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Previous studies have demonstrated a complex
relationship between ensemble perception and outlier
detection. We presented two array of heterogeneously
oriented stimulus bars and different mean orientations
and/or a bar with an outlier orientation, asking
participants to discriminate the mean orientations or
detect the outlier. Perceptual learning was found in
every case, with improved performance accuracy and
speeded responses. Testing for improved accuracy
through cross-task transfer, we found considerable
transfer from training outlier detection to mean
discrimination performance, and none in the opposite
direction. Implicit learning in terms of increased
accuracy was not found in either direction when
participants performed one task, and the second task’s
stimulus features were present. Reaction time
improvement was found to transfer in all cases. This
study adds to the already broad knowledge concerning
perceptual learning and cross-task transfer of training
effects.

Introduction

Much has been said about perceptual learning of
performance of basic-level perceptual tasks. There
seems to be ubiquitous learning due to practice,
including for outlier detection (classically called
feature search or “pop out” by Treisman & Gelade,
1980; see Ahissar & Hochstein, 1993; Ahissar &
Hochstein, 1996; Ahissar & Hochstein, 1997; Ahissar &
Hochstein, 2000; Ahissar & Hochstein, 2004; Ahissar,
Laiwand, & Hochstein, 2001; Zhaoping, 2009), motion
detection (Ball & Sekuler, 1982; Ball & Sekuler, 1987;
Dick, Ullman, & Sagi, 1987; Lu, Qian, & Liu, 2004;
Thompson & Liu, 2006), texture discrimination (Braun
& Sagi, 1991; Husk, Bennett, & Sekuler, 2007; Karni &
Sagi, 1991; Karni & Sagi, 1993; Ofen, Moran, & Sagi,
2007; Rubenstein & Sagi, 1990), face identification
(Husk, Bennett, & Sekuler, 2007), and other perceptual
processes (see articles in this special issue).

At the same time, there is considerable debate as to
learning specificity versus transfer of learning effects
to new conditions of the same task, including limited
transfer between locations (Ahissar & Hochstein, 1993;
Karni & Sagi, 1991), across hemispheres (Pavlovskaya
& Hochstein, 2011), between eyes (Ball & Sekuler,
1987; Karni & Sagi, 1991; Karni & Sagi, 1993), between
spatial frequencies (Fiorentini & Berardi, 1981),
between orientations (Fiorentini & Berardi, 1981), and
across tasks (Ahissar & Hochstein, 1993; Treisman,
Vieira, & Hayes, 1992). For reviews, see Goldstone,
1998; Holtmaat and Svoboda, 2009; Lu, Yu, Sagi,
Watanabe, and Levi, 2009; Sagi, 2011; Sale, Berardi,
and Maffei, 2009; Sasaki, Nanez, and Watanabe, 2010;
and chapters in Fahle and Poggio, 2002, and in this
special issue.

The question of specificity versus transfer has
become especially poignant due to two issues: reverse
hierarchy theory suggested that the cerebral site of
initial conscious perception (Hochstein & Ahissar,
2002) and of initial perceptual learning (Ahissar &
Hochstein, 1997; Ahissar & Hochstein, 2004; see also
Ahissar et al., 2008, Treisman, 2009) are both at high
cortical levels, and these guide further recruitment of
later, lower level involvement, including the so-called
“eureka” effect. This theory thus upends discussion
of what is early and what is late. Second, there is
recent debate concerning perceptual learning without
attention to the task (Sasaki Nanez & Watanabe, 2010;
Seitz & Watanabe, 2003; Tsushima, Seitz, & Watanabe,
2008; Watanabe, Nanez, & Sasaki, 2001).

Another perceptual phenomenon has received
considerable interest since the beginning of this century,
namely, ensemble perception. It turns out that observers
are very good at discerning summary statistics of sets
of stimulus elements, including average parameters of
a group of elements, and the range (or variance) of
these parameters. Such summary statistics are rapidly
extracted from sets of similar items, presented spatially
(Alvarez & Oliva, 2009; Ariely, 2001) or temporally
(Corbett & Oriet, 2011; Gorea, Belkoura, & Solomon,
2014; Hubert-Wallander & Boynton, 2015).
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Ensemble perception has been studied for basic
parameters, including size (Allik, Toom, Raidvee,
Averin, & Kreegipuu, 2014; Ariely, 2001; Corbett
& Oriet, 2011; Morgan, Chubb, & Solomon, 2008;
Solomon, 2010), orientation (Alvarez & Oliva, 2009;
Hochstein, Pavlovskaya, Bonneh, & Soroker, 2018),
brightness (Bauer, 2009), spatial position (Alvarez
& Oliva, 2008), and speed and direction of motion
(Sweeny, Haroz, & Whitney, 2013). Summary statistics
perception appears to be a general mechanism operating
on various stimulus attributes, including these low-level
parameters as noted above, and complex characteristics,
such as facial expression or emotion and gender
(Haberman & Whitney, 2007; Haberman & Whitney,
2009; Neumann, Schweinberger, & Burton, 2013),
object lifelikeness (Yamanashi Leib, Kosovicheva, &
Whitney, 2016), biological motion of human crowds
(Sweeny, Haroz, & Whitney, 2013), numerical averaging
(Brezis, Bronfman, & Usher, 2015) and even category
membership (Khayat & Hochstein, 2019; Hochstein,
Khayat, Pavlovskaya, Bonneh, Soroker, & Fusi, 2019)
for recent reviews, see Bauer, 2015; Cohen et al., 2016;
Haberman & Whitney, 2012; Hochstein, Pavlovskaya,
Bonneh, & Soroker, 2015; Whitney & Yamanashi Leib,
2018; and an upcoming Attention, Perception, and
Psychophysics special issue).

It was found that that extraction of set summary
statistics is automatic, on-the-fly trial-by-trial, and
implicit when observers are performing another task, to
which they presumably turn their attention (Khayat &
Hochstein, 2018; Khayat & Hochstein, 2019). Examples
of the methods used in previous studies are shown in
Figure 1; see methodologic details in the figure caption.

We now ask if ensemble perception too is malleable
and subject to improvement by perceptual learning.
Because ensemble perception is so widespread, finding
perceptual learning here would expand the range of this
learning phenomenon. Furthermore, because ensemble
perception can be implicit, when attention is directed to
another task, training-based improvement here would
bear on the issue of perceptual learning without task
performance.

We use the methodology of Hochstein et al. (2018),
testing discrimination of the mean orientations of
two arrays of short black bars with heterogeneous
orientations (on a gray background), or detection
of a bar with an outlier orientation within one of
these arrays. In each trial, two arrays are presented,
sequentially, each containing 69 stimulus bars with a
range of orientations. In the mean discrimination task,
observers reported which array had the more clockwise
mean orientation, and in the outlier detection task they
reported which array had a bar with an orientation that
was beyond the range of orientations of that array.
Hochstein et al. (2018) found that observers were very
good at mean orientation discrimination when the
two arrays differed sufficiently in mean orientation,

irrespective of the variance of orientations within each
array (if the variance was not too great). Detection
of the outlier was easy when the outlier orientation
differed sufficiently from the edge of the range of array
orientations, again irrespective of the variance of the
orientations within the arrays.

We now ask if repeated performance of these tasks
leads to improved accuracy and/or reduced reaction
time (RT). Furthermore, using very similar stimuli for
the two tasks, will performance of one task lead to
improved performance of the other, perhaps owing
to acquaintance with the stimulus arrays or other
task paradigm details? Finally, we present array pairs
with both different mean orientations, and with one
containing an outlier, directing observers to perform
one task or the other (i.e., mean discrimination
or outlier detection), and ask if performance of
one task, with implicit presence of the other, will
affect subsequent performance of the nonperformed
task.

Methods

Participants

Experiments were performed by five in-house
volunteer observers, students, and coworkers at the
Lowenstein Rehabilitation Center (age 23–28 years;
2 men, 3 women). All were naive as to the goals of
the study and had normal or corrected-to-normal
vision. We also tested 24 observers on the Amazon
Mechanical Turks (MTurk) platform. We selected
MTurk observers who would participate in a series of
experiments and followed each one’s performance over
the series of sessions. Participants in all experiments
performed one session per day. We have less control
of the identities and characteristics of these observers
and their precise experimental conditions. Still, we
found similar results for these observers and for our
in-house laboratory-performed experiments, so that the
MTurk results confirm the latter results with a larger
group of observers and under a variety of experimental
paradigms. We believe that there is benefit in combining
in-house and MTurk participants. Following an initial
session, we rejected other MTurk participants when
there were indications that they were not performing
the task, when accuracy rates were at 50% chance level
even for easy conditions, and/or RTs were inappropriate
(<100 ms or >3 s).

The study was approved by the ethics (Helsinki)
committee at the Lowenstein Rehabilitation Center,
Raanana, Israel, and participants gave informed
consent to participate.



Journal of Vision (2020) 20(8):13, 1–17 Hochstein & Pavlovskaya 3

Figure 1. Previous study stimulus sets. (A) Ariely’s (2001) representation of the two intervals of his experimental trials. Observers were
exposed for 500 ms to a set of spatially dispersed circles differing in size, and then asked if a test stimulus size had been present in the
set, or is smaller/larger than the set mean. (B) Khayat & Hochstein’s (2018) RSVP sequences of 12 elements, 100 ms each, 100 ms
interstimulus interval, followed by a two-alternative membership test, that is, which test element was present in the sequence. Blocks
contained circles differing in size, lines differing in orientation, or discs differing in brightness. Observers were unaware that either
test element could equal the set mean or the nonmember could be outside the set range, contingencies that were found to affect
responses. (C) Haberman & Whitney’s (2009) task included four faces (from a set of 4, 8, 12 or 16), differing in facial emotional
expression, 2 second presentation. Observers indicated whether the test face was a set member or was happier or sadder than the
set mean. (D) Brezis, Bronfman & Usher’s (2015) trials consisted of 4, 8, or 16 two-digit numbers sequentially presented at
500 ms/stimulus. Participants estimated set average.

Experimental set-up

Stimuli were displayed on a 19-in. CRT monitor
controlled by dedicated OpenGL-based (Austin,
TX) software running on a Windows PC. Video
format was true color RGB, 100-Hz refresh rate, with
1024 x 768 pixel resolution. Luminance values
were gamma corrected, and mean luminance was
approximately 30 cd/m2. Sitting distance was 0.7 m,
and experiments were administered in near darkness.
MTurk programs were written using Adobe Flash
(Adobe, Inc., San Jose, CA). As mentioned, we have less
control of the precise MTurk participant experimental
conditions, including their computer monitors, room

lighting, and sitting distance. The similarity of the
results confirms their robustness.

Participants were asked to fixate a central circle, and
brief displays prevented scanning eye movements. One
reason for conducting the experiment in successive
mode was to allow observers to fixate the array center
during both array presentations.

Stimuli and procedure

After the observer initiated the trial by pressing the
central mouse key (down arrow for MTurk), a single
fixation circle appeared at the center of the monitor,
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Figure 2. Participants viewed two circular arrays of bars of heterogeneous orientations, presented sequentially in the center of the
computer monitor. Top, right, and left: mean orientation discrimination task; observers reported which set mean is tilted more
clockwise (in the example, the right one). Bottom, right and left: outlier detection task; observers reported which set contains an
outlier (the left one).

with a diameter of 1.1°. After a second keypress, the
fixation circle disappeared and the two test arrays
were presented in the center of the screen, successively
(150 ms each presentation; 300 ms interstimulus
interval), unmasked, as demonstrated schematically in
the left or right, top or bottom of Figure 2. Arrays
were 6o in diameter. Each array contained 69 dark
bars arranged in a 9 x 9 grid excluding three in each
corner. Bar positions were jittered by up to 0.2o to
avoid array homogeneity. Bar length x width was
0.7° x 0.05° and bar orientation was 60° or
70° mean ± a random fraction of the variation factor
(VAR), which served as the first variable of the study
(0° is horizontal; 90° is vertical). The use of two
randomly interleaved mean bar orientations assured
that observers were unable to depend on a learned
anchor orientation for their judgments (Ahissar, Lubin,

Putter-Katz, & Banai, 2006). Note that VAR is exactly
the set half-range.

The VAR was set to be 4°, 8° 16° or 32°. For VAR
= 32°, there are 65 orientations (with 1° steps) in the
range (60° – VAR) to (60° + VAR), that is, 28° to 92°
or (70° – VAR) to (70°+ VAR), 38° to 102°, and these
were placed randomly in 65 of the 69 bar positions. For
lower values of VAR, we used randomly placed multiple
repetitions of these values. The final four positions had
randomly chosen orientations, chosen as two pairs,
equally greater and less than 60° (or 70°), in order not
to change the mean. This random placement was done
independently for the two arrays of the display. We only
used VAR = 32° for initial testing and do not report
these results here. As found by Hochstein et al. (2018),
performance depends little on VAR; we therefore
average performance data over VAR.
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In the orientation discrimination test experiment,
all the orientations of one of the arrays (and therefore
their mean) were rotated by a variable amount,
ORDA (ORientation Difference, Arrays), the second
experimental variable. Experimental sessions included
trials with ORDA set to be ±2o, ±4o, ±6o, ±8o, or
±12o, in random interleaved order. Observers were
instructed to respond by clicking the left or right mouse
button when perceiving the first or second array as
having a more clockwise rotation, respectively.

In the outlier detection test experiment, the two
arrays had the same mean orientation (again, randomly
60o or 70o), but one of the arrays had an outlier bar,
which had an orientation that differed from the mean
of the arrays by the variable ORDO (ORientation
Difference, Outlier). The outlier could appear in any
location within the array, excluding the outer rim and
the central position or central 5 x 5 positions, choosing
12 locations to be tested in each session. Experimental
sessions included trials with ORDO set to be ±15o,
±20o, or ±30o, in random interleaved order (ORDO
= 15o with VAR = 16o is the only case in which the
“outlier” is within the range of the array orientations,
so not really an outlier). Observers clicked the left or
right mouse button when detecting the outlier in the
first or second array, respectively.

In-house observers participated in eight sessions (two
observers) or 10 sessions (three observers), four or five
for mean orientation discrimination and four or five
for outlier detection, performing both tasks in a single
sitting with a coffee break between them, or the two
tasks in successive days. Each session of orientation
discrimination included 450 or 600 trials, three VARs,
five ORDAs, 30 or 40 trials/data point/participant.
Sessions of outlier detection included 432 or 576
trials, three VARs, three ORDOs, 48 or 64 trials/data
point/participant, including 12 or 24 outlier positions.

The MTurk groups performed both tasks in a
single sitting, with each session including orientation
discrimination: 450 trials, three VARs, five ORDAs,
30 trials/data point/participant; outlier detection:
432 trials, three VARs, three ORDOs, 48 trials/data
point including 12 outlier positions.

Results

Experiment 1. Ensemble perception learning:
Mean discrimination and outlier detection

We tested ensemble perception of 21 observers
performing mean discrimination or outlier detection.
Thirteen observers (seven men, six women; five in-house
and eight MTurk) performed the two tasks every day
or two, and we measured performance improvement

over up to eight sessions (four for three in-house
observers). An additional four observers performed
only mean discrimination, and another four observers
performed only outlier detection (five sessions each;
three men; five women). These latter eight observers
then switched tasks, and we measure cross-task transfer
in the following section (Experiment 2). We do not
include post-switch performance in this results section.

Figure 3A displays the accuracy results (fraction
correct) of Experiment 1 for array mean discrimination,
as a function of session number. The different curves
reflect different levels of difficulty in terms of mean
orientation difference between the two arrays, ORDA,
from ±2o (hard, orange) to ±12o (easy, dark blue). The
data are best fit to logarithmic improvement curves.
Average performance over these levels is shown by the
black dashed line, in which accuracy = 0.72 + 0.05 x ln
(session number); R2 = 0.93. The improvement with
training from the first two sessions (0.75) to the last two
sessions (0.83) is highly significant (p < 0.0001). There
is an increase in accuracy with session at every difficulty
level, with improvement for the easiest level being the
smallest, and improvement for the hardest being the
latest.

The same data are plotted in Figure 3C as
performance accuracy versus ORDA for each session.
Increased performance with larger ORDA is seen in the
upward trend of each curve, and improvement from
session to session is seen in the upward/leftward shift
from curve to curve. For example, taking 75% correct as
a threshold, the ORDA at threshold level decreases with
session number, as shown in the figure inset. The best fit
logarithmic threshold decay has orientation difference,
ORDA = 6.5 – 1.6 x ln (session number); R2 = 0.96.

Figure 3B displays RT decrease with learning for
mean discrimination. RT is a function of task difficulty,
that is, mean-orientation difference, ORDA, between
the two arrays, seen by the different curves of Figure 3C.
In addition, RT decreases with session number for
every level of difficulty, as seen by the downward-going
curves. Average RT over these levels as a function of
session number is shown by the black dashed line, in
which RT (ms) = 873 – 230 x ln (session number);
R2 = 0.97. The decreased RT with training from the
first two sessions (790 ms) to the last two sessions
(392 ms) is highly significant (p < 0.001). Decrease in
RT together with increase in accuracy supports the
conclusion that training-based improvement is not a
speed-accuracy trade off.

Accuracy results (fraction correct) of Experiment 1
for outlier detection as a function of session number
is displayed in Figure 4A. The different curves reflect
different levels of difficulty in terms of orientation
difference between the outlier and the mean array
orientation (and hence the edge of the array orientation
range), ORDO, from ±15o (hard, green) to ±30o (easy,
red). The data are best fit to logarithmic improvement
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Figure 3. Perceptual learning in the mean discrimination task: Experiment 1; n = 17. (A) Performance accuracy as a function of session
number, for various mean orientation differences between the two sequentially presented arrays (ORDA), from small difference (±2o)
to large difference (±12o). Improved accuracy is seen at all levels of difficulty. Curves are best fit logarithmic functions. Dashed black
line is average over difficulty level (see text for best fit equation). (B) RT decrease as function of session number, reflecting perceptual
learning, at various difficulty levels (ORDA). (C) Performance accuracy as a function of task difficulty (ORDA) for each session, from
first (light blue) to last (gray). Curves are best fit sigmoidal functions. Inset: ORDA at 75% correct as function of session number.

curves. Average performance over these levels are
shown by the black dashed line, in which accuracy
= 0.69 + 0.038 x ln (session number); R2 = 0.95.
The improvement with training from the first two
sessions (0.71) to the last two sessions (0.78) is highly
significant (p < 0.001). There is an increase in accuracy
with session at every difficulty level, with greatest
improvement for the first to second session.

The same data are plotted in Figure 4C as
performance accuracy versus outlier orientation
difference, ORDO, for each session. Increased
performance with larger ORDO is seen in the upward
trend of each curve, and improvement from session to
session is seen in the leftward/upward shift from curve
to curve. Taking 75% correct as a threshold, the ORDO

at threshold level decreases with session number, as
shown in the figure inset. The best fit logarithmic
threshold decay has orientation difference from array
extreme orientation, ORDO-VAR = 14.3 – 2.1 x ln
(session number); R2 = 0.90. The decreased RT with
training from the first two sessions (805 ms) to the last
two sessions (560 ms) is highly significant (p < 0.001).

Figure 4B displays RT decrease with learning
for outlier detection. Here too, RT is a function of
task difficulty, that is, orientation difference between
outlier and its array, ORDA, seen by the different
curves of Figure 4C. In addition, RT decreases with
session number for each level of difficulty, as seen by
the downward-going curves. Average RT over these
levels as a function of session number is shown by the
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Figure 4. Perceptual learning in the outlier detection task: Experiment 1; n = 17. (A) Performance accuracy as a function of session
number for three orientation differences (ORDO) between that of the outlier and the array mean orientation from small difference
(±15o) to large difference (±30o). Improved accuracy is seen at all levels of difficulty. Curves are best fit logarithmic functions. Dashed
black line is average over difficulty level (see text for best fit equation). (B) RT decrease as function of session number, reflecting
perceptual learning, at various difficulty levels (ORDO). (C) Performance accuracy as a function of task difficulty measured here as
distance between outlier orientation and that of the nearest array orientation (array orientation range edge, i.e., ORDO-VAR) for each
session from first (light blue) to eighth (gray). Curves are best fit sigmoidal functions. Inset: (ORDO-VAR) at 75% correct as function of
session number.

black dashed line, in which RT (ms) = 855 – 160 x ln
(session number); R2 = 0.98. Decrease in RT together
with increase in accuracy supports the conclusion that
training-based improvement is not a speed-accuracy
trade off.

Experiment 2. Ensemble perception learning
transfer across tasks

One of the most essential issues in all learning is the
issue of transfer of learned skills or information to
new situations or circumstances (Druckman & Bjork,

1994). If we learn to drive in New York, will we be
proficient in Los Angeles? If we learn on a Toyota, will
we be capable with a Mazda? If we learn to drive with
our right eye closed, will we be able to drive with our
left eye closed? If we learn to stop quickly when there
is a red traffic light over the road, will we stop quickly
when the light is to one side? Or, to ask an educational
question, if law students learn to respect other students’
rights and to help those in need, will they respect and
help during their careers?

The same issue is essential in the study of perceptual
learning. If we learn to detect speedily a pop out target
in the left visual field, will this learning transfer to the
right visual field? If we learn to detect a right diagonal
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Figure 5. Perceptual learning transfer between tasks: Experiment 2. Participants (n = 4) performed 5 sessions of outlier detection (A,B
left half) and then 5 sessions of array mean orientation discrimination (C,D right half). Another set of participants (n = 4) performed
first the mean discrimination task (C,D left) and then the outlier detection task (A,B right). There is transfer of learning for the first set
of participants, from outlier detection practice to mean discrimination performance, as seen in the high mean discrimination
accuracy (C right) in these participants compared to the naïve mean discrimination participants (C left), as well as their low outlier
detection reaction time (D right) compared to that of naïve participants (D left). On the other hand, there is no transfer, and even
some interference so that outlier detection performance after mean discrimination practice (A right) is below the level of naïve
participants (A left); nevertheless, there is some shortening of reaction time (B right) compared to naïve level (B left).

line, will this transfer to left diagonals? If we train with
the right eye, will improvement transfer to performance
with the left eye? All these have been dealt with at length
in the perceptual learning literature and in other articles
in the current special issue (see Introduction).

A most interesting type of transfer is transfer
between tasks. Is acquaintance with an experimental
situation and an experimental stimulus sufficient for
improvement so that if we learn one task, improvement
will also be seen with a second task—performed in
the same environment and with the same stimuli?
This issue has been studied less but is at the core of
understanding perception and perceptual learning.
Ahissar and Hochstein (1993) studied this issue using
rectangular arrays of oriented bars, with participants
reporting either global array rectangle orientation
(wide or high), or local presence/absence of an outlier
element. Training led to considerable improvement in
the performed task, but nearly no improvement in the
task that was not performed (see also Treisman, Vieira,
& Hayes, 1992; Shiu & Pashler, 1992). There was a slight
asymmetry in that performing the global rectangle

orientation task led to a small improvement in local
outlier detection, which task was presumably performed
implicitly and automatically during performance of the
global task.

Eight MTurk observers participated in the
current Experiment 2; four performed five sessions
(every 2 days) of the mean discrimination task, followed
by five sessions (every 2 days) of the outlier detection
task, and four began by performing five sessions (every
2 days) of the outlier detection task followed by five
sessions (every 2 days) of the mean discrimination task.
Task protocols were like those of Experiment 1, except
that the current observers only performed one task each
day.

Results for these eight observers are shown in
Figure 5, in which we plot data for each outlier
orientation difference (ORDO: Figure 5A,B) or each
array orientation difference (ORDA: Figure 5C,D).
For the first five sessions, results are like those of the
averaged data (the dashed lines) of Figures 3A and 4A,
as they should be (the only difference is that in the
present case the same observers will be tested in the
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alternate task in their sessions 6–10; in fact, Figures 3
and 4 include these observers). Transfer across tasks is
seen in the performance following the first five sessions,
when the task is switched between participants: those
who performed mean discrimination now perform
outlier detection, and those who were trained on outlier
detection are now tested on mean discrimination.

The result is not symmetric. Rather, mean orientation
discrimination accuracy following outlier detection
training (Figure 5C, sessions 6–10: 0.77) looks like a
continuation of performance level towards the end
of mean discrimination training, rather than a repeat
of learning from scratch (sessions 1–5: 0.73; t-test:
p < 0.001). Similarly, there is speeding seen in the
reaction time for mean discrimination following outlier
detection learning (Figure 5D: sessions 6–10: average
603 ms), compared to naïve performance (sessions 1-5:
average 678 ms; p < 0.01). Thus, there is transfer from
practice with outlier detection to mean discrimination.
This may result from the need to perceive the mean and
range of the array in order to detect an outlier. Thus,
practice with outlier detection might include implicit
practice with determining array mean.

However, outlier detection accuracy following mean
discrimination practice (sessions 6–10: 0.71) seems
below outlier detection without any practice (sessions
1–5: 0.74)—rather than transfer enhancement, there is
an interference effect (p < 0.001). There is no transfer
from mean discrimination training to outlier detection
performance, perhaps because mean discrimination is
an entirely global task, and the presence of orientation
variability within each array reduces the automatic
pop out effect of the outlier orientation (compare
Ahissar & Hochstein, 1993). Looking for the array
means to discriminate between them emphasizes mean
without much attention to range, so observers do not
automatically learn outlier detection. Nevertheless,
there is some generalized improvement in RT in this
case too (sessions 1–5: 788 ms vs. sessions 6–10: 723 ms;
p < 0.05).

Ahissar and Hochstein (1993) found that there was
some learning of the orientation outlier detection, pop
out task when its presence was implicit, and observers
were performing the array global orientation task. The
current results might be different from those due to our
use of heterogeneous orientations within the arrays
compared with the homogeneous orientations in the
Ahissar and Hochstein (1993) presentations.

Experiment 3. Ensemble perception implicit
learning

Following suggestions that perceptual learning
may take place even without attention, that is, when
participants are performing a different task, we

tested for implicit performance improvement in our
experimental paradigm.

We trained eight MTurk participants on one task,
when the stimulus for the second task was present,
but irrelevant to performance of the assigned task.
Each observer participated in 17 sessions over 6 weeks,
each Monday, Wednesday, Friday, as follows. Four
observers (two men, two women) did five sessions
of array mean discrimination, judging which of two
successively presented arrays had a more clockwise
mean orientation, in which the base orientation was 60o
or 70o, and the difference in mean orientation between
the arrays was parameter ORDA, ±2o, ±4o, ±6o, ±8o,
or ±12o. One of the two arrays also had a bar with
an outlier orientation in one of 12 locations, with an
orientation difference, ORDO, from the mean of that
array of ±15o, ±20o, or ±30o. Despite the presence of
the uninformative outlier, observers were instructed
to respond only according to the mean orientation of
the arrays. Following completion of five sessions, we
asked these participants to switch to nine sessions of
the outlier detection task. Again, stimulus arrays had
different mean orientations and one had an outlier,
with the same stimulus parameters as in the first five
sessions. However, now the observers were asked to
perform the alternate task, that is, to detect the outlier,
and array mean orientation was irrelevant. Finally, the
participants were instructed to switch back to perform
mean orientation discrimination for another three
sessions.

Four other participants (three male, one female)
performed the complementary tasks. They began with
five sessions of the outlier detection task, whereas the
two arrays irrelevantly had different mean orientations.
Then they switched to nine sessions of the mean
orientation task, and presence of the outlier was
irrelevant. Finally, they performed three more sessions
of outlier detection.

It is important to note that the irrelevant task
could not help participants’ performance because it
was random, and thus irrelevant to the task. When
performance was of the mean discrimination task, the
outlier could appear in the more or the less clockwise
oriented array equally, and when performance was of
the outlier detection task, the more clockwise oriented
array could be that with or without the outlier. Outlier
orientation difference (ORDO) was measured from
the mean of the array in which it was present and was
either more clockwise or more counterclockwise than
the mean.

The results are demonstrated separately for
performance of the mean discrimination task (Figure 6
top, bottom) and for performance of the outlier
detection (Figure 7 top, bottom). Figures 6 and 7
top show performance accuracy, and Figures 6 and 7
bottom show performance RT. To enable comparison
of performance, in each graph we mix performance
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Figure 6. Implicit perceptual learning test: Experiment 3. Top:
array mean orientation task performance accuracy as a function
of session number for two groups of participants. In all cases,
the two arrays presented differed in mean array orientation and
one array had an outlier; participants were instructed which
task to perform. Participant group 1 (n = 4) performed the
mean discrimination task for five sessions (left data points),
followed by nine sessions of outlier detection (not shown), and
then five more sessions of mean discrimination (right data
points). Group 2 (n = 4) performed outlier detection (not
shown) followed by nine sessions of mean discrimination
(shown middle data points). Comparing performance for these
groups in their own first mean discrimination sessions (plotted
data 1–5 vs. 6–10) demonstrates consistent interference by
outlier practice to mean discrimination, that is, poorer
performance for group 2 who had implicit exposure to arrays of
different means. Similarly, group 1 exposure to outlier
detection in sessions 6 to 14, interfered with their continued
good performance after learning in sessions one to five.
Bottom: RT for same participant groups and sessions.
Interference effects are absent.

Figure 7. Implicit perceptual learning test: Experiment 3. Top,
outlier detection task performance accuracy as a function of
session number for two groups of participants. As in Figure 6,
the two arrays presented differed in mean array orientation and
one array had an outlier; participants were instructed which
task to perform. Participant group 1 performed the outlier
detection task for five sessions (left data points), followed by
nine sessions of mean discrimination (not shown), and then five
more sessions of outlier detection (right data points). Group 2
performed mean discrimination (not shown) followed by nine
sessions of outlier detection (middle data points). Comparing
performance for these groups in their own first outlier
detection sessions (plotted data 1–5 vs. 6–10) does not show
interference by mean discrimination practice to outlier
detection, that is, here performance for group 2 who had
implicit exposure to arrays of different means is like that of the
naive group. Group 1 exposure to outlier detection in sessions 6
to 14 interfered with their continued good performance after
learning in sessions 1 to 5. Bottom: RT for same groups and
sessions. Interference effects are absent.
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from the two groups of participants for the same
task.

Figure 6 top shows performance of mean
discrimination for the first five sessions and last
three sessions of the group who performed mean
discrimination first (and last), as well as the mean
discrimination performance by the other group who
performed this task in their sixth to 14th sessions.
Performance after switching task (sessions 6–10:
0.70) is poorer than initially (sessions 1–5: 0.77
for the other group; t-test: p < 0.0001). There is
significant interference for performing and learning
mean discrimination after considerable practice with
the same stimuli and performing the outlier detection
task. During performance of the first five sessions of
outlier detection, the differences in mean orientation
between the two arrays was irrelevant, and perception
of this difference seems to have been suppressed
actively (although subconsciously) by the participants.
This suppression led to reduced mean discrimination
performance in sessions six to 14, unlike the case in
Experiment 2, Figure 5, in which there was no implicit
presence of the secondary task elements. In addition,
when switching back and forth, the group who began
with mean discrimination had to do some more learning
after having performed outlier detection in the middle,
that is, performance was significantly lowered (sessions
15–17: 0.75 vs. sessions 3–5: 0.80; p < 0.001). Thus
the interference seems to be even for remembering the
learned mean discrimination skill when performing a
different task, outlier detection, in the middle.

Figure 6 bottom shows performance RT for mean
discrimination. Performance, and even learning, after
the switch is slower than initial learning, reflecting the
interference found earlier (t-test: mean discrimination
RT: sessions 1–5: 624 ms vs. sessions 6–10: 720 ms;
p < 0.001;) However, initial RT speeding due to initial
training is fully maintained after back and forth switch
(t-test: sessions 3–5: 548 ms vs. sessions 15–17: 543 ms;
p = 0.38 n.s.).

The differences in development and transfer
measured by accuracy versus by RT suggests that
there are different processes that determine these two
performance parameters. Perhaps RT improvement
is generalized across tasks, whereas accuracy requires
specific learning, and presence of a confusing parameter
leads to its being ignored or inhibited.

Figure 7 top shows performance of outlier detection
for the first five sessions (average accuracy 0.73) and
last three sessions of the group who performed outlier
detection first (and last), as well as the outlier detection
performance by the other group, who performed this
task in their sixth to 14th sessions. There is little to no
difference in performance when comparing performance
after switching (0.72) with initial performance (0.73). In
other words, there is little if any advantage of having
performed mean discrimination for five sessions, even

with presence of the outlier (session 1–5 vs. 6–10: t-test:
p = 0.31). This may be interpreted in two ways: either
there is little improvement and little interference from
mean discrimination to outlier detection, or there may
be both some learning and some interference and they
largely cancel each other out. Looking at performance
for the last three sessions, after switching back and forth
(0.71), there is carryover of performance improvement
from the original training (sessions 3–5; p = 0.12).
Performance of the mean discrimination task in the
middle does not interfere much with outlier detection
performance.

Figure 7 bottom shows performance RT for outlier
detection. Learning after the switch (sessions 6–10: 692
ms) is faster than initial learning (sessions 1–5: 727 ms:
p < 0.01), and initial learning is fully maintained after
back and forth switch (sessions 3–5: 709 ms vs. sessions
15–17: 657 ms; p < 0.05), although five sessions may
not have sufficed for full training. Again, the differences
in accuracy versus RT measures suggests that RT is
generalized, whereas accuracy is specific.

These results suggest that performance with an
implicit second task might be like performance without
the second task present at all. However, presence of
the second implicit task seems to prevent perceptual
learning transfer from task to task, suggesting it
is suppressed when present but not performed.
Furthermore, although second task presence leaves
learning of the original task undisrupted, its
performance is disturbed by switching tasks back and
forth.

Experiment 4. Ensemble perception implicit
learning parameter dependence

There is another aspect to consider when introducing
implicit presence of the second task stimulus.
When performing the mean discrimination task and
looking for the more clockwise-oriented array, a
clockwise turned outlier, when present on the more
clockwise-oriented array, might make that array appear
somewhat more clockwise on average (even though it
is only one bar in 69). In this case, its presence would
assist mean discrimination performance. However, if
the clockwise-turned outlier appeared on the more
counterclockwise array, it might make the task more
difficult. Similarly, when looking for an outlier, if
a counterclockwise-turned outlier appears on the
more clockwise array, it may pop out more (perhaps
because the array-to-array difference in most bars is
in one direction, and that of the outlier bar is in the
opposite direction). If, however, the outlier is turned
clockwise and appears on the more clockwise array,
(or counterclockwise on the counterclockwise array), it
may be more difficult to detect it because all bars are
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Figure 8. Impact of implicit presence of alternate task’s
features. The perceptual learning data of the first five sessions
of Figures 6 and 7 top are divided between cases in which the
clockwise-oriented mean and the outlier are on the same array
or different arrays. Top: n = 4. Mean discrimination
performance is improved when the outlier increases the
difference between the mean orientations of the two arrays
(dark and light blue), and is hindered when the outlier
decreases this difference (orange and green). Bottom: n = 4.
Outlier detection is improved when the outlier is nearer the
horizontal (orange and light blue) rather than the vertical (dark
blue and green), which is closer to the array mean.

on average more clockwise (or counterclockwise) than
those on the other array.

To test this hypothesis, we reanalyzed the results for
the first five sessions of Experiment 3. In Figure 8 top
we plot performance for the mean discrimination task
when there was an implicit outlier present, separating
four cases: (1) when the outlier appeared on the
array that was to be perceived and reported as more

clockwise, and the outlier was turned in the same
direction as the array, that is, clockwise (dark blue);
(2) when the outlier appeared on the array that was to
be perceived and reported as more clockwise, and the
outlier was turned in the opposite direction as the array,
that is, counterclockwise (orange); (3) when the outlier
appeared on the other array that was less clockwise
and thus not to be selected for report, and the outlier
was turned in the same direction as the array, that is,
counterclockwise (light blue); and (4) when the outlier
appeared on the other array that was less clockwise,
and thus not to be selected for report, and the outlier
was turned in the opposite direction as the array, that
is, clockwise (green).

Mean detection performance is best when the
outlier is turned clockwise, in the same direction as
the array (dark blue), and, after the first session, also
when the outlier is turned counterclockwise, in the
same direction as the (nonreported) array (light blue).
Performance is lower when the outlier is on the same
clockwise-turned array, but itself turned in the opposite,
that is, counterclockwise direction (orange), or is on
the not-to-be-reported counterclockwise-turned array
but itself is turned in the opposite direction, that is,
clockwise (green).

Perhaps, when looking for the mean, if one stimulus
bar (the outlier) is even more clockwise than the already
more clockwise array, it adds something to the overall
clockwise mean orientation of the array, so it is easier
to see that this array is more clockwise. However, if the
outlier stimulus bar is less clockwise in the generally
clockwise array, then it interferes with discriminating
this array as being more clockwise. Performance is
therefore lower. The same effects are seen when the
outlier is on the counterclockwise-turned array.

In Figure 8 bottom we plot performance for
outlier detection when there was an implicit mean
array orientation difference present, separating four
cases: (1) when the to-be-detected outlier was turned
clockwise and it appeared on the array that had a more
clockwise mean orientation (dark blue); (2) when the
to-be-detected outlier was turned counterclockwise and
it appeared on the array that had a more clockwise
mean orientation (orange); (3) when the to-be-detected
outlier was turned clockwise and it appeared on the
array that was less clockwise (light blue); and (4) when
the outlier was turned counterclockwise and appeared
on the array that was also less clockwise (green).

Unlike the results for mean discrimination (Figure 8
top), performance is best when the outlier is turned
counterclockwise, whether on the clockwise- or
counterclockwise-turned array (orange and light blue).
Performance is lowest when the outlier is turned in
the clockwise direction, whether on the clockwise-
or counterclockwise-turned array (dark blue and
green). This seems strange. We offer the following
possible explanation: recall that 0o is horizontal and
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90o is vertical, so that bars of orientation between 0o
and 45o are categorically more horizontal, and those
between 45o and 90o (and even 135o) more vertical.
We hypothesize that detecting an outlier is easier
when it is turned (15o, 20o, or 30o relative to mean
array orientation) in the negative, counterclockwise
direction rendering the outlier orientation closer to
horizontal rather than closer to vertical, whereas the
array bars are generally more vertical (mean 60o or
70o). This interpretation predicts that this effect should
be exaggerated for cases of base mean orientation 60o
(counterclockwise outlier 45o, 40o, or 30o) rather than
70o (55o, 50o, or 40o). This prediction was confirmed
(effect was 23% compared with 12%).

Summary and discussion

In a series of experiments, we found several significant
perceptual learning effects. In all experiments, observers
were presented with two arrays of stimulus bars
with a distribution of orientations. The two arrays
had different average orientations, and/or one
array contained a bar with an outlier orientation
(Figure 2). The task was to discriminate mean array
bar orientation, or to detect the outlier. We found
gradual and significant perceptual learning in all cases,
demonstrated by improved performance accuracy
and reduced RT, as well as a reduced orientation
difference required to reach 75% performance threshold
(Figures 3 and 4). This was true whether one task alone
was trained, or if the two tasks were performed in
interleaved fashion, with little, if any difference between
these cases. This result joins similar findings of task
performance improvement for many perceptual tasks
(see Introduction).

Testing for cross-task transfer of learning, we
switched the task requested of the observers following
training with one of the tasks over five sessions.
An asymmetry was found (Figure 5A,C). There is
considerable transfer from training outlier detection
to mean discrimination performance, and none in the
opposite direction. There is even interference from
mean discrimination training to outlier detection
performance after the switch. As suggested earlier
(Hochstein, Pavlovskaya, Bonneh, & Soroker, 2018),
detecting an outlier requires determining the edges or
range of the observed distribution, which is closely
related to the distribution mean. If you know the range
limits, you are one step ahead to determine the middle
of the range or its mean. Mean and range perceptions
may be intimately linked. However, looking for the
mean does not require perceiving outliers. Indeed, it
has been reported that observers disregard outliers in
computing the mean (Haberman & Whitney, 2010), so
outlier perception may be actively obstructed. It may

therefore be difficult to switch to the second task that
requires attending to just the element that, as found by
Haberman and Whitney (2010), has been inhibited for
five sessions.

Response speeding was found to transfer across tasks
in both directions (Figure 5B,D). This result suggests
that RT reduction might be a generalized phenomenon.
Speeding might be related to stimulation structure,
rather than being specific to the perceptual task being
performed.

The third experiment tested for implicit learning.
Will observers improve more for tasks whose stimulus
elements are present, even when they are not asked to
perform this task. In this experiment, all trials contained
both an array that had a more clockwise mean
orientation and an array that had an outlier, although
these effects could be on different arrays, presented
first or second. Again, the results are asymmetric.
Surprisingly, experience with mean discrimination
stimuli (while performing outlier detection) did not
improve post-switch mean discrimination performance,
and instead there was considerable performance
interference (Figure 6). Observers seemed to actively
(although implicitly) disregard or inhibit detection of
the second task’s features (mean orientation), so that
this irrelevant feature does not disturb performance
of the required task. Following five sessions inhibiting
these irrelevant features, it becomes difficult for
observers to switch and suddenly attend just to these
features. Support for this interpretation comes from the
difficulty found even for subsequent reverse switch, in
which the original task is performed again, following
nine sessions of the second task. All improvement
gained by training five original sessions is lost during
the nine intermediate sessions in which perception of
the original mean discrimination task features must be
suppressed.

However, outlier detection performance shows
neither improvement nor interference (or perhaps
both) from outlier presence during prior mean
orientation discrimination performance (Figure 7).
Still, the learning-based improvement due to original
outlier detection training is lost when there are many
intervening sessions of mean detection (with outlier
presence). Interestingly, this interference too is present
in performance accuracy but not in performance
speed. RT measures are not reverted to original levels,
suggesting that there are separate mechanisms for
performance accuracy and speed, the one being specific
and the other generalized.

A deeper look at the results of this third experiment,
in which elements of both tasks were always present, led
to further conclusions concerning implicit perception of
task-irrelevant features (Figure 8). Mean discrimination
was improved when the outlier orientation increased
the difference between the mean orientations of the
two arrays, and mean discrimination was disturbed



Journal of Vision (2020) 20(8):13, 1–17 Hochstein & Pavlovskaya 14

when the outlier orientation reduced the difference
between the means. In contrast, outlier detection was
improved when the outlier orientation differed from
the array in the negative orientation direction, perhaps
because this moved the bar from the more vertical to
the more horizontal quadrant. Thus only in the mean
discrimination task was the nonperformed task feature
perceived to some extent and improved or disturbed
performance when synergistic or antagonistic to the
task being performed.

We conclude that perception and perceptual learning
are intricate complex results of task and stimulation
procedures. Features that seem irrelevant may lead
to complex learning attributes, inducing improved
performance, and learning transfer, or on the contrary,
to interference of performance and/or learning transfer.

Several studies of ensemble perception have
suggested that there is a relationship between perceiving
ensemble statistics, mean and range or variance, and
detecting set outliers. It has been suggested that one
of the important advantages of ensemble perception
is its enabling detection of outliers. However, two
opposite relationships have been proposed. On the
one hand, detecting outliers is important because
these abnormal elements may be important. See,
for example, the studies by Anne Treisman and her
colleagues and the many studies in her wake, in which
the goal of the task presented to participants was
visual search for the outlier (Treisman & Gelade, 1980).
However, it has been noted that recognizing an outlier is
important to not take this unusual element into account
when finding the mean and range or variance of the
set.

Conclusions

We have suggested that there is a relationship
between ensemble and outlier perceptions because
they share underlying mechanisms. A population code
as suggested by Georgopoulos and colleagues (1986)
would derive both the mean and the range of the set,
without explicit representation of the identity of each
individual element. Nevertheless, mean and range are
two computations, and the visual system could easily
perform one and not the other and certainly form a
higher-level representation of one and not the other.
The current results suggest that these two computations
are not necessarily performed in tandem. Instead, when
the task at hand directs participant concentration to
mean perception, participants do not perform outlier
detection in parallel, and there is no perceptual learning
of this second task. However, performance of outlier
detection, involving computation of the range edge, may
include automatic computation of the set mean, leading
to cross-task transfer in this case. Nevertheless, when

the array means are different, and the task is to detect
an outlier in one of them, participants seem to actively
disregard the different means, and when subsequently
requested to perform mean discrimination, it is difficult
for participants to start paying attention to this feature
that was previously suppressed. When performing mean
discrimination, however, and an outlier is present,
because it is important to not include the outlier in the
mean computation, it is therefore important to detect
said outlier. Thus, having practiced outlier detection
in order to exclude outliers from mean computation,
subsequent performance of outlier detection is not
inhibited and may even be a bit better than without
prior implicit experience.

Keywords: ensemble perception, outlier detection,
perceptual learning, pop out
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