.2 4+0.7
Range 0-1 1-2 1-5 3-5
Sign.vs.NIHO P> 0.05 P < 0.0001 P < 0.0001
Schirmer Test | (mm)
Mean + SD 19.3+8.9 89+83 28+ 36 23+29
Range 7-35 2-25 0-11 0-10
Sign.vs.NIHO P < 0.05 P < 0.0001 P < 0.0001
TBUT, s
Mean + SD 42+23 29+ 1.6 214+0.8 1.9+£0.6
Range 2-10 1-6 1-3 1-3
Sign.vs.NIHO P> 0.05 P <0.01 P <0.01
OSDlI score
Mean £ SD 6.5+56 19.8+124 378+ 174 67.1£12.8
Range 0-20.8 10.4-43.8 11.4-68.2 43.2-81.8
Sign.vs.NIHO P <0.05 P < 0.0001 P < 0.0001

When data were normally distributed, significant difference (sign.) was tested using one-way ANOVA with Tukey’s post hoc
test; when data were not normally distributed Kruskal-Wallis test was used.

various hematological disorders. Group 1 included 14
AHCT recipients (nine men) with no clinical evidence
of oGVHD, group 2 included nine patients (seven men)
with mild oGVHD, group 3 included 16 patients (nine
men) with moderate oGVHD, and group 4 included 10
patients (nine men) with severe o GVHD after AHCT,
according to the NIH grading criteria. Patient groups
were age-matched. The mean ages at the time of inclu-
sion in the study were as follows: group 1 (56.1, range
38-73 years), group 2 (48.4, range 2569 years), group 3
(52.6, range 28-74 years), and group 4 (52.6, range 24—
69 years). There were no significant differences in time
elapsed between AHCT procedure and study inclusion.
Mean elapsed times in months were as follows: group
1 (82.7, range 2-265 months), group 2 (66.1, range 20—
170 months), group 3 (88.9, range 16-206 months), and
group 4 (90.6, range 27-199 months). All participants,
with the exception of two in group 1, received periph-
eral blood stem cell transplantation.

Therapy

Because of the chronic nature of oGVHD, individ-
uals included in this study were in treatment for
their ocular surface disease. An outline of therapies
used, showing numbers and percentages of partici-
pants using each therapy, is provided in Supplemen-
tary Table S1. Two patients (14%) in group 1 had
punctal plugs historically placed, and, additionally,

two patients (14%) used artificial tears infrequently
to supplement ocular surface hydration but had no
clinical features to warrant classification as having
oGVHD. In group 2, six patients (67%) had punctal
plugs in place. Artificial hydration was used infre-
quently (< 5x/day) by 4 patients (44%) and more often
(<10x/day) by three patients (33%). One patient (11%)
used topical steroids. In groups 3 and 4, more than 60%
of patients in each group used topical steroids daily.
One patient (6%) in group 3 and four patients (40%)
in group 4 used cyclosporine. Between 80% to 100% of
groups 3 and 4 patients had punctal plugs in place. The
majority (69%) of patients in group 3 required frequent
supplementary hydration (> 5x/day). In group 4, 70%
of patients used artificial tears very frequently (more
than 10 times daily). Additionally, autologous serum
was used by two patients in group 3 (13%) and one
patient in group 4 (10%). Full details of systemic
immunosuppressive therapies in use are provided in
Supplementary Table S2.

Ocular Parameters of Study Population

The results of the ocular examinations are outlined
in Table 2. Extent of ocular surface keratopathy was
assessed using fluorescein staining and scored accord-
ing to the Oxford scale. All participants in group 1
scored 0 or 1 (mean 0.1 £ 0.4). Participants in groups
2, 3, and 4 had scores ranging from 1 to 5. Mean
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Figure 1. A.Confusion matrix illustrating performance of a random forest model in classifying oGVHD disease severity. Columns represent
predicted disease severity, whereas rows represent actual disease severity. B. Feature importance computed for the top 100 proteins, with
the red bar indicating feature importance and the black line showing intertree variability.
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Table 3. Performance of Random Forest Classifier in Predicting Disease Severity in oGVHD Patients

Disease Severity Precision Recall F1-Measure
Group 1 (no oGVHD) 0.90 1.00 0.95
Group 2 (mild oGVHD) 0.80 0.80 0.80
Group 3 (moderate oGVHD) 0.78 0.70 0.74
Group 4 (severe oGVHD) 0.83 0.83 0.83

Oxford scores were 1.4 + 0.5 (group 2), 3.2 4+ 1.2 (group
3), and 4 + 0.7 (group 4). Mean tear production, as
assessed by Schirmer test I, was within normal range
for group 1 (19.3 £ 8.9 mm) and significantly progres-
sively depressed in all o GVHD groups. Mean Schirmer
test readings were 8.9 + 8.3 mm, 2.8 & 3.6 mm, and 2.3
4 2.9 mm for groups 2, 3, and 4, respectively.

Tear film stability was evaluated by length of tear
breakup time (TBUT). In all groups, TBUT was
shortened on average, when five seconds is used as
the standard cutoff for healthy individuals. Group 1
individuals had mean TBUT of 4.2 £+ 2.3 seconds,
falling just outside the normal range. Group 2 had a
mean TBUT of 2.9 £ 1.6 seconds (P > 0.05 compared
with group 1). Groups 3 and 4 had significantly short-
ened TBUTSs, measured at 2.1 + 0.8 seconds and 1.9
=+ 0.6 seconds, respectively (P < 0.01 compared with
group 1).

Subjective negative impact on QOL, measured by
the symptom-based OSDI score, was observed in all
oGVHD patients. Compared with a mean OSDI score
of 6.5 £ 5.6 in patients without oGVHD, patients
in group 2 (mean 19.8 £ 124, P < 0.05), group 3
(mean 37.8 £ 17.4, P < 0.0001), and group 4 (mean
67.1 &£ 12.8, P < 0.0001), all had significantly more
symptomatic complaints.

Tear Protein Expression in Ocular GVHD
Samples

Relative quantitative protein analysis from human
tears detected 785 proteins in the patient cohort
studied. Using the raw dataset a RF classifier model
was trained to classify patients according to discase
severity. The results of this classification are illustrated
by means of a confusion matrix (Fig. 1A) and summary
table (Table 3). The F1-measure values achieved by the
classifier were 0.95 (group 1), 0.8 (group 2), 0.74 (group
3), and 0.83 (group 4). Ranking of selected features
importance for the top 100 proteins did not reveal any
features with distinctly high contribution to patient
classification (Fig. 1B; Supplementary Dataset S1).
The top five features (MDI > 0.025) were proline-rich
protein 4 (PRR4), polymeric immunoglobulin receptor
(PIGR), immunoglobulin J chain (JCHAIN), proline-
rich protein 1 (OPRPN), and deleted in malignant
brain tumors 1 protein (DMBT1).

Because of the known possibility of overfitting
in datasets with large numbers of features compared
with the number of individual samples, a more strict
statistical analysis was subsequently performed. After
a data cleaning step, in which proteins not detected
in at least 80% of individuals were removed, a

Table 4. Tear Proteins With Significant Differential Expression Among Patients With oGVHD of All Severity Grades

Gene ID Accession ID Protein Name Profile P Value
LTF P02788 Lactotransferrin N <0.0001
LYz P61626 Lysozyme C N <0.0001
PIGR P01833 Polymeric immunoglobulin receptor J <0.0001
JCHAIN P01591 Immunoglobulin J chain J 0.0009
PIP P12273 Prolactin-inducible protein J 0.0015
IGHA1 P01876 Immunoglobulin heavy constant 1 J 0.0020
ACTB P60709 Actin, cytoplasmic 1 0 0.0009
ANXA2 P07355 Annexin A2 0 0.0104
GSTP1 P09211 Glutathione S-transferase P 0 0.0205
PGAM1 P18669 Phosphoglycerate mutase 1 0 0.0205
KRT6A P02538 Keratin type Il cytoskeletal 6A ) 0.0107
PKM P14618 Pyruvate kinase PKM 31 0.0184

Significance was tested using nonparametric Kruskal-Wallis test.
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Figure 2.
lated with Kruskal-Wallis test.

final list of 46 robustly detected proteins was gener-
ated (Supplementary Dataset S2). In this set of
46 proteins, there was no significant difference in
the median variance of protein expression between
control and patient samples (P value = 0.7129)
when taking the multiple replicates measured for
each individual into account. Using nonparamet-
ric analysis, a top list of 12 proteins significantly
differentially expressed with advancing disease sever-
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Relative expression of proteins with significantly downregulated expression with advancing disease severity. P values were calcu-

ity was generated (FDR-corrected P value < 0.05). Six
proteins—Ilactotransferrin (LTF), lysozyme C (LYZ),
PIGR, JCHAIN, prolactin inducible protein (PIP)
and immunoglobulin heavy constant alpha (IGHA1)—
were progressively downregulated with increasing
disease severity (Table 4; Fig. 2). Four proteins—
actin (ACTB), annexin A2 (ANXA2), glutathione S-
transferase P (GSTP1), and phosphoglycerate mutase
1 (PGAMI1)—were progressively upregulated with
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Relative expression of proteins with significantly upregulated expression with advancing disease severity. Expression levels of

KRT6A (E) and PKM (F) were significantly higher only in patients with moderate-to-severe disease. P values were calculated with Kruskal-

Wallis test.

greater disease severity (Table 3; Figs. 3A-3D). Two
proteins—Keratin type II cytoskeletal 6A (KRT6A)
and pyruvate kinase PKM (PKM)—were upregulated
in tears from moderate-to-severe disease, but not in
patients with mild disease (Table 4; Figs. 3E, 3F).

We aimed to identify a protein expression signa-
ture present early in disease that could also stratify
patients with moderate-to-severe disease, using multi-

ple penalized logistic regression. A feature selection
of tear proteins capable of discriminating between
patients without oGVHD (group 1) and those with
mild oGVHD (group 2) was performed. Calculated
ORs for each of the panel of 13 selected proteins are
shown in Table 5. GO analysis revealed enrichment of
biological process terms related to tissue homeostasis
and immune regulation in the set of selected features
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Table 5. Tear Proteins Selected With Multiple Logistic Regression (gimnet) as Discriminating Features of oGVHD,

Shown With Corresponding Odds Ratios

Gene ID Accession ID Protein Name Odds Ratio
PGAM1 P18669 Phosphoglycerate mutase 1 3.8574
KRT9 P35527 Keratin type |, cytoskeletal 9 23164
KRT1 P04264 Keratin type 2, cytoskeletal 1 1.6653
FABP5 Q01469 Fatty acid binding protein, epidermal 1.6161
PFN1 P07737 Profilin-1 0.8869
IGKC P01834 Immunoglobulin ¥ constant 0.6005
DCD P81605 Dermicidin 0.3012
S100A4 P26447 Protein S100-A4 0.2725
LYz P61626 Lysozyme C 0.2417
PIGR P01833 Polymeric immunoglobulin receptor 0.1130
GAPDH P04406 Glyceraldehyde 3 phosphate dehydrogenase 0.1130
ALB P02768 Serum albumin 0.0240
GSN P06396 Gelsolin 0.0036
1.00-

;;0.75'

S

.“30.50

8

EO.?S-

(U]

0.00-
NIH 0 NIH 2 &3

Group

Figure 4. Predicted probabilities of oGVHD group calculated on the basis of selected features.

(Supplementary Dataset S3). As a means of testing
the capacity of the model to predict oGVHD in
patients with moderate-to-severe disease, the remain-
der of the patient cohort (groups 3 and 4) was used
as a validation dataset. The predicted probabilities of
the classified patients are shown in Figure 4. Analysis
of correlation between the suggested biomarkers and
the clinical measures of disease severity using Spear-
man’s rank order correlation test. Of the 13 proteins,
three were detected as having significant negative or
positive correlations with various clinical measures
(Table 6, Supplementary Table S3). Both LYZ and
PIGR showed significant negative correlations with
NIH score, corneal fluorescein staining (Oxford score)
and clinical symptoms (OSDI) (P < 0.0001). Both
proteins were positively correlated with TBUT and

Schirmer test results (P < 0.0001). PGAM1 showed
significant positive correlation with NIH score, Oxford
score and OSDI (P < 0.01). Negative correlation was
detected between PGAMI1 and TBUT (P < 0.01) and
Schirmer test (P < 0.0001).

The clinical management of ocular GVHD follow-
ing AHCT is still hindered by a lack of robust and
specific early clinical markers of the disease. This can
lead to a delay in commencement of treatment and less
favorable outcomes. The objective of this study was to
investigate whether ML techniques could be applied
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Table 6. Correlation of Expression of Selected Proteins With Clinical Parameters

Gene ID NIH Score Oxford Score TBUT Schirmer Test OosDI
PGAM1
rs 0.453 0.404 —0.476 —0.517 0.382
Pvalue 0.001 0.004 0.001 < 0.0001 0.007
LYZ
rs —0.757 —0.665 0.594 0.67 —0.723
Pvalue <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
PIGR
rs —0.807 —0.729 0.605 0.607 —0.772
Pvalue <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Correlations were determined for the entire study population using Spearman’s rank coefficient (r;). Table shows only
selected biomarkers shown to be significantly positively or negatively correlated with clinical measures.

to tear proteomic expression data to classify patients
with ocular GVHD after AHCT. More specifically, we
analyzed the ability of a predictive model to identify
changes in protein expression in early (mild) disease
that could subsequently be used to correctly identify
patients with moderate-to-severe disease.

Several studies have reported the expression of
inflammation-related genes and proteins in the
conjunctival cells and tear film, respectively, of
oGVHD patients.!>" 172426 Cocho et al.'” used a
support vector machine (SVM) model to demonstrate
the predictive power of a panel consisting of four
genes—EGFR, IL-6, 1L-9 and NAMPT—expressed
in conjunctival cells to discriminate oGVHD patients
from controls. Subsequently, this group showed, using
a logistic regression model adjusted for age and sex,
that tear concentrations of IL-8 and CXCLI10 could
predict o GVHD status.!® To our knowledge, we were
the first group to use untargeted proteomic methods to
investigate oGVHD tear protein expression.'® In this
way, we have broadened the number of investigated
targets beyond inflammatory pathways alone.

The current study enrolled 35 patients with o GVHD
of various degrees of severity, graded according to
the NIH criteria and evidenced by the progressively
worsening ocular surface clinical phenotype (Table 2).
Fourteen individuals without o GVHD after AHCT
were recruited as controls. The patients included in
this study were not treatment-naive, with the major-
ity of patients in the oGVHD groups receiving
some form of immunosuppression (Supplementary
Table S2). However, our extensive clinical examina-
tion demonstrated that the patients included in the
oGVHD groups experienced significant negative signs
and symptoms of their disease, in spite of their treat-
ment regimen (Table 2).

In this study, unbiased discovery mass spectrome-
try was used to report the proteomic profile of human
oGVHD tears. We used relative quantification of tear
proteins versus an internal standard consisting of tears
from a pool of healthy volunteers. Initial analysis
revealed 785 unique proteins detected across the entire
dataset. The overarching aim of this study was to apply
modelling techniques to classify oGVHD patients by
disease severity based on their tear protein expression
profile. Previous studies have demonstrated the better
diagnostic capacity of panels of molecules, compared
to individual biomarkers.?’

Random forest is a popular machine learning classi-
fication tool used to deal with large datasets.”® A RF
model trained on 80% of the data and tested on
the remaining 20% demonstrated moderate ability to
classify patients according to disease severity (Fig. 1A,
Table 3). However, a ranking analysis of the impor-
tance of individual proteins in decision-making using
RF did not reveal any features or set of features with
a distinct contribution to the model (Supplementary
Dataset S1). The top five proteins (using a cutoff
of MDI > 0.025)—PRR4, PIGR, JCHAIN, OPRPN
and DMBT1—have all previously been demonstrated
as differentially expressed in various forms of ocular
surface dryness.”” The use of RF models for classifica-
tion problems may have good performance, but inter-
pretation is complicated because they generate no clear
feature selection. For this reason, we performed further
analysis using penalized logistic regression (glmnet).

The initial RF analyses were carried out on the
raw dataset, with missing values handled by provid-
ing a standard value that was equal to half the limit
of detection observed. However, to allow for more
consistent analysis and reduce bias introduced by the
imputed values, a data-cleaning step was used, whereby
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only proteins detected in 80% of patients were further
investigated. This resulted in a concise list of 46 tear
proteins (Supplementary Dataset S2), which was used
for further analysis.

Six proteins were detected as progressively downreg-
ulated with increasing disease severity (Fig. 2). In
agreement with other proteomic profiles of dry eye
syndromes,?’ 32 expression of the lacrimal gland
defense proteins LYZ, LTF and PIP was depressed
in oGVHD patients, indicating substantial lacrimal
impairment. Furthermore, we detected significant
downregulation of the secretory immunity proteins
PIGR and JCHAIN. Secretory immunity is an impor-
tant defense mechanism in all mucosal epithelia,
including at the ocular surface, and the molecu-
lar machinery for the production of its main effec-
tor, secretory immunoglobulin A (sIgA), has been
shown in the lacrimal gland and conjunctival epithe-
lium.** PIGR is responsible for the transcytosis of
immunoglobulin A (IgA) to the apical surface of
epithelial cells where it can be cleaved and secreted
as a pathogen binding complex known as secretory
component (SC).** Reduction of PIGR expression in
tears has been shown in a rabbit model of Sjogren’s
syndrome (SS)* and in human SS tears.’® JCHAIN is
an adaptor molecule that binds IgA dimers and facili-
tates their transport across the apical epithelial cells of
the conjunctiva and lacrimal gland.?” Reduced expres-
sion of PIGR and JCHAIN has previously been shown
in patients with moderate to severe dry eye’”-*® and
implies extensive damage to the lacrimal and conjunc-
tival epithelial cells. In turn, the reduced SC avail-
ability may leave the ocular surface more vulnera-
ble to infection in oGVHD patients. We also detected
reduced expression of IGHA1, which is produced by B
lymphocytes and involved in humoral immunity. Previ-
ous tear proteomics studies have shown downregula-
tion of IGHALI in aqueous-deficient dry eye (ADDE)?
and SS*° patients.

In this study, four proteins were detected as continu-
ously upregulated with progressive o0 GVHD severity—
namely ACTB, ANXA2, GSTP1 and PGAMI1. Two
proteins—KRT6A and PKM-—were upregulated in
moderate and severe oOGVHD (Fig. 3). ACTB is a
cytoskeletal protein involved in cellular structure and
motility. The presence of extracellular ACTB implies
widespread cellular damage; it is released from dying
cells into the extracellular space, where it causes signif-
icant further toxicity.® Interestingly, Perumal et al.”’
reported ACTB as being downregulated in human
ADDE tears, whereas, in agreement with our findings,
other groups have demonstrated increased ACTB in
tears with advancing age*’ and in SS patients.’® Plasma
gelsolin (GSN) is an actin-scavenging protein with a
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role in promoting corneal re-epithelialization. GSN has
been shown to have increased expression in ADDE
tears.*! Similarly, we detected increased GSN in tears in
moderate and severe oGVHD (Supplementary Dataset
S2).

Upregulation of the calcium-binding protein
ANXA?2 has been shown previously in tears*® and
conjunctival cells* of patients with various forms
of DED. ANXA2 is a pleiotropic molecule with
various groups suggesting functions in corneal wound
healing,* macrophage activation,* and regulation
of secretions.** The role of extracellular ANXA?2 in
oGVHD needs to be further investigated. We detected
upregulation of GSTP1 in patients with moderate
and severe oGVHD. GSTP1 is an enzyme involved in
the detoxification of reactive oxygen species and its
expression has been shown in corneal epithelial cells.*
Increased expression of GSTP1 has been shown in
tears of ADDE patients.””3> PGAMI1 and PKM
are enzymes involved in glycolysis. Upregulation of
glycolytic pathways conceivably may be related to
increased cellular stress and subsequent activation of
repair pathways in corneal epithelial cells, as has been
shown previously shown in epidermal keratinocytes.*°

We sought to build a predictive model based on tear
protein expression in mild disease that could identify
patients with more severe forms of o0GVHD. To achieve
this, we used a form of penalized logistic regres-
sion (glmnet).>>*7 Glmnet fits a generalized model by
applying maximum penalized likelihood which shrinks
unimportant features in class prediction to zero. It is
suited for problems with smaller numbers of samples
as it is less prone to overfitting. Glmnet is readily inter-
pretable, since it generates predicated probabilities for
class membership in the form of odds ratios.

In this study, penalized logistic regression selected
13 proteins expressed in mild o0GVHD tears as features
that could correctly classify patients with moderate
and severe oGVHD (Table 4). Interestingly, of these,
only three proteins—PGAMI1, PIGR and LYZ—were
detected as significantly differentially expressed with
advancing disease severity. The main benefit of using
an unbiased proteomics approach is the ability to
identify possible novel players in disease progression,
beyond already-known pathways. However, analysis
of gene ontology (GO) annotation in the marker
panel (Supplementary Dataset S3) primarily showed
enrichment of terms related to tissue homeosta-
sis and immune response, corroborating previous
oGVHD gene and protein biomarker studies.'®17-48
We performed correlation analysis to determine the
relationship between the 13 chosen biomarker proteins
and the clinical findings (Table 6). We detected signif-
icant positive or negative correlations for three of
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the proteins—namely LYZ, PIGR, and PGAMI.
Intuitively, reductions in the lacrimal gland and
defense proteins LYZ and PIGR were associated
with higher symptom (OSDI) and corneal fluorescein
staining (Oxford) scores. Positive correlations were
detected between these proteins and Schirmer and
TBUT scores, indicating pathological tear film dynam-
ics. Levels of both proteins were strongly inversely
related to overall NIH score. Regarding PGAMI,
weaker positive and negative correlations with clini-
cal measures were detected. Levels of PGAMI1 were
positively associated with epithelial pathology (Oxford
score) and symptomatic complaints (OSDI). Levels of
this protein were negatively correlated with Schirmer
test and TBUT scores.

This study has a number of limitations, primar-
ily the use of immunosuppressive therapies to control
disease in oGVHD patients, particularly those with
moderate-to-severe disease. However, we contend that
because these patients still have persistent symptoms
and clinical signs, their inclusion is important to
give an accurate picture of the day-to-day clinical
reality of oGVHD. Perhaps related to this unbiased
patient selection, we have identified some discrepan-
cies between our results and those of other groups
that have studied tear proteomics in untreated dry eye
syndromes. Furthermore, here we report the proteomic
profile of a relatively small number of oGVHD
patients, when patients are subdivided by disease sever-
ity group (minimum group size: n = 9 in group 2).
Therefore it would be interesting to further validate
our findings in larger numbers of patients and exter-
nal datasets. More extensive evaluation of the speci-
ficity of our model could be achieved by applying our
findings to proteomic datasets obtained from other
ocular surface disorders such as MGD, SS or Stevens
Johnson syndrome. Mass spectrometry is generally
considered unsuitable for widespread clinical diagnos-
tic use. Follow-up validation of our chosen markers
with enzyme-linked immunosorbent assay or multiplex
array will go some way to providing clinical trans-
latability. Finally, it is important to acknowledge that
the protein changes detected here can also be seen
in other forms of dry eye, because functional analy-
sis indicates them as markers of ocular surface and
LFU damage. However, the goal of this article was
to identify molecules that are changed in a subset
of patients with mild oGVHD following AHCT. Our
objective was to assess whether these proteins could
predict more severe disease in this patient subgroup.

In summary, we have compared two approaches
to extract predictive biomarkers from tear proteomic
profiles of patients with oGVHD of worsening sever-
ity grades after AHCT. Using strict filtering of raw

TVST | August 2020 | Vol.9 | No.9 | Article3 | 13

proteomics data and application of a glmnet model, we
have identified a 13-marker panel of proteins expressed
in mild disease that is capable of identifying more
severe forms of oGVHD. Our work has provided
further evidence to support previous studies demon-
strating ocular surface inflammation as a main driver
of oGVHD clinical findings.
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