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Background: Gastric cancer (GC) is characterized by high morbidity and mortality rates, and the 
prognosis is not optimistic. Therefore, the search for new biomarkers is crucial. Methylation modifications in 
RNA modifications play a crucial role in tumors. However, the role of methylation modification of integrated 
m6A/m5C/m1A/m7G, in GC and its related analysis have not been reported. It still needs to be studied in 
depth. Our study aims to deepen our understanding of m6A/m5C/m1A/m7G methylation and potentially 
provide new strategies for GC treatment.
Methods: We used TCGA-STAD (The Cancer Genome Atlas-Stomach Adenocarcinoma) as a training 
set and GSE84433 as a validation set to analyze and determine potential associations between m6A/m5C/
m1A/m7G-related genes and clinical risk of GC. In addition, we explored the prognostic value and potential 
biological mechanisms of m6A/m5C/m1A/m7G-related genes in GC through consistent clustering, 
differential expression gene identification, enrichment analysis, and immune infiltration analysis. Finally, 
we constructed m6A/m5C/m1A/m7G-related risk signature (MRRS) to evaluate the correlation between 
risk grade and survival prognosis, drug sensitivity, and immune infiltration, and validated the validity by 
immunohistochemical staining.
Results: We identified subgroups of C1, C2, and C3 patients by consensus clustering using data from 45 
m6A/m5C/m1A/m7G-related genes. The three groups showed significant differences in survival, immune 
scores, and immune cell infiltration. We then constructed MRRS using least absolute shrinkage and selection 
operator (LASSO) regression analysis, including SLC5A6, FKBP10, GPC3, and GGH, which could accurately 
differentiate between high-/low-risk populations. Its accuracy was further validated in the validation set and 
immunohistochemical staining. These results suggest that m6A/m5C/m1A/m7G are closely related to the 
GC tumor immune microenvironment, and MRRS has good performance in predicting the survival of GC 
patients.
Conclusions: In this study, we highlighted the association of m6A/m5C/m1A/m7G subtypes with changes 
in the GC immunotumor microenvironment. We constructed and validated MRRS, which is valuable 
in predicting survival, immune infiltration and drug sensitivity in GC patients. This helps to deepen our 
understanding of m6A/m5C/m1A/m7G methylation and potentially provides new strategies for GC treatment.
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Introduction

Gastric cancer (GC) is a health-threatening malignant 
tumor, which is one of the top five common cancers in 
the world with a high mortality rate (1-3). Early clinical 
symptoms in patients with GC have low specificity and 
are usually without significant discomfort. This leads to 
the unfortunate fact that GC patients are already in the 
advanced stages when they are first diagnosed, and the 
prognosis is not optimistic. Currently, the treatment of GC 
is still mainly based on surgery, and postoperative combined 
radiotherapy and chemotherapy and other comprehensive 
treatment (4-6). Despite the development of medical 
technology and the increase of diagnostic and therapeutic 
means for GC in recent years, the mortality rate of GC 
patients is still not encouraging (7-9). Therefore, it is 
particularly important to develop effective biomarkers and 
prognostic models as new therapeutic tools to improve the 
prognosis of patients (10-13).

Methylation is the most abundant method of RNA 
modification in eukaryotic mRNAs (14-16), and it is 
involved in a variety of physiological and pathological 
processes in body (17-19). Common methylation sites 
include n6-methyladenosine (m6A), 5-methylcytosine 
(m5C), n1-methyladenosine (m1A) and 7-methylguanosine 
(m7G) methylation sites (20-24). They modify target RNAs 
by binding to writers, erasers and readers (25,26). More 

importantly, a growing number of studies have shown that 
methylation also plays an important role in a wide range of 
cancers, with its involvement in cancers including breast, 
bladder, thyroid, colorectal, and esophageal cancers (27-32).

Although prognostic features associated with RNA 
methylation have now been established in some cancers 
(33-36), they often involve only a single RNA modification. 
Recent study on GC and methylation have shown the 
predictive role of three types of methylation (m6A, m5C 
and m1A) in GC (37). No studies have reported the 
relationship between GC and genes associated with the four 
major RNA methylation modifications, which still needs to 
be thoroughly investigated.

In this study, we synthesized various RNA modifications, 
developed and validated a novel m6A/m5C/m1A/m7G-
related risk signature (MRRS), analyzed the prognostic 
value of MRRS in GC and differentiated patients with 
different levels of immunotherapeutic sensitivity. The aim 
was to demonstrate the value of MRRS in assessing the 
immune microenvironment and survival prognosis of GC 
patients, and to lay the foundation for the discovery of new 
potential therapeutic targets, paving the way for improved 
individualized patient treatment. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
2325/rc).

Methods

Ethical statement 

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Data sources

For the training set, transcriptome information for a total 
of 407 TCGA-STAD (The Cancer Genome Atlas-Stomach 
Adenocarcinoma) cases, including 375 STAD samples and 
32 normal samples, was downloaded from TCGA database 
(https://portal.gdc.cancer.gov/). Mutations and matched 
clinicopathologic data for the TCGA-STAD dataset were 
also obtained from the TCGA database. For the validation 
set, microarray gene chips from the Gene Expression 
Omnibus database (GEO, www.ncbi.nlm.nih.gov/geo/, 
GEO accession: GSE84433, Platforms: GPL6947), which 
contains 357 patients, were used.

Highlight box

Key findings
•	 m6A/m5C/m1A/m7G methylation are closely related to the gastric 

cancer (GC) tumor immune microenvironment, and m6A/m5C/
m1A/m7G-related risk signature (MRRS) has good performance in 
predicting the survival of GC patients.

What is known and what is new?
•	 GC is characterized by high morbidity and mortality rates, and 

the prognosis is not optimistic. Methylation modifications in RNA 
modifications play a crucial role in tumors.

•	 We found the association of m6A/m5C/m1A/m7G methylation 
subtypes with changes in the GC immunotumor microenvironment. 
We constructed and validated MRRS, which is valuable in predicting 
survival, immune infiltration and drug sensitivity in GC patients.

What is the implication, and what should change now?
•	 Our study helps to deepen our understanding of m6A/m5C/m1A/

m7G methylation and potentially provides new strategies for GC 
treatment.
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Consensus clustering analysis of m6A/m5C/m1A/m7G-
related subtypes

We identified 22 m6A-regulated genes, 13 m5C-regulated 
genes, 8 m1A-regulated genes, and 2 m7G genes from 
previous studies. M6A regulatory genes included METTL3, 
METTL14,  METTL16,  WTAP, RBM15,  RBM15B, 
ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, 
YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3, HNRNPA2B1, 
HNRNPC, RBMX, FMR1, LRPPRC, ALKBH5, and FTO. 
M5C  regulated genes included TRDMT1, NSUN2, 
NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, 
DNMT3A, DNMT3B, ALYREF, YBX1, and TET2. M1A 
regulated genes included TRMT6, TRMT61A, TRMT61B, 
TRMT10C, BMT2, RRP8, ALKBH1, and ALKBH3. M7G 
genes included METTL1 and WDR4.

Cluster analysis was performed using ConsensusClusterPlus 
using aggregated km clusters with 1-log correlation distance 
and resampling 80% of the samples 10 times. The optimal 
number of clusters was determined using the area under the 
curve of the consistent cumulative distribution function, the 
K-value, and the within-group consistency to ensure stability 
of the results.

Identification and analysis of differentially expressed genes 
(DEGs)

Limma is a differential expression screening method that 
relies on generalised linear models. In this study, we utilized 
the R package limma (version 3.40.6) to perform differential 
analysis and identify the DEGs between the two groups. 
The screening criteria for DEGs were determined as the 
adjusted P<0.05 and |fold change| >1.5. Then, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were carried out to compare 
the differential signal pathway and biological effects among 
the different Disulfidptosis-Related cluster cohorts. GO and 
KEGG enrichment analyses were premised on the q-value 
and P value thresholds of <0.05.

Mutation landscape analysis

We collected somatic mutation data from TCGA for 
patients with STAD in order to investigate genetic 
structural changes between different groups and to create 
waterfall plots to visualize mutated genes.

Construction and validation of the MRRS

Least absolute shrinkage and selection operator (LASSO) 
is a common regression analysis method that combines 
variable selection and regularization to enhance the 
predictive performance and interpretability of the resulting 
statistical model. In this study, we employed the R package 
glmnet to conduct regression analysis using the LASSO-
cox method, incorporating survival time, survival status, 
and gene expression data. Furthermore, we implemented 
a 10-fold cross-validation to determine the optimal model. 
In addition, we constructed a nomogram to predict 1-, 3-, 
and 5-year survival rates of GC patients based on TNM 
classification, age, gender, risk characteristics, and so on.

Analysis of immune cell infiltration

We used the CIBERSORT algorithm to assess the 
proportions of 22 immune cells. Additionally, we employed 
the ESTIMATE algorithm to calculate the differences 
in estimated scores, immune scores, and stromal scores. 
Furthermore, the Spearman correlation test was used to 
determine the correlations between risk scores and immune 
cell levels.

Analysis of drug sensitivity

The half-maximal inhibitory concentration (IC50) values 
were evaluated to reflect the response to chemotherapy 
and immunotherapy drugs. We used the R package 
“pRRophetic” to predict the IC50 of different drugs in GC 
samples to evaluate the relationship between m6A/m5C/
m1A/m7G-related genes and drug sensitivity.

Validation of m6A/m5C/m1A/m7G-related prognostic 
genes with immunohistochemical staining

Immunohistochemical staining data of GC and normal 
tissues were obtained from HPA (http://www.proteinatlas.
org/). We validated m6A/m5C/m1A/m7G-related prognostic 
genes at the protein expression level. There were four 
degrees of staining: high, intermediate, low, and not detected.

Statistical analysis

Kaplan- Meier curves were used to analyze the overall survival 

http://www.proteinatlas.org/
http://www.proteinatlas.org/
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of the GC patients in different groups. Limma were perform 
differential analysis and identify the DEGs between the 
different groups. LASSO were used to identify m6A/m5C/
m1A/m7G-related prognostic genes of GC patients The 
relationship between risk score and immune cell infiltration 
was determined using correlation analysis (P<0.05).

Results

Cluster analysis identified m6A/m5C/m1A/m7G-related 
subtypes

We analyzed the expression patterns of m6A/m5C/m1A/
m7G genes in normal and GC samples. It can be seen 

that most of the m6A/m5C/m1A/m7G genes were highly 
expressed in GC compared to normal tissues (Figure 1A).

Next, we performed a consensus clustering analysis 
based on the m6A/m5C/m1A/m7G gene expression and 
survival data of 375 GC samples. The results showed 
that the consensus matrix was optimal when K=3  
(Figure 1B-1D). In addition, the three subtypes exhibited 
different disulfidptosis gene expression (Figure 1E).  
Figure 1F shows the heatmap of the consensus matrix when 
K=3. We further explored whether the different subtypes 
of C1, C2, and C3 affected the survival of GC patients. 
The results of the Kaplan-Meier survival curve analysis are 
shown in Figure 1G, in which C1 showed a better clinical 

Figure 1 Identification of m6A/m5C/m1A/m7G-related subtypes by consensus clustering. (A) Heatmap of the expression of 45 m6A/m5C/
m1A/m7G-related genes in GC samples, including tumor and normal samples; (B,C) cluster analysis of the CDF indicating the area under 
the curve and the decreasing trend of Delta at k=2–10 and the decreasing trend of area under the curve and Delta; (D) example cluster 
consistency plot showing that the consensus value is optimal when k=3; (E) heatmap of the expression of 45 m6A/m5C/m1A/m7G-related 
genes in the three isoforms; (F) consensus matrix for optimal k=3; (G) Kaplan-Meier curves of overall survival for the three subtypes (P=0.04). 
GC, gastric cancer; CDF, cumulative distribution function; HR, hazard ratio.

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.5

0.3

0.0

1.0

0.8

0.6

0.4

0.2

0.0

10
9
8
7
6
5
4
3
2
1

1.0

0.8

0.6

0.4

0.2

0.0

C1
C2
C3

C1
C2
C3

C1
C2
C3

203
60
112

42
6
21

9
1
4

2
1
1

1
1
1

YTHDC2
TET2 
METTL14
YTHDC1
TRDMT1
NSUN6
YTHDF3
NSUN3
WTAP
FMR1
ZC3H13
FTO
BMT2
RRP8 
METTL16
ALKBH5
ALKBH3
NSUN7
DNMT3A
IGF2BP1
DNMT3B
METTL3
LRPPRC
NSUN2
TRMT10C 
HNRNPA2B1
HNRNPC 
RBMX
TRMT61B
NSUN4
YTHDF2
RBM15
DNMT1
RBM15B
YBX1
IGF2BP2
IGF2BP3
YTHDF1
TRMT6
ALKBH1
METTL1
ALYREF
WDR4
NSUN5
TRMT61A

METTL16
ALKBH5
FTO 
BMT2
YTHDC2
TET2 
METTL14
YTHDC1
WTAP
FMR1
NSUN4
YTHDF3
NSUN3
TRMT61B
TRDMT1
NSUN6
METTL3
TRMT10C
LRPPRC
NSUN2
YTHDF2
HNRNPA2B1
HNRNPC
RBMX
ALYREF
YBX1
RBM15B
WDR4
RBM15
DNMT1
IGF2BP2
IGF2BP3
YTHDF1
TRMT6
ZC3H13
NSUN7
DNMT3A
IGF2BPl
DNMT3B
ALKBH1
METTL1
NSUN5
TRMT61A
RRP8 
ALKBH3

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.5 1.0

2 4 6 8 10

C
D

F
C

on
se

ns
us

 v
al

ue
s

S
ur

vi
va

l p
ro

ba
bi

lit
y

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

eExpression

Expression

Type:

Normal

C1
Cluster:

C2
C3

Cancer

–2 0 2

–2 0 2

Consensus index

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

k

k

Distance

Cluster:

Cluster

P=0.04
HR =1.20, 95% CI: (1.00, 1.44)

Number at risk

Cluster

Cluster

Type

0             930         1860          2790        3720
OS time, days

A

E

B

D

F G

C



Translational Cancer Research, Vol 13, No 7 July 2024 3289

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3285-3298 | https://dx.doi.org/10.21037/tcr-23-2325

outcome (P=0.04).

Differential gene expression and enrichment analysis of 
m6A/m5C/m1A/m7G‑related subtypes

To explore the molecular mechanisms underlying the 
prognostic differences among the 3 m6A/m5C/m1A/m7G 
subtypes, we analyzed the DEGs of the three groups and 
screened a total of 37 DEGs with common intersections 
(Figure 2A). The expression of these 37 genes was also 
significantly different in each subtype (Figure 2B). Further 
GO and KEGG enrichment analyses indicated that DEGs 
were involved in extracellular messaging, as well as cancer, 
immune-related processes such as extracellular exosome, 
extracellular vesicle, extracellular organelle, immune system 
process macromolecule modification, cytokine-cytokine 
receptor interaction, proteoglycans in cancer, human T-cell 
leukemia virus 1 infection and microRNAs in cancer, among 

others (Figure 2C,2D).

Comparison of somatic mutations, the tumor 
microenvironment and immune checkpoint among m6A/
m5C/m1A/m7G‑related subtypes

We analyzed somatic mutations in patients in each group 
and plotted a waterfall plot of the top 15 genes with the 
highest mutation frequency (Figure 3A-3C). In group C1, 
TTN, TP53, MUC16, ARID1A and LRP1B were the most 
frequently mutated genes. And in group C2, TP53 was the 
gene with the highest mutation frequency of 77.6%, which 
far exceeded the TP53 mutation frequency in other groups 
(47.9%, 36.8%). In addition, SYNE1 and CSMD3 were the 
genes with the 5th highest mutation frequency in the C2 
and C3 groups, respectively.

We went on to explore the tumor microenvironment 
in both subtypes. First, the C2 group had lower immune 

Figure 2 Identification of DEGs and biological pathways between the three m6A/m5C/m1A/m7G subtypes. (A) Venn diagram showing 
overlapping m6A/m5C/m1A/m7G-related DEGs; (B) heatmap showing the expression of 37 overlapping DEGs between the three isoforms; 
(C,D) lollipop and circle plots showing the enrichment of KEGG and GO potential signaling pathways. DEGs, differentially expressed 
genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.

FGL2
JCHAIN
IGHJ3
KLF2
MUC6
VSIG2
PSCA
SGPP2
ADRA2A
FAM3D
FCGBP
IGF2
PCSK1N
BCAM
CERS4
CKB
LDOC1
FKBP10
FOXA2
APOA1
GPC3
IGF2BP2
UCA1
VIL1
IL22RA1
TRIB3 
VPS9D1-AS1
MEST 
RTKN
SLC5A6
GGH
CCNE1
TOP2A
TRIP13
MYBL2
UBE2C
TPX2

Cellular senescence 

Sphingolipid signaling pathway 

PI3K-Akt signaling pathway

Cytokine-cytokine receptor interaction 

Antifolate resistance 

Proteoglycans in cancer 

Small cell lung cancer 

Pathways in cancer 

Human T-cell leukemia virus 1 infection 

MicroRNAs in cancer

Sphingolipid metabolism 

Folate biosynthesis 

Metabolic pathways 

Vitamin digestion and absorption 

Fat digestion and absorption

C1
C2
C3

1.0

1.2

1.4

1.6

1.8

2.0

Cellular Processes 
Environmental Information Processing 
Human Diseases 
Metabolism 
Organismal Systems

Enzyme inhibitor activity 
Nuclear division 
Organelle fission 
Extracellular exosome 
Extracellular vesicle 
Extracellular organelle 
Extracellular region 
Cell cycle process 
Immune system process 
Macromolecule modification 
Regulation of cell communication 
Nucleic acid-templated transcription 
Regulation of cellular biosynthetic process 
Immune response  
RNA metabolic process

Cluster:

Count

–log10 (P value)

GO terms

Group

Cluster
Expression

–2 0 2

1 2 3 4

C1-C2 C1-C3

C2-C3

296

845

1227

705

37

76 255

A

C

D

B

0.0 0.5 1.0 1.5 2.0 2.5
–log10 (P value)



Chen and Jiang. A m6A/m5C/m1A/m7G‑related risk signature3290

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3285-3298 | https://dx.doi.org/10.21037/tcr-23-2325

scores, stromal scores, and estimated scores than the 
other groups, while the C3 group had the highest of all. 
Surprisingly, the C1 group, which had the best survival, was 
in between the two groups (Figure 3D). We next visualized 
the differences in immune cell infiltration between the two 
groups using the CIBERSORT method with a box-and-
line plot (Figure 3E), showing that CD8+ T cells, activated 
CD4+ memory T cells, resting NK cells, M1 macrophages, 
and M2 macrophages in group C1 infiltration was higher 
than in the other groups, while naive B cells and resting 
mast cells showed the opposite trend.

Finally, we evaluated the relationship of immune 
checkpoints between each subgroup. As shown in Figure 3F, 
the vast majority of immune checkpoints were most highly 
expressed in the C1 group. Immunotherapy may be more 
effective for patients in the C1 group.

Construction and validation of the m6A/m5C/m1A/
m7G‑related risk signature (MRRS)

In this study, survival time, survival status and gene expression 
data were integrated and regression analysis was performed 
using the LASSO-cox method (Figure 4A,4B). We set the 
Lambda value to 0.043759414226974, and finally obtained 
four m6A/m5C/m1A/m7G-related prognostic genes: 
SLC5A6, FKBP10, GPC3, and GGH. The model equation is 
as follows: Risk Score = −0.0714901538218786×SLC5A6+0.
0673930236411382×FKBP10+0.0651047201271496×GPC3-
0.0162831756810742×GGH.

Next, we examined the relationship between survival 
status and risk score. It could be observed that with the 
increase of risk score, the survival of patients decreased 
significantly. We found that FKBP10 and GPC3 were risk 

Figure 3 Somatic mutations and immune infiltration of the three m6A/m5C/m1A/m7G subtypes. (A-C) Mutation map waterfall plot 
showing the 15 most common mutated genes in GC differing between groups C1, C2, and C3; (D) ESTIMATE box-and-line plot showing 
the IMMUNE SCORE, STOMAL SCORE, and ESTIMATE SCORE of the infiltrating different subtypes; (E) CIBERSORT box 
plot showing the differences in the infiltration of 22 immune cells among the three subtypes; (F) box plot showing the differences in the 
expression of some immune checkpoints in the three subtypes. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; “-”, not significant. GC, 
gastric cancer.
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Figure 4 Construction and validation of the MRRS. (A,B) LASSO-Cox analysis of four m6A/m5C/m1A/m7G-related prognostic genes 
extracted; (C) prognostic heatmap showing the relationship between different risk scores, patient survival, and gene expression changes in 
the m6A/m5C/m1A/m7G-related risk model; (D,E) Kaplan-Meier curves for MRRS in the training dataset TCGA-STAD and validation 
dataset GSE84433. MRRS, m6A/m5C/m1A/m7G-related risk signature; LASSO, least absolute shrinkage and selection operator; TCGA-
STAD, The Cancer Genome Atlas-Stomach Adenocarcinoma; HR, hazard ratio.

factors with a trend of up-regulation of expression with 
increasing risk score. On the contrary, SLC5A6 and GGH 
were protective factors and showed a down-regulation 
trend in expression with increasing risk score (Figure 4C). In 
addition, we further determined the prognostic significance 
of MRRS for GC patients using Kaplan-Meier analysis. In 
TCGA-STAD, the low-risk cohort predicted better survival 
prognosis (P=1.2×10−7) (Figure 4D), and the survival results 
in the GSE84433 validation set showed the same trend 
(P=5.9×10−5) (Figure 4E). It indicates that our developed 
MRRS has good recognition performance.

The association of MRRS with prognosis

We performed a multifactorial Cox analysis, and the 
results showed that the m6A/m5C/m1A/m7G-associated 
risk score was an independent prognostic predictor of OS 
in GC patients (Figure 5A). In addition, we established 
a nomogram based on TNM classification, age, gender, 
and risk characteristics (Figure 5B). And calibration curves 
(Figure 5C) and ROC analysis (Figure 5D) were performed. 
The calibration curves showed good agreement between 
the predicted and actual GC survival cohorts. In the ROC 
analysis, the AUC values for 1, 3, and 5 years were 0.69, 
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Figure 5 Association of MRRS with GC prognosis. (A) Multivariate Cox analysis to assess the independent prognostic value of MRRS in 
patients with GC; (B-D) nomo plots, calibration plots, and time-dependent ROC curve analyses used to predict 1-, 3-, and 5-year survival 
probabilities of patients. MRRS, m6A/m5C/m1A/m7G-related risk signature; GC, gastric cancer; ROC, receiver operating characteristic.

0.75, and 0.75, respectively. Thus, these results suggest that 
MRRS has good performance in predicting the survival rate 
of GC patients.

The correlation of MRRS with tumor microenvironment 
and drug sensitivity

Given the role of m6A/m5C/m1A/m7G-related genes in 
the immune microenvironment, we further analyzed the 
correlation between MRRS and immune cell infiltration. 
The results showed that the risk score was positively 
correlated with the number of activated CD4+ memory T 
cells, T follicular helper cells, and resting NK cells, and 
negatively correlated with resting mast cells (Figure 6A-6D). 
This was further confirmed in the GSE84433 validation 
set (Figure 6E-6H). Interestingly, this is very similar to the 
immune cell infiltration in group C1 above.

Next, we screened 16 compounds based on the difference 
in predictive values of IC50 in the high- and low-risk 

groups. Drug sensitivity analysis showed (Figure 7) that 
patients in the low-risk group were susceptible to Src family 
selective Lck inhibitor (A-770041), AKT inhibitor VIII, 
Raf kinase inhibitor (AZ628), saracatinib (AZD-0530), 
PPM1D inhibitor (CCT007093), dasatinib, elesclomol, 
Wnt/β-catenin inhibitor (FH-535), and Bcr-Abl inhibitor  
(GNF-2) were more sensitive than the high-risk group. 
Conversely, patients in the high-risk group were more 
sensitive to Bcl-2 protein family inhibitor (ABT-263), 
Afatinib (BIBW 2992), HSP90ATPase activity inhibitor 
(CCT018159), doxorubicin, etoposide, lenalidomide, 
methotrexate (MTX) was higher than that of the low-risk 
group. This may help to guide individualized medication 
for both groups.

Validation of m6A/m5C/m1A/m7G-related prognostic 
genes at the protein levels

To validate the possible relevant biological functions 
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Figure 6 Association of MRRS with tumor microenvironment. Scatterplot showing the correlation of risk score with the infiltration 
of activated CD4+ memory T cells, follicular helper T cells, resting NK cells and resting mast cells, (A-D) and further validated by the 
GSE84433 cohort (E-H). MRRS, m6A/m5C/m1A/m7G-related risk signature; NK, natural killer.

of prognostic genes in our MRRS, we evaluated the 
protein expression levels of m6A/m5C/m1A/m7G-
related prognostic genes in normal tissues and GC using 
HPA immunohistochemical staining data (Figure 8). The 
results showed that FKBP10 was significantly elevated 
in GC tissues and GGH expression was decreased in GC 
tissues, which was consistent with our analysis above. 
In addition, SLC5A6 did not differ in tumor tissues and 
normal tissues. Unfortunately, we did not obtain GPC3 
immunohistochemical staining data. We reasonably infer 
that FKBP10 and GGH may play an important role in 
GC. The above results demonstrate that the MRRS we 
developed has a more accurate predictive function for 
potential prognostic and therapeutic markers of GC.

Discussion

GC, one of the most important cancers of the digestive 
system, is still a major global health problem. Researchers 
have been working tirelessly to find biological targets 
that can predict or improve the prognosis of GC patients. 
Encouragingly, various correlation models on cancer 
prognosis have been developed (33-36), which are of great 
help in developing potential therapeutic targets for GC.

Post-transcriptional modifications of RNA are an 

important part of the field of epigenetics. Among them, 
methylation modifications are the most common, and m6A 
is the most prevalent form of methylation modification 
and the most intensively studied type of methylation 
modification. While m6A/m5C/m1A/m7G combines 
four different methylation modifications, which has been 
less studied at present, the emergence of this combined 
methylation mechanism provides new ideas for cancer 
treatment. Moreover, its specific involvement in GC, the 
mechanism of occurrence and the pathways involved are 
still unknown.

Methylation plays a crucial regulatory role in various 
cellular processes and in the progression of human diseases, 
and it plays a potentially pivotal role in disease by regulating 
the expression of proto-oncogenes and tumour-suppressor 
genes through methyltransferases and demethyltransferases. 
The aim of tumour immunotherapy is to control and 
eliminate tumours by restarting and maintaining the tumour 
immune cycle and restoring normal anti-tumour immune 
responses. Methylated RNA modifications have implications 
for immunotherapy (18,27). Therefore, we focused on the 
potential role of methylation modification genes associated 
with prognosis and immune infiltration in GC patients. 

In this study, we identified three m6A/m5C/m1A/m7G 
subgroups by consistent clustering based on the expression 
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Figure 7 Box line plot showing the results of drug sensitivity analysis for GC patients in the high-risk score group and low-risk score group.  
*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. GC, gastric cancer.

of 45 m6A/m5C/m1A/m7G-related genes, which were 
significantly differentially expressed at different levels 
compared with normal tissues (Figure 1A). We were then 
surprised to find that patients with different subtypes of GC 
had different survival, immune cell infiltration outcomes, 
and prognosis (Figure 1G, Figure 3). Next, we identified 
the DEGs in the three groups using the limma method and 
finalized four genes, SLC5A6, FKBP10, GPC3, and GGH, 
using the Cox-LASSO method, and constructed MRRS 
based on them. Some of these genes have been suggested 
to play a role in cancer or inflammation by influencing the 
immune response. For example, FKBP10 has a key role in 

translational reprogramming and lung cancer growth (38). 
In addition, FKBP10 interacts with Hsp47 and activates the 
AKT-CREB-PCNA signaling pathway, which is involved 
in the proliferation of glioma cells (39). Elevated expression 
of GPC3 has been associated with a poor prognosis of 
hepatocellular carcinoma (HCC) (40). Overexpression 
of GGH is a risk factor for extranodal extension of oral 
squamous cell carcinoma (41). On the other hand, GGH is 
important for the chemosensitivity of acute lymphoblastic 
leukemia (ALL) cells, and lack of GGH causes significant 
resistance to MTX and rituximab (RTX) in ALL cells (42).

Taken together, the results of these 4 genes showed 
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Figure 8 Validation of m6A/m5C/m1A/m7G-associated prognostic genes at the protein expression level. Representative 
immunohistochemistry images of and gastric cancer (GC) tissues sourced from the Human Protein Atlas database (https://www.
proteinatlas.org/). Image credit goes to the Human Protein Atlas. The links to the individual normal and tumor tissues of each protein 
are provided for FKBP10 (https://www.proteinatlas.org/ENSG00000141756-FKBP10/tissue/stomach; https://www.proteinatlas.org/
ENSG00000141756-FKBP10/pathology/stomach+cancer), GGH (https://www.proteinatlas.org/ENSG00000137563-GGH/tissue/stomach; 
https://www.proteinatlas.org/ENSG00000137563-GGH/pathology/stomach+cancer#ihc), and SLC5A6 (https://www.proteinatlas.org/
ENSG00000138074-SLC5A6/tissue/stomach; https://www.proteinatlas.org/ENSG00000138074-SLC5A6/pathology/stomach+cancer), 
respectively. Scale bar, 200 μm. Staining degree: high, medium, low, and not detected.

that our MRRS had a better survival prognosis in the low-
risk cohort (Figure 4D), which we further confirmed in the 
validation set (Figure 4E). The results of this study suggest 
that m6A/m5C/m1A/m7G can be used as biomarkers for 
the diagnosis and prognosis of GC and reveal a feasible 
therapeutic option that may be related to the modulation of 
the tumor microenvironment.

GO, KEGG analysis showed that DEGs in the three 
subgroups were significantly enriched in terms of their 
involvement in extracellular messaging, as well as cancer and 
immune-related processes. such as extracellular exosome, 
extracellular vesicle, extracellular organelle, immune system 
process macromolecule modification, cytokine-cytokine 
receptor interaction, proteoglycans in cancer, human T-cell 
leukemia virus 1 infection, and microRNAs in cancer, to 
name a few (Figure 2C,2D). This may explain to some extent 

the better survival of GC patients in group C1.
Our CIBERSORT box plot (Figure 3E) showed that 

CD8+ T cells, activated CD4+ memory T cells, resting 
NK cells, M1 macrophages, and M2 macrophages were 
infiltrated to a higher extent in the C1 group than in the 
other groups, whereas naive B cells and resting mast cells 
showed the opposite trend. CD8+ T cells can produce toxic 
molecules, such as perforin, that cause apoptosis in target 
cells (43,44). Natural killer cells are highly efficient cell 
populations used in cancer immunotherapy; memory CD4+ 
T cells produce a memory response to the immune response 
and contribute to protective immunity by responding faster 
and to a greater extent than the initial response (45,46).
The main function of M1 macrophages is to kill bacteria 
and pathogens and produce oxygen free radicals and a range 
of inflammatory cytokines, whereas M2 macrophages are 
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mainly involved in anti-inflammatory and repair processes, 
promoting tissue repair and regeneration (47-49). This 
may also explain the better survival of GC patients in 
the C1 group as well. This is because more immune cells 
were infiltrated in the C1 group. More importantly, the 
relationship between the various subgroups and the immune 
checkpoints (Figure 3F) showed that the vast majority of the 
immune checkpoints were most highly expressed in the C1 
group. Immunotherapy may work better for patients in the 
C1 group, consistent with the conclusions above.

Given the role of m6A/m5C/m1A/m7G-related isoforms 
in the immune microenvironment, we further analyzed the 
correlation between MRRS and immune cell infiltration. 
The results showed that the risk score was positively 
correlated with the number of activated CD4+ memory T 
cells, T follicular helper cells, and resting NK cells, and 
negatively correlated with resting mast cells (Figure 6A-6D). 
This was further confirmed in the GSE84433 validation 
set (Figure 6E-6H). The immune cell infiltration in the C1 
group is similar to what was observed here. We screened 
16 compounds based on the difference in predicted IC50 
values between the high and low risk groups. The high 
risk group was more sensitive to 7 compounds, while 
the low risk group was more sensitive to 9 compounds.  
Figure 7 illustrates how this information can guide 
personalized medication for both groups. Finally, we 
evaluated the protein expression levels of prognostic genes 
related to m6A, m5C, m1A, and m7G in normal tissues and 
GC using HPA immunohistochemical staining data. The 
results suggest that FKBP10 and GGH may play important 
roles in GC. These results demonstrate that the MRRS 
we developed has a more accurate predictive function for 
potential prognostic and therapeutic markers of GC.

However, it is important to acknowledge the limitations 
of this study. Bioinformatics analysis is a widely used 
tool for high-precision data analysis and prediction, and 
can even aid in the exploration of potential biomarkers. 
Nevertheless, it is recommended that future studies employ 
real-time polymerase chain reaction (PCR), western blot, 
and other experimental methods to verify the findings in 
cell and animal experiments. Secondly, our methylation-
related model lacks external validation. In addition, we need 
to study the related molecular mechanisms to determine 
how the markers we identified are involved in GC. In future 
studies, we will further explore their mechanisms of action 
in GC.

Conclusions

In conclusion, our study has highlighted the association 
between m6A/m5C/m1A/m7G-related subtypes and 
changes in the GC immunotumor microenvironment. 
We have also constructed the MRRS and validated its 
effectiveness in different cohorts. This tool is valuable in 
predicting survival, immune infiltration, drug sensitivity, 
and other factors in GC patients. These results may help 
to deepen our understanding of m6A/m5C/m1A/m7G 
methylation and provide new strategies for personalized 
therapy.

Acknowledgments

Funding: None. 

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2325/rc

Peer Review File: Available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-2325/prf

Conflicts of Interest: Both authors have completed the ICMJE 
uniform disclosure form (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-23-2325/coif). The authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2325/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2325/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2325/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2325/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2325/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2325/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Cancer Research, Vol 13, No 7 July 2024 3297

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3285-3298 | https://dx.doi.org/10.21037/tcr-23-2325

References

1.	 Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 
2022. CA Cancer J Clin 2022;72:7-33.

2.	 Yang WJ, Zhao HP, Yu Y, et al. Updates on global 
epidemiology, risk and prognostic factors of gastric cancer. 
World J Gastroenterol 2023;29:2452-68.

3.	 Shin WS, Xie F, Chen B, et al. Updated Epidemiology of 
Gastric Cancer in Asia: Decreased Incidence but Still a Big 
Challenge. Cancers (Basel) 2023;15:2639.

4.	 Ilson DH. Advances in the treatment of gastric cancer: 
2022-2023. Curr Opin Gastroenterol 2023;39:517-21.

5.	 Guan WL, He Y, Xu RH. Gastric cancer treatment: 
recent progress and future perspectives. J Hematol Oncol 
2023;16:57.

6.	 Joshi SS, Badgwell BD. Current treatment and 
recent progress in gastric cancer. CA Cancer J Clin 
2021;71:264-79.

7.	 Siebenhüner AR, De Dosso S, Helbling D, et al. 
Advanced Gastric Cancer: Current Treatment Landscape 
and a Future Outlook for Sequential and Personalized 
Guide: Swiss Expert Statement Article. Oncol Res Treat 
2021;44:485-494. Correction appears in Oncol Res Treat 
2022;45:62.

8.	 Tan Z. Recent Advances in the Surgical Treatment of 
Advanced Gastric Cancer: A Review. Med Sci Monit 
2019;25:3537-41.

9.	 Song Z, Wu Y, Yang J, et al. Progress in the 
treatment of advanced gastric cancer. Tumour Biol 
2017;39:1010428317714626.

10.	 Lei ZN, Teng QX, Tian Q, et al. Signaling pathways 
and therapeutic interventions in gastric cancer. Signal 
Transduct Target Ther 2022;7:358.

11.	 Yuan L, Xu ZY, Ruan SM, et al. Long non-coding RNAs 
towards precision medicine in gastric cancer: early 
diagnosis, treatment, and drug resistance. Mol Cancer 
2020;19:96.

12.	 Zeng Y, Jin RU. Molecular pathogenesis, targeted 
therapies, and future perspectives for gastric cancer. Semin 
Cancer Biol 2022;86:566-82.

13.	 Röcken C. Predictive biomarkers in gastric cancer. J 
Cancer Res Clin Oncol 2023;149:467-81.

14.	 Barbieri I, Kouzarides T. Role of RNA modifications in 
cancer. Nat Rev Cancer 2020;20:303-22.

15.	 Zhao BS, Roundtree IA, He C. Post-transcriptional gene 
regulation by mRNA modifications. Nat Rev Mol Cell 
Biol 2017;18:31-42. Correction appears in Nat Rev Mol 
Cell Biol 2018;19:808.

16.	 Chen Y, Jiang Z, Yang Y, et al. The functions and 
mechanisms of post-translational modification in protein 
regulators of RNA methylation: Current status and future 
perspectives. Int J Biol Macromol 2023;253:126773.

17.	 Boulias K, Greer EL. Biological roles of adenine 
methylation in RNA. Nat Rev Genet 2023;24:143-60.

18.	 Yang B, Wang JQ, Tan Y, et al. RNA methylation and 
cancer treatment. Pharmacol Res 2021;174:105937.

19.	 Zhou W, Wang X, Chang J, et al. The molecular structure 
and biological functions of RNA methylation, with special 
emphasis on the roles of RNA methylation in autoimmune 
diseases. Crit Rev Clin Lab Sci 2022;59:203-18.

20.	 An Y, Duan H. The role of m6A RNA methylation in 
cancer metabolism. Mol Cancer 2022;21:14.

21.	 Ma S, Chen C, Ji X, et al. The interplay between m6A 
RNA methylation and noncoding RNA in cancer. J 
Hematol Oncol 2019;12:121.

22.	 Zhang Q, Liu F, Chen W, et al. The role of RNA m(5)
C modification in cancer metastasis. Int J Biol Sci 
2021;17:3369-80.

23.	 Cheng W, Gao A, Lin H, et al. Novel roles of METTL1/
WDR4 in tumor via m(7)G methylation. Mol Ther 
Oncolytics 2022;26:27-34.

24.	 Li J, Zhang H, Wang H. N(1)-methyladenosine 
modification in cancer biology: Current status and 
future perspectives. Comput Struct Biotechnol J 
2022;20:6578-85.

25.	 Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and 
erasing mRNA methylation. Nat Rev Mol Cell Biol 
2019;20:608-624.Correction appears in Nat Rev Mol Cell 
Biol 2023;24:770.

26.	 Shi H, Wei J, He C. Where, When, and How: Context-
Dependent Functions of RNA Methylation Writers, 
Readers, and Erasers. Mol Cell 2019;74:640-50.

27.	 Zhuang H, Yu B, Tao D, et al. The role of m6A 
methylation in therapy resistance in cancer. Mol Cancer 
2023;22:91.

28.	 Petri BJ, Klinge CM. m6A readers, writers, erasers, 
and the m6A epitranscriptome in breast cancer. J Mol 
Endocrinol 2022;70:e220110.

29.	 Chen X, Li A, Sun BF, et al. 5-methylcytosine promotes 
pathogenesis of bladder cancer through stabilizing 
mRNAs. Nat Cell Biol 2019;21:978-90.

30.	 Allegri L, Baldan F, Molteni E, et al. Role of m6A RNA 
Methylation in Thyroid Cancer Cell Lines. Int J Mol Sci 
2022;23:11516.

31.	 Liang W, Yi H, Mao C, et al. Research Progress of RNA 
Methylation Modification in Colorectal Cancer. Front 



Chen and Jiang. A m6A/m5C/m1A/m7G‑related risk signature3298

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3285-3298 | https://dx.doi.org/10.21037/tcr-23-2325

Pharmacol 2022;13:903699.
32.	 Teng C, Kong F, Mo J, et al. The roles of RNA N(6)-

methyladenosine in esophageal cancer. Heliyon 
2022;8:e11430.

33.	 Huang Z, Pan J, Wang H, et al. Prognostic Significance 
and Tumor Immune Microenvironment Heterogenicity 
of m5C RNA Methylation Regulators in Triple-Negative 
Breast Cancer. Front Cell Dev Biol 2021;9:657547.

34.	 Chong W, Shang L, Liu J, et al. m(6)A regulator-based 
methylation modification patterns characterized by distinct 
tumor microenvironment immune profiles in colon cancer. 
Theranostics 2021;11:2201-17.

35.	 Wang Z, Zhang M, Seery S, et al. Construction and 
validation of an m6A RNA methylation regulator 
prognostic model for early-stage clear cell renal cell 
carcinoma. Oncol Lett 2022;24:250.

36.	 Zhou Y, Dai X, Lyu J, et al. Construction and validation of 
a novel prognostic model for thyroid cancer based on N7-
methylguanosine modification-related lncRNAs. Medicine 
(Baltimore) 2022;101:e31075.

37.	 Li J, Zuo Z, Lai S, et al. Differential analysis of RNA 
methylation regulators in gastric cancer based on TCGA 
data set and construction of a prognostic model. J 
Gastrointest Oncol 2021;12:1384-97.

38.	 Ramadori G, Ioris RM, Villanyi Z, et al. FKBP10 
Regulates Protein Translation to Sustain Lung Cancer 
Growth. Cell Rep 2020;30:3851-3863.e6.

39.	 Cai HQ, Zhang MJ, Cheng ZJ, et al. FKBP10 promotes 
proliferation of glioma cells via activating AKT-CREB-
PCNA axis. J Biomed Sci 2021;28:13.

40.	 Fu Y, Urban DJ, Nani RR, et al. Glypican-3-Specific 

Antibody Drug Conjugates Targeting Hepatocellular 
Carcinoma. Hepatology 2019;70:563-76.

41.	 Burhanudin NA, Zaini ZM, Rahman ZAA, et al. 
Overexpression of gamma glutamyl hydrolase predicts 
extranodal extension in squamous cell carcinoma of the 
oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol 
2022;134:725-32.

42.	 Wang S, Chen Y, Fang H, et al. A γ-glutamyl hydrolase 
lacking the signal peptide confers susceptibility to folates/
antifolates in acute lymphoblastic leukemia cells. FEBS 
Lett 2022;596:437-48.

43.	 Notarbartolo S, Abrignani S. Human T lymphocytes at 
tumor sites. Semin Immunopathol 2022;44:883-901.

44.	 Reina-Campos M, Scharping NE, Goldrath AW. CD8(+) 
T cell metabolism in infection and cancer. Nat Rev 
Immunol 2021;21:718-38.

45.	 Preethy S, Dedeepiya VD, Senthilkumar R, et al. Natural 
killer cells as a promising tool to tackle cancer-A review of 
sources, methodologies, and potentials. Int Rev Immunol 
2017;36:220-32.

46.	 Künzli M, Masopust D. CD4(+) T cell memory. Nat 
Immunol 2023;24:903-14.

47.	 Xia Y, Rao L, Yao H, et al. Engineering Macrophages for 
Cancer Immunotherapy and Drug Delivery. Adv Mater 
2020;32:e2002054.

48.	 Liu J, Geng X, Hou J, et al. New insights into M1/M2 
macrophages: key modulators in cancer progression. 
Cancer Cell Int 2021;21:389.

49.	 Boutilier AJ, Elsawa SF. Macrophage Polarization States in 
the Tumor Microenvironment. Int J Mol Sci 2021;22:6995.

Cite this article as: Chen R, Jiang L. A novel m6A/m5C/m1A/
m7G‑related classification and risk signature predicts prognosis 
and reveals immunotherapy inclination in gastric cancer. Transl 
Cancer Res 2024;13(7):3285-3298. doi: 10.21037/tcr-23-2325


