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Abstract

Procaine directly triggers pH-dependent cytokinesis in equine oocytes and induces hypermotility

in stallion spermatozoa, an important event during capacitation. However, procaine-induced

hyperactivated motility is abolished when sperm is washed to remove the procaine prior to

sperm-oocyte co-incubation. To understand how procaine exerts its effects, the external Ca2+
and Na+ and weak base activity dependency of procaine-induced hyperactivation in stallion

spermatozoa was assessed using computer-assisted sperm analysis. Percoll-washed stallion sper-

matozoa exposed to Ca2+-depleted (+2 mM EGTA) procaine-supplemented capacitating medium

(CM) still demonstrated hyperactivated motility, whereas CM without NaCl or Na+ did not. Both

procaine and NH4Cl, another weak base, were shown to trigger a cytoplasmic pH increase (BCECF-

acetoxymethyl (AM)), which is primarily induced by a pH rise in acidic cell organelles (Lysosensor

green dnd-189), accompanied by hypermotility in stallion sperm. As for procaine, 25 mM NH4Cl

also induced oocyte cytokinesis. Interestingly, hyperactivated motility was reliably induced by 2.5–
10 mM procaine, whereas a significant cytoplasmic cAMP increase and tail-associated protein

tyrosine phosphorylation were only observed at 10 mM. Moreover, 25 mM NH4Cl did not support

the latter capacitation characteristics. Additionally, cAMP levels were more than 10× higher

in boar than stallion sperm incubated under similar capacitating conditions. Finally, stallion

sperm preincubated with 10 mM procaine did not fertilize equine oocytes. In conclusion, 10

mM procaine causes a cytoplasmic and acidic sperm cell organelle pH rise that simultaneously

induces hyperactivated motility, increased levels of cAMP and tail-associated protein tyrosine

phosphorylation in stallion spermatozoa. However, procaine-induced hypermotility is independent

of the cAMP/protein tyrosine phosphorylation pathway.

Summary Sentence

Procaine induces cAMP dependent tail-associated protein tyrosine phosphorylation in stallion

spermatozoa at 10 mM as a result of its weak base activity, whereas hypermotility is induced over

a much broader concentration range namely, 2.5–10 mM.
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Introduction

Only two foals have ever been born as a result of conventional
in vitro fertilization (IVF) with equine gametes [1, 2]. Subsequent
attempts to establish a repeatable protocol for conventional equine
IVF have not been successful [3–5], and it has been suggested that
the primary deficit is the inability to adequately induce capacitation
of stallion spermatozoa in vitro (reviewed by Leemans et al. [6,
7]). More specifically, the absence of hyperactivated sperm motility
under standard in vitro capacitation conditions has been proposed to
explain why IVF fails in the horse [8]. However, while adding either
an alkaline follicular fluid fraction [9] or procaine to capacitation
medium [8, 10, 11] has been shown to reliably induce hyperacti-
vated motility in stallion spermatozoa, neither was able to support
fertilization.

Initially, procaine appeared to have a promising effect on equine
IVF, with two independent groups reporting high fertilization/cleav-
age results after co-incubating equine oocytes and spermatozoa in the
presence of procaine. The sperm was first primed by incubating in
capacitating medium (CM) exposed to air, to induce tail-associated
protein tyrosine phosphorylation, followed by addition of procaine
to induce hyperactivated motility [8, 12]. In 2015, we demonstrated
that, while procaine does reliably induce hyperactivated motility
of stallion spermatozoa, it also has direct detrimental effects on
equine oocytes. In particular, we observed procaine-induced, sperm-
independent oocyte cytokinesis, with the resulting cleaved oocytes
failing to develop beyond the 8–16 cell stage; moreover, the “daugh-
ter cells”either lacked nuclei or contained fragmented and condensed
chromatin bodies rather than normal nuclei [10].

Despite the adverse effects on equine oocytes, the ability of
procaine to induce hyperactivated motility of equine sperm remains
an interesting phenomenon, and the underlying mechanisms are the
topic of the present study. In various mammalian species, hyperacti-
vated motility (reviewed by Suarez [13]; and Lishko et al. [14]) and
oocyte activation (reviewed by Ferrer-Buitrago et al. [15]) require
a rise in intracellular Ca2+ to trigger downstream capacitation/fer-
tilization events. In this respect, procaine has been reported to
induce hyperactivated sperm motility in the horse independent of
extracellular Ca2+ at medium pH 7.25 [11], but does not trigger a
rise in cytoplasmic Ca2+ in equine oocytes [10]. On the contrary, in
pig [16, 17] and cattle [18, 19] oocytes, procaine is able to inhibit
the activation associated with cytoplasmic Ca2+ rise.

On the other hand, procaine is best known as a local anes-
thetic that induces a neuromuscular block, primarily via actions
on the voltage-gated Na+ channels [20]. In this respect, Takei and
Fujinoki [21] reported that extracellular Na+ suppresses hyper-
activated motility in hamster spermatozoa by reducing intracel-
lular Ca2+. Conversely, reducing extracellular Na+ in the incu-
bation medium supported hyperactivated motility in a tyrosine
phosphorylation-independent manner. Similarly in stallion sperm,
2.5–5 mM procaine induces hyperactivated motility in a protein
tyrosine phosphorylation-independent way [10].

Procaine is also known to act as a weak base that, at 2.5–
5 mM, stimulates a significant elevation in cytoplasmic pH in equine
sperm [11] and oocytes [10]. Increased medium and cytoplasmic pH
have also been reported to induce tail-associated protein tyrosine
phosphorylation [9, 22–24], and an association between elevated
cytoplasmic pH and hyperactivated motility [9–11] in stallion sper-
matozoa has been reported. In this respect, a pH-gated influx of
Ca2+ through CatSper channels is an obligatory step in the induc-
tion of hyperactivated motility in several mammalian species [25].

Moreover, weak bases are able to partition into acidic cell organelles,
alkalinizing them and releasing Ca2+ from them [26, 27]. Recently,
Chávez et al. [28] reported a similar action of weak bases resulting in
the acrosome reaction in mouse and human sperm. In contrast, Loux
et al. [11] suggested that the relationship between hyperactivated
motility and Ca2+ influx is likely to be weak in stallion sperm cells
because analysis of the equine CatSper1 protein revealed species-
specific differences in the structure of the pH sensor region.

Since the inclusion of procaine in equine IVF media directly
stimulated sperm hyperactivated motility, but also caused abnormal
cleavage of nonfertilized equine oocytes [10], the first aim of this
study was to determine whether stallion sperm retained the procaine-
induced hyperactivated motility after a washing step, to avoid sub-
sequent direct exposure of equine oocytes to the toxic effects of
procaine. Next, the effect of extracellular Ca2+ on procaine-induced
hyperactivated motility at pH 7.4 and 7.9 was examined. Depen-
dency of hyperactivated sperm motility and oocyte cytokinesis on
extracellular Na+ and cytoplasmic pH elevation was then tested.
Finally, procaine concentration-dependent effects on cytoplasmic
pH, cell organelle pH, hyperactivated motility, cytoplasmic cAMP
concentration and tail-associated protein tyrosine phosphorylation
were investigated, to identify if and how procaine affected equine
sperm capacitation. Finally, we tested the fertilizing capability of
stallion sperm after procaine preincubation.

Materials and methods

Chemicals and reagents

Alexa Fluor 488-conjugated goat anti-mouse antibody, Hoechst
33342 and 2’,7’-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein-
acetoxymethyl (BCECF-acetoxymethyl) (AM) ester were obtained
from Molecular Probes (Ghent, Belgium). Monoclonal 4G10
Platinum anti-phosphotyrosine mouse antibodies were purchased
from Millipore (Overijse, Belgium). Fatty acid-free bovine serum
albumin (BSA) (A9418; cell culture tested), Triton X-100, and all
other chemicals not otherwise listed were obtained from Sigma-
Aldrich (Bornem, Belgium).

Semen collection and preparation

Stallion semen was collected from three adult stallions of proven
fertility using a Colorado model artificial vagina (Animal Reproduc-
tion Systems; Chino, CA, USA) at the equine reproduction clinics
at Ghent and Utrecht Universities. The raw ejaculate was filtered
through gauze to remove the gel fraction and any debris, before
visual evaluation of sperm motility by light microscopy (200×) on a
heated stage at 37 ◦C; if the motility was acceptable (>65% motile),
the semen was immediately transported to the laboratory for further
processing. One milliliter of fresh semen with a concentration of
100–300 × 106 spermatozoa/ml was separated through a 45/90%
Percoll gradient [29, 30]. Next, the sperm pellet was washed once
with noncapacitating medium (NCM) (100 mM NaCl, 4.7 mM KCl,
1.2 mM MgCl2, 5.5 mM glucose, 22 mM 4-(2-hydroxyethyl)-1-
piperazine ethane sulfonic acid (HEPES), 2.4 mM sodium lactate
and 1.0 mM pyruvic acid; pH = 7.4 and 280–300 mOsm; [31]). Per
experiment three replicates were performed using one ejaculate from
three different stallions (n = 3).

Ejaculates from three boars with proven fertility were collected
at AIM Varkens KI Nederland (Vaassen, The Netherlands; a
commercial enterprise producing semen doses for commercial pig
artificial insemination). Freshly ejaculated sperm was filtered
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through gauze to remove the gelatinous material and then diluted,
washed, and stored in Beltsville Thawing Solution, as described
previously [32]. All buffers and other solutions used were iso-
osmotic (285–300 mOsm) and kept at room temperature unless
stated otherwise. Upon arrival in the laboratory, boar semen was
processed in a similar way to stallion semen, with the exception that
1 ml semen was separated through a different density gradient, i.e.,
35/70% Percoll [33].

Animal experiments

The study was approved by the Ethics Committee of the Fac-
ulty of Veterinary Medicine of Ghent University (EC2013/175 and
EC2013/176). The Institutional Animal care and Use Committee of
Utrecht University approved with this study.

Sperm capacitation/hyperactivation

In order to provide conditions supportive of sperm capacitation,
NCM was modified by replacing sodium lactate with 2.4 mM
calcium lactate and adding 25 mM NaHCO3 and 7 mg/ml BSA
(pH = 7.4; 280–300 mOsm/kg; osmolality was adjusted by gradu-
ated reduction of the NaCl to compensate for the added 25 mM
NaHCO3); this medium was pre-equilibrated for at least 2 h in a
humidified atmosphere containing 5% CO2 at 38.5 ◦C and is further
referred to as CM (adapted from McPartlin et al. [31]). The washed
sperm pellet was diluted to a concentration of 10 × 106 spermato-
zoa/ml with CM. Hyperactivated motility was induced by resuspend-
ing the spermatozoa in (1) CM supplemented with 2.5 mM procaine
hydrochloride (Sigma-Aldrich, Bornem, Belgium) at a final concen-
tration of 1 × 106 spermatozoa/ml [8]. To prepare concentrations
of up to 5 mM procaine, a stock of 50 mM procaine hydrochloride
dissolved in CM was pre-equilibrated for at least 2 h in a humidified
atmosphere containing 5% CO2 at 38.5 ◦C (to restore the pH to the
physiological range; 7.2–7.4). Subsequently, 2.5 and 5 mM procaine-
containing CM were prepared by diluting the stock solution with
the required amount of equilibrated CM. The pH of all incubation
media was adjusted to 7.2–7.4. Procaine concentrations higher than
5 mM (10, 25 or 50 mM) were made without stock preparation.
To obtain medium osmolality between 280–300 mOsm/kg in these
high procaine concentration capacitating media, NaCl concentration
was reduced accordingly. The latter media were subsequently pre-
equilibrated overnight in a humidified atmosphere containing 5%
CO2 at 38.5 ◦C to restore the pH to 7.2–7.4.

To investigate the effect of the Ca2+ in CM on hyperactived motil-
ity, calcium lactate was replaced by sodium lactate, and 2 mM of the
Ca2+ chelator ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-
tetraacetic acid (EGTA) was added.

CM without NaCl was prepared by replacing 100 mM NaCl with
200 mM D-mannitol while Na+-free CM was made by replacing the
100 mM NaCl with 200 mM D-mannitol and 25 mM NaHCO3 with
KHCO3. CM plus NH4Cl was prepared by replacing the 25 mM
NaCl with 25 mM NH4Cl. CM at pH 7.9 was prepared by increasing
NaHCO3 to 100 mM and reducing NaCl accordingly, to maintain
the osmolality between 280–300 mOsm/kg. All media were pre-
equilibrated for at least 2 h in a humidified atmosphere containing
5% CO2 at 38.5 ◦C before the start of incubation.

Oocyte maturation

Ovaries were collected from slaughtered mares (Euro Meat Group,
Moeskroen, Belgium). Within 4 h after slaughter, all follicles larger
than 5 mm were aspirated using a 16 gauge needle attached to

a vacuum pump (∼100 mm Hg), scraped with the bevel of the
aspirating needle, and flushed with Dulbecco’s phosphate buffered
saline (DPBS) containing 25 IU/ml heparin. A maximum of 30
cumulus-oocyte complexes (COCs) were transferred to 500 μl Dul-
becco’s Modified Eagle’s Medium Nutrient Mixture F-12 (DMEM-
F12)-based maturation medium [34] and placed in an incubator at
38.2 ◦C in a humidified atmosphere of 5% CO2-in-air for 28 h.
After maturation, COCs were partially or completely denuded by
gentle pipetting in 0.05% bovine hyaluronidase diluted in HEPES
buffered DMEM-F12 medium. Degenerated oocytes were excluded
from subsequent experiments, whereas all nondegenerated oocytes
were used for gamete co-incubation with the assumption that an
extruded polar body was present (this could not be confirmed in
partially cumulus-enclosed oocytes).

In vitro fertilization/gamete co-incubation

Equine gamete co-incubation was performed with some minor
modifications in the various capacitating media described above
[31]. As previously indicated, sperm was suspended at 1 × 106

spermatozoa/ml in each specific CM (medium pH = 7.2–7.4;
previously adjusted by incubation in an atmosphere containing
5% CO2). About 100 μl droplets of these sperm suspensions were
pipetted into Petri dishes and covered with 5% CO2-equilibrated
mineral oil. Five partially denuded mature oocytes were then
transferred to each medium droplet, and the Petri dishes were
incubated at 38.2 ◦C in 5% CO2 in humidified air. After 18 h
of co-incubation, partially denuded oocytes were fully denuded
by gentle pipetting in 0.05% bovine hyaluronidase in HEPES
buffered DMEM/F12. Subsequently, oocytes were checked for sperm
penetration or cultured for an additional 6 h to assess oocyte nuclear
configuration and second polar body formation or for 2.5 days
in groups of five oocytes per 5 μl droplet of DMEM-F12 with
10% fetal calf serum, at 38.5 ◦C in a humidified atmosphere of
5% CO2, 5% O2, and 90% N2. After IVF, oocytes were fixed at
different developmental stages (zygote, 2-cell, 4–8 cell, 8–16 cell)
to assess nuclear configuration, second polar body formation, and
developmental stage. To control for direct effects of procaine, oocytes
were incubated in similar media in the absence of sperm.

Deoxyribonucleic acid configuration and embryonic

development

Oocytes and presumptive zygotes or early embryos at various devel-
opmental stages were fixed in 4% paraformaldehyde in DPBS at
room temperature for 1 h. The fixative was then removed by
washing the oocytes twice in wash medium (DPBS containing 0.5%
BSA). Next, the fixed oocytes were incubated in a 3.2 μM Hoechst
33342 solution in wash medium for 10 min at room temperature.
The oocytes were then washed four times in wash medium and
mounted on siliconized glass slides (Marienfeld, Germany) using 1,4-
diazabicyclo[2,2,2]octane as antifade and sealed with nail polish.
Excessive pressure from the cover slip was prevented by placing a
few droplets of Vaseline on the microscope slides prior to mounting.
Starting from the time of incubation in Hoechst 33342, oocytes
were shielded from the light to prevent fading. Mounted slides were
kept at 4 ◦C in the dark until evaluation. Oocyte degeneration was
indicated by irregular morphology of the oocyte. The Hoechst dye
stained the deoxyribonucleic acid (DNA) of both the oocyte and the
spermatozoa, and can thus be used for detecting possible fertiliza-
tion, i.e., whether both the female and male pronuclei (PN) and the
second polar body (containing condensed DNA) are all present. After
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2.5 d in culture, the ability of equine oocytes/zygotes to undergo
nuclear duplication and cell cleavage was assessed, with condensed
DNA fragments indicative of nuclear degradation visualized using
the Hoechst dye.

Sperm motility assessment

To assess the effect on sperm motility of the different capaci-
tating strategies based respectively on procaine-pre-incubation,
extracellular Ca2+, Na+ influx inhibition, or weak base activity
to increase cytoplasmic pH, motility parameters for sperm in
suspension were assessed using a computer-assisted sperm analyzer
(CASA: Hamilton-Thorne motility analyzer Ceros version 12.3d;
Hamilton-Thorne Research, Beverly, MA, USA). Under defined
capacitating conditions, BSA was replaced with 0.02% polyvinyl
alcohol to avoid the marked sperm agglutination noted for stallion
sperm after centrifugation in BSA-containing medium [11]. For
each analysis, 10 μl of sperm solution diluted in different CM
was mounted on a prewarmed glass slide (Marienfeld, Lauda-
Königshofen, Germany) and maintained at 37 ◦C using a Tokai
Hit thermoplate. Five randomly selected microscopic fields in the
center of the slide were scanned four times each, generating 20
scans for each sample. The mean of these five scans per sample was
used for statistical analysis. The settings of the CASA-software HTR
12.3 for analyzing motility parameters of stallion sperm were based
on those described by Loomis and Graham [35] and Hoogewijs
et al. [36]. To evaluate the effect of Na+ omission, or of weak base
activity to raise the cytoplasmic pH, the percentages of motile and
progressively motile sperm were assessed. To assess the effect of
chelating extracellular Ca2+, omitting Na+, or weak base activity on
sperm hypermotility, two parameters were used, namely, amplitude
of lateral head displacement (ALH, in μm; i.e., the mean width
of head oscillations) and curvilinear velocity (VCL, in μm/s; i.e.,
the average velocity of a sperm along its actual, two-dimensional
curvilinear trajectory). An increase in ALH and VCL was taken to
indicate induction of hyperactivated motility [8, 10, 11].

Motility patterns of stallion sperm incubated in CM + 2.5 mM
procaine, Ca2+-depleted CM + 2.5 mM procaine and CM + 25 mM
NH4Cl were imaged using a Moticam 10+ camera (Motic Deutsch-
land GmbH, Wetzlar, Germany) attached to an Olympus BX40
microscope (Olympus Nederland B.V., Leiderdorp, The Netherlands)
and equipped with a phase contract objective 20× (Olympus Neder-
land B.V., Leiderdorp, The Netherlands). Images were acquired using
the Motic Images Plus 3.0 ML program (Motic Deutschland GmbH,
Wetzlar, Germany).

Cytoplasmic and cell organelle pH measurements

Percoll-separated sperm was washed twice using NCM and stained
with 5 μM of the cytoplasmic pH-sensitive dye BCECF-AM [10, 11]
or with 5 μM of the cell organelle pH-sensitive marker Lysosensor
green DND-189 [28] in NCM, by incubation at 38.5 ◦C for 30 min.
The extracellular dye was then removed by washing the sperm twice
in NCM (400 g, 5 min). The washed BCECF-AM loaded sperm
(30 × 106 sperm/ml) was added to NCM, CM, CM without NaCl,
CM without Na+, CM plus 25 mM NH4Cl, CM at pH 7.9, and CM
plus 2.5, 5, 10, 25, or 50 mM procaine. Subsequently, the BCECF
signal was measured in 200 μl aliquots of sperm suspension loaded
into a 96-well microplate reader (CLARIOstar, BMG LABTECH,
Ortenberg, Germany) and excited at 440 and 490 nm. The cytoplas-
mic pH was proportional to the ratio of fluorescence at 440/490
(expressed in AU). Baseline fluorescence was recorded for each well

and set to ratio = 0. A similar approach was used to measure the
fluorescence intensity of Lysosensor green DND-189-loaded sperm
(30 × 106 sperm/ml) incubated in NCM, CM, CM plus 25 mM
NH4Cl, CM at pH 7.9, and CM plus 2.5 or 10 mM procaine.
Sperm samples were excited at 443 nm. Readings were taken at 0,
10, 30, and 60 min after the treatments have been added, since a
rapid procaine-induced weak base activity in stallion sperm has been
reported previously [11].

Cytoplasmic cAMP measurements

Since a rise in cAMP is considered to be an early capacitation
response [37], stallion sperm (5 × 106 sperm/ml) was incubated for
15 min and 1 h in NCM, CM, CM without NaCl, CM without Na+,
CM plus 25 mM NH4Cl, CM at pH 7.9, CM plus 1 mM caffeine,
and CM plus 2.5, 5, 10, 25, or 50 mM procaine. Boar sperm samples
incubated in NCM, CM, and CM plus 1 mM caffeine media for
15 min and 1 h were included for comparison. After 15 min and 1 h
incubations, sperm samples were centrifuged for 2 min at 1200×g.
The sperm pellet was resuspended in 200 μl 0.1 mM HCl, vortexed
twice for 2 s and incubated for 20 min at room temperature. Subse-
quently, sperm samples were centrifuged at 5000×g for 5 min, and
all supernatant samples were stored at −80 ◦C until further analysis
[37]. Using a direct cAMP Enzyme Immunoassay Kit (Sigma-Aldrich,
Zwijndrecht, The Netherlands), cAMP levels in acetylated sperm
supernatant samples were measured by following the manufacturer’s
instructions. A standard curve was run for each assay (Figure 10A),
and the unknown cAMP concentrations were obtained by logistic
curve fitting (as recommended by the manufacturer).

Quantification of tail-associated protein tyrosine

phosphorylation

Assessment of protein tyrosine phosphorylation, which is considered
a hallmark of late stage capacitation, was performed as described by
Leemans et al. [24]. Briefly, spermatozoa were incubated for 4 h in
NCM, CM, CM without NaCl, CM without Na+, CM plus 25 mM
NH4Cl, CM at pH 7.9, CM plus 1 mM caffeine, and CM plus 2.5, 5,
10, 25, or 50 mM procaine media under atmospheric conditions (5%
CO2 or air). The incubated sperm suspensions were subsequently
washed twice and fixed in 4% paraformaldehyde in DPBS at room
temperature for 15 min. The fixative was removed by three centrifu-
gation steps using DPBS (600 g for 5 min). The washed spermatozoa
were subsequently incubated in 0.1% Triton X-100 in DPBS for
10 min at room temperature to ensure complete permeabilization
of the membranes. The permeabilized spermatozoa were then incu-
bated in blocking buffer (DPBS containing 1% BSA) for 10 min at
room temperature. Next, the spermatozoa were incubated overnight
at 4 ◦C in buffer containing 0.1% BSA and the mouse mono-
clonal 4G10 Platinum IgG2b protein anti-phosphotyrosine antibody
(diluted 1:500). After incubation, unbound antibody was removed
by washing the spermatozoa twice with 1 mL DPBS containing
0.1% BSA (600 g for 5 min). The spermatozoa were then stained
with a monoclonal goat anti-mouse antibody conjugated to Alexa
Fluor 488 (Invitrogen, Molecular Probes, Ghent, Belgium) for 1 h at
room temperature. After immunolabeling, the nonbound antibody
conjugates were removed by washing three times with DPBS con-
taining 0.1% BSA, and once using DPBS (600 g for 5 min). The
immunolabeled spermatozoa were mounted on glass slides under a
cover slip and sealed with nail polish. The proportion of spermatozoa
with green fluorescent tails among the total sperm population (with
Hoechst 33342 fluorescent heads) was determined by randomly
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scoring 200 spermatozoa. Samples were examined using a Leica
DMR microscope equipped with a mercury lamp and appropriate
filters, at a magnification of 400×.

Microscopic imaging

Oocyte cleavage, possible second polar body formation, and DNA
configuration were examined using an inverted Nikon A1R confocal
microscope (Nikon Instruments, Paris, France), mounted on a Nikon
Ti body, and with a 60×/1.4 Plan Apo oil immersion lens. Hoechst
was excited using a 405 nm diode laser, and a 488 nm Argon laser
was used for simultaneous DIC imaging. Images were acquired using
Nikon Elements Software and a pinhole setting of 1 Airy unit (AU)
and constant acquisition settings (laser power, gain and offset, and
scan speed). Digital optical sections were collected across an axial
range that spanned the oocyte, at a step size of 1 μm.

Sperm stained for tail-associated protein tyrosine phosphoryla-
tion and a DNA counter stain were detected by means of fluores-
cence microscopy (400×) using a Leica DMR microscope equipped
with excitation filters of 360–590 nm and a 100 W mercury lamp.
Alexa Fluor 488-conjugated goat anti-mouse antibody and Hoechst
33342 were excited using 495 nm and 343 nm lasers, respectively.
Emission spectra of the dyes were then filtered at 519 nm and
483 nm. These emission spectra were detected by blue (LP 425 nm)
and green (LP 515 nm) filters corresponding to the emission peaks of
the dyes. Images were acquired using the Image Database program
(Leica, Van Hopplynus N.V., Brussel, Belgium).

Statistical analysis

All experiments were performed at least three times, and sperm
cells for a given comparison were derived from independent ejacu-
lates from each of the three Warmblood stallions. Before analysis,
normality of the variables was checked using the Shapiro-Wilk
and Kolmogorov-Smirnov tests (P < 0.05). The effect of different
capacitating conditions, i.e., procaine-preincubation, extracellular
Ca2+ removal, Na+ influx inhibition, and weak base activity, on
sperm motility parameters, cytoplasmic pH, cell organelle pH, cAMP,
and tail-associated protein tyrosine phosphorylation was assessed
by analysis of variance (ANOVA). Overall differences were identi-
fied using repeated measures ANOVA with Greenhouse-Geisser and
Bonferroni correction, as implemented in the general linear model.
Scheffé post-hoc tests were performed for pairwise comparisons.
Differences were considered significant if P < 0.05.

The effect of different conditions on embryo development and
DNA configuration was analyzed by binary logistic regression for
binomially distributed data. Where differences existed, further com-
parisons between groups were performed by chi-square analysis (χ2

fit tests). All experiments were repeated three times. Differences were
considered significant if P < 0.05. All analyses were performed using
SPSS version 20 for Windows (SPSS IBM, Brussels, Belgium).

Results

Procaine-induced hyperactivated motility is lost when

procaine is washed out

After 30 min, sperm in CM supplemented with procaine demon-
strated significantly higher ALH and VCL (ALH: 7.4 ± 0.1 μm and
VCL: 173 ± 3 μm/s) than sperm incubated in standard CM (ALH:
3.7 ± 0.3 μm and VCL: 69 ± 1 μm/s) (P < 0.01). However, 30 min
after removing procaine by washing, the ALH and VCL values of
stallion sperm previously exposed to procaine had returned to pre-

exposure levels (ALH: 3.4 ± 0.3 μm and VCL: 72 ± 2 μm/s). Similar
observations were made at 2, 4, and 6 h which leads us to conclude
that stallion spermatozoa only display hyperactivated motility when
directly exposed to procaine (Figure 1). After 2 h incubation, ALH
and VCL values decreased in all conditions (Figure 1). These data
suggest that the removal of procaine before introducing the sperm to
the fertilization medium to avoid the detrimental effects of procaine
on equine oocytes during gamete co-incubation did not support
hyperactivated sperm motility.

Procaine-induced hyperactivated motility is

independent of extracellular Ca2+

At 0.5 h, there were no significant differences in ALH and VCL
between Ca2+-depleted (ALH: 7.5 ± 0.3 μm and VCL: 167 ± 6 μm/s)
and Ca2+-containing (ALH: 7.5 ± 0.4 μm and VCL: 167 ± 8 μm/s)
procaine-supplemented CM, at pH = 7.4 (Figure 2). Similar obser-
vations were made at 2, 4, and 6 h incubation time points indicating
that procaine-induced hyperactivated motility is independent of an
extracellular Ca2+ source (Figure 2). After 2 h incubation, ALH and
VCL values decreased in both Ca2+-depleted and Ca2+-containing,
procaine-supplemented CM (Figure 2). A similar trend was observed
when sperm suspensions were incubated under identical conditions
at pH 7.9 (Figure 2). Video clips of stallion spermatozoa showing
hyperactivated motility in 2.5 mM procaine CM and Ca2+-depleted
2.5 mM procaine CM + 2 mM EGTA, respectively, are attached as
Supplementary Files 1 and 2. These data suggest that hyperactivated
motility in stallion sperm is independent of extracellular Ca2+ influx
through pH-gated CATSPER channels.

Procaine-induced hyperactivated motility is not

blocked by inhibiting Na+ influx

Percentages of motile spermatozoa did not differ significantly
between four tested media (CM, CM + 2.5 mM procaine, CM
lacking NaCl or all sources of Na+) after 5, 15, and 30 min and 1,
2, 4, or 6 h of incubation. After 2 h of incubation, percentages of
motile spermatozoa decreased in all conditions tested (Figure 3A).

Significantly lower percentages of progressively motile spermato-
zoa were observed after 5 min incubation in procaine-supplemented
CM (18 ± 4%; P < 0.01) compared to standard CM (83 ± 11%;
P < 0.01), CM without NaCl (68 ± 5%; P < 0.01), and CM without
Na+ (69 ± 12%; P < 0.01) (Figure 3B); there were no significant
differences between the other three media. Similar observations
were made at all other incubation time points (Figure 3B). After
2 h incubation, percentages of progressively motile spermatozoa
decreased in CM without NaCl and CM without Na+ (Figure 3B).

ALH and VCL values indicative of hyperactivated motility
showed the opposite trend. At 5 min incubation, significantly higher
ALH and VCL values were observed in CM with 2.5 mM procaine
(ALH: 6.9 ± 0.2 μm; VCL: 170 ± 7 μm/s) than in standard CM
(ALH: 3.5 ± 0.1 μm; VCL: 71 ± 4 μm/s; P < 0.01; as previously
shown [8, 10, 11]), CM without NaCl (ALH: 4.1 ± 0.2 μm; VCL:
89 ± 9 μm/s; P < 0.01), or CM without Na+ (ALH: 3.9 ± 0.4 μm;
VCL: 90 ± 2 μm/s; P < 0.01) (Figure 3C and D). No significant
differences in ALH and VCL values were observed between the latter
three media. A similar pattern was observed at all other incubation
time points. After 2 h incubation, ALH and VCL values decreased in
CM plus 2.5 mM procaine (Figure 3C and D). These data indicate
that procaine-induction of hyperactivated motility is not mediated
by inhibition of Na+ influx.

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolreprod/ioz131#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolreprod/ioz131#supplementary-data
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Figure 1. Motility patterns indicative of hyperactivated motility were assessed by CASA in stallion sperm suspensions incubated for 0.5, 2, 4, and 6 h in CM (black

bars), CM + 2.5 mM procaine (grey bars), and CM after sperm being washed following pre-incubation in CM +2.5 mM procaine (white bars) (pH = 7.4) (n = 3

samples in each group; three replicates). Parameters of interest included (A) ALH and (B) VCL. Hyperactivated motility in sperm suspensions was triggered by

direct exposure to 2.5 mM procaine, whereas washing to remove the procaine resulted in a complete loss of hyperactivated motility. For both ALH and VCL,

values that differ significantly (P < 0.05) are indicated by different small letters.

Procaine-induced hyperactivated motility is associated

with weak base activity

Percentage of motile spermatozoa (total motility) did not differ sig-
nificantly between four tested media (CM, CM + 2.5 mM procaine,
CM + 25 mM NH4Cl, and CM at pH 7.9) up to 6 h. After 2 h
incubation, the proportion of motile sperm had decreased in all four
tested conditions (Figure 4A).

At 5 min, the percentage of progressively motile spermatozoa
differed significantly between the four media tested (Figure 4B). The
lowest percentage of progressively motile sperm was observed in
the presence of procaine (18 ± 4%) whereas the highest was seen
in standard CM (83 ± 11%). In comparison to procaine expo-
sure, slightly but significantly higher percentages of progressively
motile spermatozoa were observed for sperm suspensions incubated
with NH4Cl (31 ± 2%) while CM at pH 7.9 (43 ± 4%) yielded
intermediate percentages of progressive motility (Figure 4B). Similar

observations were made at all incubation time points up to 2 h.
By 4 h incubation, no difference in percentage of progressively
motile spermatozoa was evident between CM (55 ± 7%) and
NH4Cl-containing media (48 ± 4%) although a lower incidence of
progressive motility was still evident in procaine-supplemented CM
(18 ± 4%). CM at pH 7.9 (34 ± 2%) still showed intermediate
percentages of progressively motile spermatozoa. Similar measure-
ments were obtained at 6 h (Figure 4B). Parameters indicating
hyperactivated motility showed the opposite trend. After 5 min
incubation, peak ALH and VCL values were observed in procaine-
supplemented medium (ALH: 7.1 ± 0.4 μm; VCL: 173 ± 11 μm/s)
and lowest values were observed in CM (ALH: 3.6 ± 0.1 μm; VCL:
72 ± 5 μm/s). Slightly but significantly lower different ALH and VCL
values than in the presence of procaine were observed for NH4Cl-
supplemented CM (ALH: 6.2 ± 0.3 μm; VCL: 160 ± 22 μm/s),
and intermediate values were observed in CM at pH 7.9 (ALH:
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Figure 2. Motility patterns indicative of hyperactivated motility were assessed by CASA in stallion sperm incubated for 0.5, 2, 4, and 6 h in CM (black bars),

CM + 2 mM EGTA (grey bars), CM + 2.5 mM procaine (white bars), and CM + 2.5 mM procaine +2 mM EGTA (striped bars) at pH = 7.4 and pH = 7.9 (n = 3

samples in each group; three replicates). Parameters of interest were (A) ALH and (B) VCL. Hyperactivated motility of spermatozoa induced by 2.5 mM procaine

is independent of extracellular Ca2+ and pH. For both ALH and VCL, values that differ (P < 0.05) are indicated by different small letters.

4.6 ± 0.4 μm; VCL: 73 ± 11 μm/s) (Figure 4C and D). A simi-
lar pattern was observed through the first 2 h of incubation. At
4 h incubation, significantly higher ALH and VCL values were
observed in the presence of procaine (ALH: 5.9 ± 0.7 μm; VCL:
144 ± 3 μm/s) than in the three other incubation conditions (CM:
ALH: 3.3 ± 0.2 μm, VCL: 75 ± 3 μm/s; NH4Cl supplemented
CM: ALH: 3.3 ± 0.4 μm, VCL: 75 ± 7 μm/s; CM at pH 7.9:
ALH: 3.5 ± 0.1 μm, VCL: 69 ± 5 μm/s) which did not differ from
each other. Similar findings were apparent at 6 h (Figure 4C and D).
A video clip of stallion spermatozoa demonstrating hyperactivated
motility in 25 mM NH4Cl-supplemented CM is attached as Supple-
mentary File 3.

Given the known effect of NH4Cl on cytoplasmic pH [38] and
hyperactivated motility [11, 38], these data suggest that procaine-
induced hyperactivated motility is associated with the weak base
property of procaine, which presumably elevates the cytoplasmic pH
of stallion spermatozoa.

Procaine and NH4Cl both trigger oocyte cleavage

After 2.5 days of culture, we observed a degenerative effect of
2.5 mM procaine, 25 mM NH4Cl, and pH 7.9 on partially cumulus-

denuded oocytes (PD). In capacitating conditions, 14 ± 3% PD
degenerated; in 2.5 mM procaine capacitating conditions, 27 ± 3%
PD degenerated; in NaCl-free conditions, 17 ± 2% PD degenerated;
in Na+ free-conditions, 16 ± 2% PD degenerated; in NH4Cl sup-
plemented conditions, 35 ± 2% PD degenerated; and in pH 7.9
conditions, 52 ± 11% PD degenerated. Oocytes exposed to CM
at pH 7.9 showed the highest incidence of degeneration, whereas
significantly lower incidences were observed in the presence of
procaine or NH4Cl. This suggests that the intra- and extracellular
pH changes induced by procaine, NH4Cl, and pH 7.9 are toxic to
equine oocytes (Figure 5).

In agreement with a previous study [10], in the presence of
2.5 mM procaine, 42 ± 3% of oocytes appeared to cleave; similarly,
in the presence of NH4Cl, 25 ± 2% of oocytes underwent apparent
cleavage. No oocyte cleavage was observed in the medium from
which either NaCl or all sources of Na+ were omitted or at pH 7.9.
However, none of the oocytes that cleaved in the presence of procaine
or NH4Cl developed beyond the 8–16 cell stage and none reached
the blastocyst stage. Beyond 5–6 days of incubation, any 8–16 cell
stage embryos derived from either treatment began to degenerate
(Figures 5 and 6). Moreover, none of these parameters differed

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolreprod/ioz131#supplementary-data
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Figure 3. Evaluation of different motility parameters ((A) percentage of total motile or TM; (B) percentage of progressively motile or PM; (C) ALH; and (D) VCL)

during 6 h incubation of stallion spermatozoa in (1) CM, (2) CM + 2.5 mM procaine, (3) CM lacking NaCl, and (4) CM lacking Na+ (pH = 7.4) (n = 4 samples in

each group; three replicates). Hyperactivated motility in sperm suspensions was triggered by direct exposure to 2.5 mM procaine, whereas the medium with

reduced or no Na+ did not have this effect. For percentage of progressively motile, ALH and VCL, values that differ (P < 0.05) are indicated by different small

letters.
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Figure 4. Evaluation of different motility parameters ((A) percentage of total motile or TM; (B) percentage of progressively motile or PM; (C) ALH; and (D) VCL)

during 6 h incubation of stallion spermatozoa in (1) CM, (2) CM + 2.5 mM procaine, (3) CM + 25 mM NH4Cl, and (4) CM pH 7.9 (n = 3 samples in each group;

three replicates). Hyperactivated motility in sperm suspensions was triggered by exposure to 5 mM procaine and 25 mM NH4Cl and to a lesser extent by CM

at pH 7.9. For percentage of progressively motile, ALH and VCL, values that differ (P < 0.05) are indicated by different small letters. Repeated measure ANOVA

with Greenhouse-Heisser and Bonferroni correction Scheffé post hoc tests were performed for pairwise comparison.



pH dependent effects of procaine on equine gametes, 2019, Vol. 101, No. 5 1065

Figure 5. Percentage of PD that either degenerated or cleaved after

2.5 days in culture following incubation with or without spermatozoa in CM,

CM + 2.5 mM procaine, CM—NaCl, CM—Na+, CM + 25 mM NH4Cl, and

CM at pH 7.9. CM at pH 7.9 had a severe degenerative effect on oocytes. In

the presence of 2.5 mM procaine and 25 mM NH4Cl, oocytes cleaved up

to the 8-cell stage. Data represent mean (±SD) percentages of oocytes after

incubation in CM (black bars), CM + 2.5 mM procaine (dark grey bars), CM—
NaCl (light grey bars), CM—Na+ (white bars), CM + 25 mM NH4Cl (hatched

bars), and CM pH 7.9 (dotted bars); n = 20 oocytes in each group, three

replicates. Values that differ significantly (P < 0.05) are indicated by different

small letters for degenerated oocytes or capitals for cleavage.

significantly between oocytes incubated in the presence or absence
of spermatozoa, indicating that procaine and NH4Cl-induced oocyte
cytokinesis was sperm-independent (P > 0.12 for all comparisons;
Figure 5).

In short, exposure to procaine or NH4Cl induced sperm-
independent cleavage of horse oocytes, whereas inhibition of Na+

influx or exposure to a high pH medium did not.

Procaine and NH4Cl-induced cleavage are

accompanied by DNA fragmentation

After 24 h incubation, the majority of the oocytes in CM
(83 ± 4%), CM without NaCl (71 ± 4%), and CM without
Na+ (78 ± 4%) displayed a normal metaphase spindle, sug-
gesting that inhibiting Na+ influx into equine oocytes does
not affect DNA configuration. By contrast, the majority of
oocytes exposed to procaine (75 ± 1%) or NH4Cl (53 ± 4%)
displayed DNA fragmentation (Figure 6). Similarly, equine oocytes
incubated in pH 7.9 CM (89 ± 5%) also exhibited severe DNA
degeneration (Figure 7).

The formation of normal-looking (pro) nuclei (1/2 pronucleus
(PN)) was a rare finding in any of the conditions tested (less than
6 ± 5%; Figure 7). Moreover, completion of the second meiotic
division, as evidenced by the formation of a second polar body,
was not seen in any of the oocytes, suggesting that resumption of
metaphase plate of meiotic division II (MII) was not initiated by any
of the tested conditions.

After procaine or NH4Cl exposure, very few of the daughter cells
in apparently cleaved oocytes contained DNA at all, while others

displayed condensed, fragmented pieces of DNA (Figure 7). Effects
on oocyte nuclear DNA was independent of the presence or absence
of spermatozoa in fertilizing medium (P > 0.09 for all comparisons;
Figures 6 and 7).

In short, exposure to procaine or NH4Cl induced DNA frag-
mentation in equine oocytes which underwent cytokinesis, whereas
inhibition of Na+ influx did not (Figure 7).

Procaine elevates cytoplasmic pH in a

concentration-dependent way primarily by alkalinizing

acidic sperm cell organelles

The BCECF-AM ratio at 0 min in stallion sperm suspensions incu-
bated in NCM was assigned as the baseline (3.10 ± 0.14). After
10 min incubation, no significant increase in BCECF-AM ratio was
observed for sperm cells in NCM (2.95 ± 0.07), CM (3.10 ± 0.42),
CM without NaCl (3.00 ± 0.28), or CM without Na+ (3.05 ± 0.07)
(Figure 8A). In contrast, procaine induced a rapid, concentration-
dependent increase in the BCECF-AM ratio during the first 10 min of
incubation (after 10 min in 2.5 mM procaine: 3.75 ± 0.07; in 5 mM
procaine: 4.55 ± 0.07; in 10 mM procaine: 5.60 ± 0.14; in 25 mM
procaine: 11.55 ± 0.07; and in 50 mM procaine: 17.50 ± 0.00) that
was sustained for the entire 60 min incubation (Figure 8A). A slight
but significant increase in BCECF-AM ratio during the first 10 min
was also observed for sperm cells suspended in CM plus 25 mM
NH4Cl (3.85 ± 0.07) and CM at pH 7.9 (4.10 ± 0.14) and was
also maintained for the rest of the incubation (Figure 8A). Overall,
it appears that weak bases, such as procaine and NH4Cl, elevate
the cytoplasmic pH in stallion sperm in a concentration-dependent
fashion.

Next, baseline Lysosensor Green DND-189 fluorescence was
recorded in NCM conditions at 0 min and set as 100. After 10 min
incubation, no significant decrease in Lysosensor Green DND-
189 fluorescence was observed in sperm cells suspended in NCM
(99.72 ± 0.09) or CM (98.95 ± 0.12) (Figure 8B). In contrast,
NH4Cl and procaine induced a rapid, concentration-dependent
decrease in Lysosensor Green DND-189 signal intensity during the
first 10 min of incubation (25 mM NH4Cl: 79.55 ± 0.27; 2.5 mM
procaine: 72.55 ± 0.27; and 10 mM procaine: 36.65 ± 0.44) that
was sustained for the entire 60 min incubation (Figure 8B). A slight
but significant decrease in Lysosensor Green DND-189 signal during
the first 10 min was also observed for sperm cells suspended in CM
at pH 7.9 (89.12 ± 0.32); this was also maintained for the rest of the
incubation (Figure 8B). Overall, weak bases such as procaine and
NH4Cl increase the pH of acidic cell organelles in stallion sperm
in a concentration-dependent fashion whereas high medium pH is
much less potent in raising pH of this compartment.

Hyperactivated motility can be reliably induced

by 2.5–10 mM procaine

High total motility percentages were observed for sperm cells incu-
bated in 0, 2.5, 5, or 10 mM procaine-containing CM (0 mM:
85 ± 6%; 2.5 mM: 81 ± 6%; 5 mM: 77 ± 4%; 10 mM: 80 ± 2%).
Higher procaine concentrations reduced percentages of (total) sperm
motility (25: 50 ± 5%; 50 mM: 15 ± 5%) suggesting a pro-
caine concentration-dependent toxic effect on stallion spermatozoa
(Figure 9A).

Stallion sperm incubated in CM without procaine showed high
percentages of progressive motility (68 ± 7%). Supplementation
with procaine markedly reduced percentage of progressively motile
sperm at all concentrations tested (2.5 mM: 16 ± 2%; 5 mM:
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Figure 6. Combined lightmicroscopic and DNA-fluorescence confocal micrographs of embryo developmental stages (DNA configuration in red) (A and D: 2–4

cell; B and E: 8-cell; C and F: 16-cell) after oocytes were incubated for 18 h in CM + 2.5 mM procaine and CM + 25 mM NH4Cl, and subsequently cultured in a

DMEM/F12 plus 10% FBS based medium. Oocytes that cleaved in conditions containing 2.5 mM procaine and 25 mM NH4Cl never developed further than the

8–16 cell stage. (original magnification, 400×: Bar = 20 μm).

13 ± 1%; 10 mM: 14 ± 1%; 25 mM: 7 ± 2%; 50 mM: 3 ± 1%)
(Figure 9B).

Maximum ALH and VCL values, indicating hyperactivated
motility, were measured when sperm were incubated in 2.5, 5, and
10 mM procaine-supplemented CM (2.5 mM: ALH = 7.3 ± 0.3 μm
and VCL = 171 ± 4 μm/s; 5 mM: ALH = 7.2 ± 0.3 μm and
VCL = 169 ± 4 μm/s; 10 mM: ALH = 7.1 ± 0.2 μm and
VCL = 169 ± 1 μm/s). Much lower ALH and VCL values were
observed for sperm cells incubated in CM without procaine (0 mM:
ALH = 4.0 ± 0.2 μm and VCL = 102 ± 8 μm/s) or with higher
procaine concentrations (25 mM: ALH = 3.2 ± 0.3 μm and
VCL = 120 ± 10 μm/s; 50 mM: ALH = 1.0 ± 0.3 μm and
VCL = 31 ± 9 μm/s) (Figure 9C and D).

Overall, hyperactivated motility was reliably induced by procaine
within the 2.5–10 mM concentration range, whereas higher procaine
concentrations were toxic.

Procaine raises cytoplasmic cAMP levels

in a concentration-dependent fashion

At 15 min incubation, no significant differences in cAMP levels
were measured between sperm suspensions incubated in NCM
(0.14 ± 0.09 pM), CM (0.18 ± 0.04 pM), CM without NaCl
(0.11 ± 0.03 pM), CM without Na+ (0.13 ± 0.10 pM),
CM with 25 mM NH4Cl (0.31 ± 0.03 pM), CM at pH 7.9
(0.27 ± 0.05 pM), and CM with either 2.5, 5, 25, or 50 mM
procaine (2.5 mM: 0.14 ± 0.03 pM; 5 mM: 0.41 ± 0.05
pM; 25 mM: 0.50 ± 0.11 pM; 50 mM: 0.52 ± 0.20 pM)
(Figure 10B). Significantly higher cAMP concentrations were
observed in 10 mM procaine-containing CM (0.77 ± 0.14
pM), while maximum cAMP concentrations were measured for
control sperm suspensions incubated in CM plus 1 mM caffeine
(1.82 ± 0.22 pM) (Figure 10B). A trend was apparent for a procaine

concentration-dependent effect on cAMP concentrations in stallion
spermatozoa.

Interestingly, at 15 min incubation, boar sperm demonstrated
significantly higher cAMP levels in CM (1.58 ± 0.37 pM) and
CM plus 1 mM caffeine (3.95 ± 0.67 pM) than the respective
stallion sperm suspensions (CM: 0.18 ± 0.04 pM; CM plus 1 mM
caffeine: 1.82 ± 0.22 pM), whereas no significant difference was
observed in cAMP levels between boar (0.40 ± 0.19 pM) and stallion
(0.14 ± 0.09 pM) sperm suspensions in NCM. Interestingly, cAMP
concentrations in boar spermatozoa incubated in CM (1.82 ± 0.22
pM) were similar to those in stallion spermatozoa incubated in CM
plus 1 mM caffeine (1.58 ± 0.37 pM) (Figure 10C). For all medium
conditions, no significant difference in cAMP concentrations was
observed between sperm suspensions incubated for 15 min and 1 h
(Figure 10B and 10C). These data indicate that cytoplasmic cAMP in
boar sperm incubated in CM is upregulated to a much higher degree
than in stallion sperm.

Procaine induces sperm tail-associated protein

tyrosine phosphorylation in a

concentration-dependent mode

Minimal tail-associated protein tyrosine phosphorylation was
observed in NCM (4 ± 2%), CM without NaCl (6 ± 2%), CM
without Na+ (5 ± 1%), NH4Cl-supplemented CM (5 ± 2%), and
CM with 25 or 50 mM procaine (25 mM: 6 ± 1%; 50 mM:
4 ± 1%). In agreement with other reports [9, 23], maximal
percentages of spermatozoa with tail-associated protein tyrosine
phosphorylation were observed at pH 7.9 (71 ± 3%). Slightly
lower but not different percentages of sperm with protein tyrosine
phosphorylation were observed in CM containing 10 mM procaine
(53 ± 8%) or caffeine (51 ± 10%). Intermediate tail-associated
protein tyrosine phosphorylation incidences were noted after
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Figure 7. Percentages of PD that showed (1) degeneration, (2) meiosis I stage (MI) or meiosis II stage (MII), (3) 1 PN or 2PN, and (4) 1 DNA fragment (1F) or

2 DNA fragments (2F) after 18 h incubation in CM, CM + 2.5 mM procaine, CM—NaCl, CM—Na+, CM + 25 mM NH4Cl, and CM pH 7.9. In general, oocytes

exposed to procaine or NH4Cl rarely formed pronuclei, but instead exhibited condensed DNA fragments. Moreover, high medium pH exerted a degenerative

effect on equine oocytes. Data represent mean (±SD) percentages of oocytes after incubation in CM, CM + 2.5 mM procaine, CM lacking NaCl, CM lacking Na+,

CM + 25 mM NH4Cl, and CM at pH 7.9; n = 10 oocytes in each group, three replicates. Values that differ significantly (P < 0.05) within degenerated oocytes are

indicated by small letters. Values that differ significantly between meiosis I and II oocytes are indicated by capital letters (P < 0.05). Values that differ significantly

between oocytes containing DNA fragments are indicated by Greek letters (P < 0.05).

incubation of stallion spermatozoa in both CM (18 ± 4%)
and CM plus 2.5 mM procaine (28 ± 4%) (Figure 11). In this
experiment, a clear effect of increased medium pH and caffeine
on tail-associated protein tyrosine phosphorylation was confirmed,
whereas inhibiting Na+ influx did not promote this capacitation hall
mark. In addition, a procaine concentration-dependent effect on tail-
associated protein tyrosine phosphorylation was observed at up to
10 mM procaine.

Stallion sperm preincubated in 10 mM procaine

capacitating medium do not fertilize equine oocytes in

vitro

Oocytes co-incubated in CM with stallion spermatozoa washed after
preincubation for 30 min and 4 h in CM, CM + 2.5 mM procaine,
and CM + 10 mM procaine did not show oocyte cleavage or
cytokinesis at any time point. After sperm had been preincubated
for 30 min in CM: 23 ± 6% PD degenerated and 77 ± 5% of
parthenogenic division (PD) showed a metaphase plates of meiotic
division 1I or II (Mi/MII), in CM + 2.5 mM procaine: 19 ± 8% PD
degenerated and 81 ± 5% PD were in MI/MII; and in CM + 10 mM
procaine: 27 ± 9% PD degenerated and 73 ± 4% PD were in
MI/MII. After 24 h gamete co-incubation, none of the oocytes in
any of the groups demonstrated the formation of 2 PN (0 ± 0%)
or the presence of a second polar body (0 ± 0%) as evidence of

completion of the second meiotic division. Moreover, no differences
were observed in any tested group between 0.5 and 4 h sperm
preincubation with procaine. These data show that the capacitation-
related sperm characteristics induced by 10 mM procaine are not
sufficient to support IVF in the horse.

Discussion

The principal aim of this study was to better understand how
procaine induces hyperactivated motility in stallion spermatozoa and
whether procaine also triggers other capacitation-related character-
istics. Procaine induction of hyperactivated motility of stallion sper-
matozoa was associated with its weak base activity, which elevated
cytoplasmic and cell organelle pH. For procaine, a concentration-
dependent effect on hypermotility, cytoplasmic and organelle pH,
cAMP levels, and tail-associated protein tyrosine phosphorylation
was demonstrated. However, whereas hyperactivated motility was
induced by 2.5–10 mM procaine, only 10 mM procaine was able to
stimulate a significant increase in cAMP content and tail-associated

tyrosine phosphorylation. Unfortunately, sperm preincubation in
10 mM procaine CM did not support IVF. Surprisingly, cAMP con-
centrations were more than 10× lower in stallion sperm than boar
sperm suspensions incubated under identical capacitating conditions,
which may indicate that current in vitro capacitation media still fail
to trigger a fertilization-competent subpopulation of stallion sperm.
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Figure 8. (A) Intracellular pH was assessed at 0, 10, 30, and 60 min in stallion sperm suspensions (30 × 106 sp/ml) exposed to NCM, CM, CM—NaCl, CM—
Na+, CM + 25 mM NH4Cl, and CM pH 7.9, CM + 2.5–5–10-25-50 mM procaine using the ratiometric dye BCECF-AM. Increasing procaine concentration was

associated with an increase in intracellular pH. Values are mean (±SD) BCECF-AM ratios of sperm in suspensions exposed to different capacitating conditions

(three replicates using three different stallions). Within each time point, values that differ significantly (P < 0.05) are indicated by different small letters. (B)

Acidic sperm cell organelle pH was assessed at 0, 10, 30, and 60 min in stallion sperm suspensions (30 × 106 sp/ml) exposed to NCM, CM, CM + 25 mM NH4Cl,

CM pH 7.9; and CM + 2.5 and 10 mM procaine using Lysosensor Green DND-189 dye. Increasing procaine concentration was associated with a decrease in

pH of acidic sperm cell organelles. Values are mean (±SD) relative fluorescence of Lysosensor Green DND-189 of sperm in suspensions exposed to different

capacitating conditions (three replicates using three different stallions). Within each time point, values that differ significantly (P < 0.05) are indicated by different

small letters.

We discovered that procaine is only able to elicit hyperactivated

sperm motility when it is in direct contact with the sperm. The
effect vanished immediately after procaine was washed out of the
incubation medium. As discussed by Szatkowski [39], cells can have

an open or a closed intracellular buffer system. In a closed buffer
system, the total intracellular buffer concentration ([BH+] + [B])

is constant, whereas in an open system, only the concentration of
the uncharged species ([B]) is constant within the cell. Procaine
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Figure 9. Evaluation of different motility parameters ((A) percentage of total motile or TM; (B) percentage ofprogressively motile or PM; (C) ALH; and (D) VCL)

at 30 min incubation of stallion sperm suspended in (1) CM, (2) CM + 2.5 mM procaine, (3) CM + 5 mM procaine, (4) CM + 10 mM procaine, (5) CM + 25 mM

procaine, and (6) CM + 50 mM procaine. Hyperactivated motility in sperm suspensions could be reliably induced over a 2.5–10 mM procaine concentration

range. A sperm toxic effect of procaine was observed at 25 and 50 mM procaine. For percentage of total motile, percentage of progressively motile, ALH, and

VCL, values that differ (P < 0.05) are indicated by different small letters.
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Figure 10. A standard curve was generated for the detection of cAMP levels in stallion sperm samples with a good linearity of detection in the range of 0.08—
20 pmol/ml. (B) Mean intracellular cAMP levels in stallion spermatozoa incubated in NCM, CM, CM—NaCl, CM—Na+, CM + 25 mM NH4Cl, CM at pH 7.9,

CM + 1 mM caffeine, CM + 2.5–5–10–25–50 mM procaine, for 15 min (black bars) and 1 h (white bars). A procaine concentration-dependent effect on cAMP

levels was observed. The highest cAMP level was measured in stallion spermatozoa exposed to caffeine. (C) Boar sperm suspensions incubated in NCM, CM,

and CM + 1 mM caffeine. In general, cAMP levels were much higher in boar than stallion sperm after incubation in CM and CM + 1 mM caffeine at 15 min and

1 h. Data represent mean (±SD) cAMP concentration of a suspension of 5 × 106 spermatozoa/ml over three replicates using three different stallions. Within

time-point 15 min, values that differ significantly (P < 0.05) are indicated by different small letters. Within time-point 1 h, values that differ (P < 0.05) are indicated

by different capitals.



pH dependent effects of procaine on equine gametes, 2019, Vol. 101, No. 5 1071

Figure 11. Percentage of sperm with tail-associated protein tyrosine phosphorylation after incubation for 4 h in NCM, CM, CM—NaCl, CM—Na+, CM + 25 mM

NH4Cl, CM at pH 7.9, CM + 1 mM caffeine, and CM + 2.5–5–10–25–50 mM procaine. Stallion sperm tail-associated protein tyrosine phosphorylation was induced

by 10 mM procaine CM, medium pH 7.9, and caffeine CM. Values that differ significantly (P < 0.05) are indicated by different small letters.

hydrochloride can only freely pass through cell membranes in its
uncharged form [39, 40], which suggests that procaine in a sperm
cell acts as an open buffered system. If so, immediately after removal
from the procaine-containing CM, the concentration of uncharged
procaine hydrochloride is higher in the sperm cells than in the
medium. This facilitates a shift in uncharged procaine hydrochlo-
ride to the medium. A drop in intracellular procaine concentration
occurs, followed by a drop in cytoplasmic pH. This indicates that a
washing step to remove procaine and avoid its toxic effects on the
oocyte will result in loss of the procaine-induced sperm hypermotility
during gamete co-incubation.

We showed that procaine, a voltage-gated Na+ channel blocker,
did not induce hyperactivated motility by inhibiting Na+ influx into
the sperm cytosol. In contrast, incubation of hamster sperm cells in
low Na+ media did induce hyperactivated motility [21], and it has
been suggested that extracellular Na+ suppresses hyperactivation
by lowering cytoplasmic Ca2+ in the flagellum via the action of a
Na+/Ca2+ exchanger. In this respect, Na+-dependent Ca2+ extrusion
has also been demonstrated in mouse spermatozoa [41]. In addi-
tion, large amounts of ATP are necessary to facilitate Na+ efflux
from the sperm cytosol during stallion sperm incubation [42]. We
initially hypothesized that procaine would block ATP-driven Na+

channels/pumps in order to (1) preserve ATP for the support of
hyperactivated motility or (2) block Na+/Ca2+ exchangers. However,
omitting Na+ from the medium did not influence stallion sperm
motility parameters, suggesting that the Na+ effects on hyperac-
tivated motility of hamster spermatozoa do not occur in stallion
sperm.

The action of procaine on hyperactivated motility in stallion
spermatozoa was independent of extracellular Ca2+ at pH 7.4
and 7.9. Loux et al. [11] similarly observed that procaine-induced
hyperactivated motility in stallion spermatozoa was independent
of Ca2+ at pH 7.25. These observations contrast with the general
concept that onset and maintenance of hyperactivated motility are
associated with increased Ca2+ levels in the sperm tail cytosol [13,

43]. Cytoplasmic Ca2+ has been reported to derive from extracellular
Ca2+ influx through pH-gated CatSper channels augmented by
release from intracellular Ca2+ stores [44–46]. In bull spermato-
zoa, procaine-induced hyperactivated motility requires extracellular
Ca2+ [47]. Based on our results, we postulate that weak bases,
e.g., procaine and NH4Cl, directly facilitate Ca2+ release from
intracellular stores into the cytoplasm. In support of this hypoth-
esis, procaine was not able to induce hyperactivated motility in
demembranated stallion sperm, demonstrating that procaine does
not act on the axoneme but instead on membrane or cytoplasmic
components [48].

Moreover, we observed a procaine concentration-dependent
increase in cytoplasmic pH in both stallion spermatozoa and equine
oocytes [10]. Interestingly, 2.5 mM procaine, 25 mM NH4Cl, and
alkaline conditions (pH 7.9) all induced a similar rise in cytoplasmic
pH in stallion sperm (Figure 8). Loux et al. [11] also found that
incubation of stallion spermatozoa in 5 mM procaine supplemented
CM was associated with an increase in cytoplasmic pH. Similarly, in
a previous study, we observed a procaine concentration-dependent
rise in cytoplasmic pH in equine oocytes [10], while Begg et al. [49]
reported that exposing sea urchin eggs to either procaine or NH4Cl
resulted in a rapid but reversible increase in cytoplasmic pH. It
follows that cytoplasmic pH may trigger both sperm hyperactivated
motility and oocyte cytokinesis. Clearly, procaine is a more potent
inducer of hyperactivated motility in stallion spermatozoa than
NH4Cl. This may be because procaine induces a larger cytoplasmic
and/or cell organelle pH shift than NH4Cl [39]. Procaine has a much
higher lipid solubility than NH4Cl, and this may enhance the ability
of uncharged procaine to cross the relevant cell membranes to very
stably buffer the cytoplasmic pH [50], whereas NH4Cl probably
makes use of hydrophilic channels to cross the membrane, which
may have consequences for cytoplasmic and/or acidic cell organelle
pH stability. In comparison to procaine and NH4Cl exposure, raising
the extracellular pH to 7.9 only had a weak effect on hyperactivated
motility.
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Interestingly, we showed that procaine- and NH4Cl-induced
cytoplasmic pH rises are associated with a concentration-dependent
increase in the pH of sperm cell organelles whereas CM at pH 7.9
was less potent in altering sperm organelle pH. Intracellular
organelles are known to be able to accumulate weak bases because
of their very low internal pH [51–53]. This raises the possibility
of a local action of weak bases on intracellular Ca2+ stores in
stallion spermatozoa. A similar mechanism has been demonstrated
in various somatic cell types: yeast cells, S2 cells (Drosophila), type II
pneumocytes (rat), HeLa cells (human), MCDK cells (dog), and RAW
264.7 cells (mouse) [26, 27]. Recently, these findings were confirmed
in murine and human sperm. Chávez et al. [28] demonstrated that
the acrosome is a Ca2+-containing acidic cell organelle and that
acrosomal alkalization by various weak bases triggers Ca2+release
and the acrosome reaction. We would like to stress that the necessity
of a rise in cytoplasmic Ca2+ during the induction of hyperactivated
motility in procaine-exposed stallion spermatozoa has never been
demonstrated, and may therefore not be relevant. In this respect,
Loux et al. [48] showed that increasing Ca2+ levels did not induce
hyperactivated motility in demembranated stallion spermatozoa.
On the other hand, a Ca2+-mediated effect of procaine cannot be
excluded. NH4Cl-induced hypermotility in bull sperm triggered a
cytoplasmic pH rise followed by increased cytosolic Ca2+ levels [38].
Importantly, there is some discussion ongoing about the accuracy of
assessing cytoplasmic Ca2+ changes in response to procaine using
fluorescent Ca2+ probes, since dye quenching by procaine has been
reported [11].

Interestingly and very similar to the effects of procaine [10],
NH4Cl induced cytokinesis of equine oocytes followed by further
aberrant cleavage divisions up to the 8–16 cell stage, independent
of the presence of sperm. During cytoplasmic cleavage, condensed
DNA fragments formed and segregated across some of the daughter
cells. These effects resembled those of 2.5 mM procaine, albeit that
the percentage of oocytes undergoing cytokinesis and DNA fragmen-
tation were lower for NH4Cl exposure. Initially, the similarity to the
effects of procaine leads us to believe that the NH4Cl effect on equine
oocytes is, like that of procaine, not elicited by a rise in cytosolic
Ca2+ [10]. Similar observations have been reported in sea urchin eggs
[54, 55], in which procaine failed to trigger either extracellular Ca2+

influx [54] or release from intracellular Ca2+ stores [55]. Further-
more, in pig [16, 17] and cattle [18, 19], the oocyte-activation-related
intracellular Ca2+ rise could be inhibited by injecting procaine. Even
low concentrations (≤200 μM) of procaine were able to block the
ryanodine receptors regulating the Ca2+ channels in the cytoplas-
mic Ca2+ stores. However, as mentioned above, procaine quenches
fluorescent Ca2+ probes [11], which makes it hard to elucidate the
relationship between procaine and cytosolic Ca2+ levels. In contrast
to procaine and NH4Cl conditions, raising the extracellular pH
to 7.9 severely compromised oocyte viability without triggering
cytokinesis. Moreover, the replacement of NaCl or all Na+ ions
in CM did not affect equine oocyte viability, cleavage, or DNA
configuration, indicating that the effects of procaine and NH4Cl
are not primarily an effect of modifying Na+ transport across the
oolemma.

We observed that procaine-supplemented CM induced a dose-
dependent increase in stallion sperm cytoplasmic cAMP with a peak
at 10 mM procaine, whereas 25 mM NH4Cl did not. Moreover,
10 mM procaine induced tail-associated protein tyrosine phosphory-
lation whereas concentrations ≤ 5 mM [8, 10] or >10 mM procaine,
and 25 mM NH4Cl, did not. Overall, these findings suggest that the
weak base activity of 10 mM procaine results in a specific cytoplas-

mic pH rise that activates the sAC/cAMP/protein kinase A pathway
and the related tyrosine kinases. Incubation in 25 mM NH4Cl,
and all other tested procaine concentrations, caused a suboptimal
cytoplasmic pH which was not able to adequately activate sAC to
generate enough cAMP to support the protein kinase pathway. In
contrast, alkaline-CM (pH 7.9) induced a massive protein tyrosine
phosphorylation response in the sperm tail (as described previ-
ously [9, 10, 23]) without raising cytoplasmic cAMP concentrations.
Fernando-Gonzalez et al. [22, 23] reported that a raised pH induces a
switch from Ca-calmodulin phosphatase activity to Ca/calmodulin-
dependent protein kinase activity. Importantly, we observed that
cAMP levels in stallion sperm were significantly lower than in boar
sperm incubated in identical CM. These observations may explain in
part why stallion spermatozoa preincubated in 10 mM procaine CM
were not able to fertilize equine oocytes in vitro. Overall, it appears
that none of the tested capacitating conditions were sufficient to
induce full capacitation in stallion spermatozoa and/or that the
sAC/cAMP/protein kinase A pathway is less important in stallion
sperm capacitation than in other species, such as the pig.

Interestingly, the effect of procaine on equine oocytes and
spermatozoa is concentration-dependent. Hyperactivated motility
in stallion spermatozoa is induced over a wide concentration
range (2.5–10 mM procaine), although high percentages of cAMP-
dependent, tail-associated protein tyrosine phosphorylated sperma-
tozoa were only observed at a concentration of 10 mM procaine.
We therefore propose that procaine-induced hyperactivated motility
is induced by a broader cytoplasmic and/or cell organelle pH
range than is required to support the sAC/cAMP/protein kinase
A pathway. On the other hand, maximal cleavage rates in equine
oocytes were observed at a much lower procaine concentration
(2.5 mM), whereas >5 mM procaine resulted in degeneration of
equine oocytes. In addition, 2.5 mM procaine proved to be very
damaging to the oocyte’s DNA. It is likely that equine oocytes are
able to accumulate much more of the charged species of a weak base
than stallion spermatozoa because the cell volume, and therefore
the number of acidic organelles, is much lower in a spermatozoon
than an oocyte. It follows that exposing equine oocytes to a lower
procaine concentration will generate a similar cytoplasmic/cell
organelle pH as exposure of a stallion sperm to a higher
procaine concentration.

In conclusion, we have shown that procaine, besides being a
potent inducer of hyperactivated motility, is also a trigger of cAMP-
dependent tail-associated protein tyrosine phosphorylation in stal-
lion spermatozoa. However, the two capacitation events appear to
be induced independently of each other. Hyperactivated motility was
induced by a 2.5–10 mM procaine range, whereas cAMP-dependent
tail-associated protein tyrosine phosphorylation was only induced
at 10 mM. The concentration-dependent actions of procaine on
sperm hypermotility, cytoplasmic cAMP concentrations, and protein
tyrosine phosphorylation in the sperm tail appear, at least in part, to
be associated with its weak base activity which induces a cytoplasmic
and sperm cell organelle pH increase. Moreover, the weak base
activity of procaine causes unfertilized oocytes to cleave into up to
16 “cells” although apparent cell division is accompanied by severe
DNA fragmentation [10]. Overall, we conclude that precise regula-
tion of cytoplasmic and/or cell organelle pH in equine spermatozoa
and oocytes seems to be crucial for both sperm capacitation and
oocyte activation. Studying how cytoplasmic and cell organelle pH
triggers these signaling pathways under physiological conditions may
help us understand why they are not properly activated under IVF
conditions.
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