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Background: Diffuse intrinsic pontine glioma (DIPG) is a rare and fatal pediatric brain cancer without cure. Seek-
ing therapeutic strategies is still a major challenge in DIPG research. Previous study has shown that dysregulation
of G1/S cell cycle checkpoint was common in DIPG and this dysregulation is even more enriched in the
H3.3K27 M mutant subgroup. Here we assess potential anti-tumor efficacy of palbociclib, a specific and cytostatic
inhibitor of CDK4/6, on high grade H3.3-K27 M-mutant DIPGs in vitro and in vivo.

Methods: We established patient-derived cell lines from treatment-naive specimens. All the lines have

K ds: ‘ ) es 4 the
Dfi’l})lév ores H3.3K27 M mutation. We used a range of biological in vitro assays to assess the effect of palbociclib on growth
Cell cycle of DIPGs. Palbociclib activity was also assayed in vivo against three independent DIPG orthotropic xenografts
Palbociclib model.

Findings: Dysregulation of G1/S cell cycle checkpoint is enriched in these DIPGs. Then, we showed that depletion

of CDK4 or CDK®6 inhibits DIPG cells growth and blocks G1/S transition. Furthermore, palbociclib effectively re-

pressed DIPG growth in vitro. Transcriptome analysis showed that palbociclib not only blocks G1/S transition,

it also blocks other oncogenic targets such as MYC. Finally, palbociclib activity was assayed in vivo against DIPG

orthotropic xenografts to demonstrate the high efficiency of blocking tumor growth.

Interpretation: Our findings thus revealed that palbociclib could be the therapeutic strategy for treatment-naive

DIPG with H3.3K27 M mutation.
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H3.3-K27 M mutation

1. Introduction

Diffuse intrinsic pontine glioma (DIPG) is a rare and deadly pediatric
brain cancer with short survival of 9-12 months [1]. Various radiation
therapies, while relieving the neurological symptoms, do little to im-
prove overall survival [2]. Serveral small molecule chemicals targeting
the oncogenic H3K27 M mutation have been reported to inhibit the
growth of DIPG in vitro and in vivo [3-6]. Plus, CDK7 inhibition, combi-
nation inhibition of PI3K/AKT and MEK/ERK pathways, dual targeting
of NOTCH and MYCN, and blocking BMP pathway, all showed antitumor
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efficacy for DIPG [7-10]. Furthermore, immunotherapy is also a promis-
ing option for treatment [11]. However, currently there are no clinical
reports of effective treatment to improve survival. Therefore, finding
new therapeutic strategies is still a major challenge in DIPG research.

One of the molecular signatures of DIPG is recurrent histone muta-
tion H3K27M, which is believed to be one of the drivers of the tumori-
genesis [12]. DIPG with the H3.3K27 M mutation are associated with
the poorest outcome [13]. The integrated analysis of over 1000 cases
of pediatric high-grade glioma and DIPG has shown that dysregulation
of G1/S cell cycle checkpoint was common in DIPG and this dysregula-
tion is even more enriched in the H3.3K27 M mutant subgroup [14]. An-
other study showed that H3.3K27 M mediated epigenetic silencing of
P16™*4A an inhibitor of CDK4/6, plays important roles in the pathogen-
esis of DIPG. Meanwhile, the therapy targeting on EZH2 was shown to
be effective due to the induction of P16™¥#4 [5,15]. Therefore, G1/S cell
cycle checkpoint could be a potential therapeutic target for DIPG.

2352-3964/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

The integrated analysis of over 1000 cases of pediatric high-grade
glioma and DIPG has shown that dysregulation of G1/S cell cycle
checkpoint was common in DIPG and this dysregulation is even
more enriched in the H3.3K27 M mutant subgroup. Study showed
that H3.3K27 M mediated epigenetic silencing of P76"“#4 the in-
hibitor of CDK4/6, and the therapy targeting on EZH2 was shown
to be effective due to the induction of P16. Therefore, G1/S cell
cycle checkpoint could be the potential therapeutic target for
DIPG. Palbociclib (PD0332991, Pfizer), a specific, cytostatic in-
hibitor of cyclin-dependent kinase CDK4/6 had been approved
by the United States (US) Food and Drug Administration (FDA)
for treating breast cancer. Previous study showed that palbociclib
prolongs survival in a PDGF-B driven, Ink4a-ARF, p53 deficient ge-
netically engineered mouse model of DIPG. Combination use of
CDK4/6 and mTOR inhibitors induce synergistic growth arrest of
DIPG cells in vitro.

Added value of this study

In this report, we established patient-derived primary DIPG cell
lines from treatment-naive patients' stereotactic biopsy or open
biopsy samples, which provide better materials to be investigated
to reveal the cause of the disease and explore the potential thera-
peutic strategies for DIPG. We used these cell lines to demonstrate
the anti-tumor efficacy of palbociclib both in vitro and in vivo. To
our knowledge, this is the first time to show palbociclib has anti-
tumor efficacy /in vivo with DIPG orthotropic xenograft model.
The transcriptome analysis showed that palbociclib not only
blocks G1/S transition, it also blocks other oncogenic targets
such as MYC. Furthermore, we showed that combination of
CDK4/6 and EGFR inhibitiors in a EGFR highly expressed DIPG
cell line synergistically arrested cancer cell growth both in vitro
and in vivo.

Implications of all the available evidence

In conclusion, we have confirmed G1/S cell cycle checkpoint
could be the potential therapeutic target for DIPG with H3.3-K27
M-mutation and have demonstrated that palbociclib could provide
a therapeutic benefit to high grade treatment-naive H3.3-K27 M-
mutant DIPGs.

Palbociclib (PD0332991) is a specific and cytostatic inhibitor of
CDK4/6 at low nanomolar concentration, which binds the ATP-binding
pocket of CDK4/6 blocking the phosphorylation of RB and subsequently
promotes cell cycle arrest at G1 phase [16]. It has been approved by the
US Food and Drug Administration (FDA) to treat patients with hormone
receptor (HR)-positive, human epidermal growth factor receptor 2
(HER2) negative advanced or metastatic breast cancer combined with
other drugs [16,17]. Previous study in GBM (glioblastoma multiform)
orthotopic xenograft mouse model demonstrated that palbociclib
could penetrate blood brain barrier (BBB) and has antitumor activity
[18-20]. Another study also showed that palbociclib prolongs survival
in a PDGF-B driven, Ink4a-ARF, p53 deficient genetically engineered
mouse model of DIPG [21]. Combination use of CDK4/6 and mTOR in-
hibitors induce synergistic growth arrest of DIPG cells in vitro [22].

In this report, we established eight patient-derived DIPG cell lines
with H3.3K27 M mutation from treatment-naive specimens and used
these cell lines to test the anti-tumor efficacy of palbociclib both
in vitro and in vivo. First, we demonstrated that there is high expression

of CDK4/6 in a cohort of pre-treatment DIPG tumors and panel of eight
patient derived DIPG cell lines compared to normal fetal pons progeni-
tor cells (PPCs). Plus, most of the DIPG cell lines have lower expression
of P16™ A compared to PPCs. Then, we showed that depletion of CDK4
or CDKG6 inhibits DIPG cells growth and blocks G1/S transition. Further-
more, palbociclib effectively repressed all eight cell lines self-renewal,
proliferation and cell cycle progression from G1 to S phase in vitro
with much lower concentration compared to previous report. The tran-
scriptome analysis showed that palbociclib not only blocks G1/S transi-
tion, it also blocks other oncogenic targets such as MYC. Finally, its
activity was assayed in vivo with three DIPG orthotropic xenograft
models. Our findings revealed that palbociclib effectively suppresses
the growth of RB-proficient DIPG cells in vitro and in vivo.

2. Materials and methods
2.1. Ethics statement

For all human tissue studies, informed consent was obtained and In-
stitutional Review Board approval was granted by Tsinghua University,
Beijing, China and Beijing Tiantan Hospital, Capital Medical University,
Beijing, China (KY2014-021-02 and KY2018-042-02). Both protocols
were approved by the human research ethics committee of Tsinghua
University and Beijing Tiantan Hospital. The written informed consent
was obtained from the subjects or their guardians.

2.2. Primary DIPG cell lines establishment and propagation

The patient derived DIPG cell lines were established as previously
described [23]. The cell lines TT10630, TT10714, TT10728 and
TT11201 were renamed as TT150630, TT150714, TT150728 and
TT151201 to mark the year when they were established. All these pri-
mary DIPG cells we used are within 20 passages. DIPG17 (SU-DIPG17),
which was reported previously [11], was a kind gift from Dr. Yujie
Tang in Shanghai Jiao Tong University. DIPG cells were cultured in
matrigel (356,243, BD, 1%, 4-12 h at 37 °C) coated plates with serum-
free medium containing DMEM (C11995500BT, Invitrogen), B27
(1:50), N2 (1100), insulin (20 pg/ml), bFGF (20 ng/ml), EGF
(20 ng/ml), PDGF-AB (20 ng/ml) (PeproTech).

2.3. Establishment of primary pontine neural progenitor cell lines (PPCs)

The primary PPC cell lines were established as previously reported
[24]. In brief, aborted human embryos (9-12 weeks) of either sex
were obtained from Beijing Tiantan Hospital. The embryos were stored
on ice until sent to the lab within 24 h after abortion. The hindbrain of
the fetus was soaked in Hibernation buffer and the meninges was re-
moved. The tissue was dissociated mechanically into pieces and incu-
bated in DMEM supplemented with Papain (Worthington, 20 units/
ml) and DNase [ (Sigma, 5 Kunitz units/ml) at 37 °C for 30 min. Pipet
up and down every 10 min until a single-cell suspension was formed.
The supernatant was removed after centrifuging at 300g for 5 min.
Washed the pellet with DMEM twice and resuspended the pellet in
DMEM supplemented with N2 (Gibco, 1:100), B27 (Gibco, 1:50), EGF
(PeproTech, 20 ng/ml), bFGF (PeproTech, 20 ng/ml), and penicillin
streptomycin (Gibco, 1:100). The cells were then plated into dishes
coated with matrigel (BD). Medium was changed 24 h after plating,
and the cells were passaged using 0.05% trypsin every 3-5 days. Half
of the medium was changed every 2-3 days to maintain culture condi-
tion. All the cells we used are within 5 passages.

2.4. Sphere formation assay
Sphere formation assay was performed by seeding 1000 DIPG cells

per well in 96-well plates (Excellbio) treated with vehicle or 100 nM
palbociclib with triplicates for each condition. Cells were cultured for
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10 days. The images for each well were taken by Opera Phenix (Perkin
Elmer) with 5x objective lens in the brightfield. The images were ana-
lyzed by the software of HARMONY.

2.5. DIPG xenograft mouse models and administration of palbociclib

All animal experiments were done in accordance with the guidelines
provided by the Tsinghua University Animal Care and Use Committee.
Orthotopic xenograft mouse model were established using 4-week fe-
male NOD-Prkdc*““112rg™! /Bcgen mice (Biocytogen). Luciferase
engineered DIPG cells were resuspended in 5 pl PBS at the density of
20,000 cells/ul and implanted into the brainstem of immunodeficient
mouse as previously described [23]. Two weeks after the implantation,
the tumor burden was measured by bioluminescence imaging once a
week. In brief, mice were anesthetized with isoflurane before bulbus
oculi injection and imaging began 1 min after administration of D-
luciferin (Goldbio). Anesthesia was maintained during imaging by
nose cone delivery of isoflurane as necessary. Once the luminescence
signal was detected, the tumor bearing mice were assigned to
palbociclib or vehicle treated groups randomly, then treated with
palbociclib at 150 mg/kg/day or vehicle intragastrically for 21 days con-
tinuously. For the combination of palbociclib and Erlotinib treatment,
palbociclib were administered at 150 mg/kg/day for 14 days, followed
by 75 mg/kg palbociclib with 37.5 mg/kg erlotinib for 7 days. If the
body weight loss of the mouse reached 5% per day, the administration
of the drugs would be suspended for one day. For the survival study,
tumor-bearing mice were monitored daily until animals become mori-
bund, as evidenced by a 20% loss of body weight or other indicators,
for example, inability to ambulate, agonal breathing, and loss of con-
sciousness, and then euthanized. Bioluminescence imaging was per-
formed once a week. Bioluminescence imaging was taken by IVIS
Spectrum (PerkinElmer). Bioluminescence signal was measured using
the ROI tool in Living Image 4.4 software (PerkinElmer).

2.6. Plasmids and reagents

The shRNA-expressing Lentivirus system was described previously
[25]. To generate pLKO plasmids containing short hairpins against
CDK4 and CDK®, the pLKO vector was ligated with the annealed oligos.
The sequences of shRNA oligo pairs are shown in Supplementary
Table 2. Luciferase-GFP were cloned into pLEX based lentivirus vector,
which was used to establish DIPG cell lines with luciferase-GFP [26].

The antibodies used in this study were anti-H3K27 M (ABE219,
Millipore), anti-H3K27me3 (61,017, active motif), anti-H3K27Ac
(ab191, Abcam), anti-H3 (BE3015, Easybio), anti-CDK4 (AC251,
Beyotime), anti-CDK6 (AC256, Beyotime), anti-P-RB-S780 (ab173289,
Abcam), anti-Ki67-PE conjugate antibody (12-5698-80, eBioscience),
anti-CD133 (ab19898, abcam), anti-Nestin (Rat-401,DSHB), anti-GFAP
(Z033401-2, DAKO), anti-Olig2 (AB9610, Milipore) and anti-RB
(ab181616, Abcam). Secondary antibodies for western blot (Goat anti
mouse/rabbit) were from Jackson. Secondary antibodies for flow cytom-
etry (Goat anti mouse/rabbit) were from Huaxingbio. Enhanced chemi-
luminescence system (Tanon 5200) was used for detection. Palbociclib
(PD0332991) were purchased from MedChemExpress.

2.7. Western blot analyses and RT-qPCR analyses

The acid extraction of histone was performed as previously de-
scribed [27]. The cell lysates were prepared using RIPA lysis buffer
plus phosphatase inhibitor cocktail (Roche) and proteinase inhibitor
cocktail (Sigma). Western immunoblotting was done as previously de-
scribed [28]. The dilution conditions of primary antibodies used in this
study are phosphorylated-RB S780 (1:10000), RB (1:1000), GAPDH
(1:2000). H3K27me3 (1:1000), H3K27ac (1:1000), H3K27 M
(1:1000), H3 (110000).

Total RNA was extracted by using Total RNA Purification Kit
(GeneMark, Taiwan), followed by reverse transcription using a
Thermoscript RT-PCR kit (Invitrogen). qRT-PCR was performed on a
ViiA 7 Real-Time PCR system (Life Technologies). Primer sequences
were designed using primer3 software. Sequences of the synthesized
primers used for qRT-PCR assays are shown below. qRT-PCR conditions
were 40 cycles at 95 °C for 30s, 60 °C for 30s, 72 °C for 30s, and 72 °C for
10 min. RT-qPCR primers used in this research are listed below:

CDK4: Forward: 5'ATCTTTGACCTGATTGGGCT3;
Reverse: 5'CATCTCAGGTACCACCGAC3'.

CDK®6: Forward: 5’ACCTACTTCTGAAGTGTTTGAC3;
Reverse: 5'TCCTGGAAGTATGGGTGAG3'.

CCNA: Forward: 5'GCCATCAGTTATTGCTGGA3’;
Reverse: 5’°CGTATTAATGATTCAGGCCAG3'.
CDKN2A:Forward: 5 GAAGGTCCCTCAGACATCC3;
Reverse: 5 GTAGGACCTTCGGTGACTG 3'.

2.8. Cell viability assay

Cell viability was measured using CellTiter-Glo (G7572, Promega)
according to the manufacturer's protocol. DIPG cells were treated with
palbociclib at the concentration of 6.25 nM, 25 nM, 100 nM, 400 nM,
1600 nM, 6400 nM, and 25600 nM or 0.01% DMSO. Cell viabilities
were assessed before treatment (TO) and 72 h after treatment (T72).
Relative viability was calculated as T72-TO0, and the value for DMSO-
treated cells was set to be 100%. For each concentration, triplicate
wells were used. IC50 values were calculated using Prism 6 (Graphpad).
Combination Index(CI) were calculated by the software of CompuSyn
(ComboSyn, Inc). The CI < 1, =1, and > 1 indicates synergism, additive
effect and antagonism, respectively [29].

2.9. Cell cycle analysis and flow cytometry

Cell cycle analysis: 108 DIPG cells treated with vehicle or palbociclib
(100 nM) were treated with 0.05% trypsin EDTA, then washed with ice-
cold PBS twice and incubated in 70% ethanol at 4 °C overnight. The cell
pellets were collected and washed twice with cold PBS. The cell pellets
were then resuspended and incubated in staining buffer containing
RNase A (100 pg/ml; Transgen biotech) and propidium iodide (50 pg/
ml; Leagene) at 37 °C for 30 min. After centrifugation, discard the stain-
ing buffer and resuspend the pellet in cold PBS, then the cell cycle was
analyzed by flow cytometry(BD FACS Calibur) and the data were ana-
lyzed using Modfit software (Verity Software House).

Flow cytometry: Lineage marker, which include CD133, Nestin,
GFAP, Olig2, and Ki67, staining followed by flow cytometry was per-
formed using monoclonal Ki67-PE conjugate antibody, CD133, Nestin,
GFAP, Olig2 primary antibody and coresponding secondary antibody.
In brief, 1 x 10° DIPG cells were washed in 1 ml cold PBS twice and
fixed in 70% ethanol at 4 °C overnight. Cells were then washed with
cold PBS and permeabilized by washing in PBS containing 0.3% Triton
X-100 for 3 times. The cells were blocked by incubating in PBS contain-
ing 5% BSA for 30 min at 4 °C. After incubation, cells were exposed to
100ul diluted primary antibody (followed the instructions of the anti-
body manufactures) for 30 min at 4 °C. After washing in PBS twice,
the percentage of Ki67 positive cells were analyzed by flow cytometry.
For other lineage markers staining, the cells were incubated in the cor-
responding secondary antibodies, then analyzed by flow cytometry (BD
FACS Calibur). The data were analyzed by Flow]Jo V10 (Flow]o, LLC).

2.10. Apoptosis analysis

Cells were harvested and stained using the AnnexinV/PI Apoptosis
Detection Kit as described by the manufacturer (BD). FACS analysis
was performed after staining to count the proportion of cells
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undergoing apoptosis. The original data were analyzed using Flow]Jo
V10 (Flow]o, LLC).

2.11. Hematoxylin and eosin (H&E) staining and immunohistochemistry
(IHC)

Mouse xenograft pons tissues were fixed in 4% paraformaldehyde
(PFA), followed by dehydration in ethanol gradients, permeabilization
with xylene and paraffin embedding. The paraffin embedded pons tissues
were sliced into many sections, on a microtome and float in a 40 °C water
bath with distill water. The sections were transferred onto glass slides
suitable for H&E staining and IHC. Allow the slides to dry overnight.

H&E staining: Sections with 5 um thickness were deparaffinized
with xylene for twice, 3 min each. Transfer slides to 100% alcohol and
then transfer once through 95%, 70%, and 50% alcohols respectively for
3 min each. The slides were stained with H&E.

IHC: The deparaffinized sections were washed 3 times with 100% al-
cohol and then transfer once through 95%, 70%, and 50% alcohols respec-
tively for 3 min each. The slides were boiled with Antigen Retrieval
Solution (ORIGENE) in microwave oven for 15 min. Tissue sections
were blocked in 5% BSA in PBS for 1 h. Then apply 100 pl appropriately
diluted primary antibody to the sections on the slides for 12 h in a hu-
midified chamber. Rinse the slides with PBS twice. Then the sections
were incubated with biotinylated goat anti-rabbit IgG (HRP/DAB Detec-
tion [HC Kit, ORIGENE) for 1 h. Wash slides with PBS twice. Add 20 pl
DAB plus chromogen to 1 ml of DAB plus substrate, mix by swirling
and apply to tissues. Incubate for 5 min. Rinse 4 times with PBS. Add
enough drops of hematoxylin to cover the section. Incubate for 1 min.
Rinse 7-8 times in tap water followed by dehydration in ethanol gradi-
ents. Add mounting medium to cover the section.

H&E staining and IHC sections were analyzed by Axio Scan.Z1 (Zeiss).

2.12. RNA-seq library preparation and sequencing

Total RNA was extracted by using Total RNA Purification Kit
(GeneMark, Taiwan). RNA was prepared for sequencing using the
[llumina TruSeq Stranded Total RNA Library Prep Kit. The libraries
were sequenced on the [llumina HiSeq X platform (Novogen, China).

2.13. RNA-seq analysis

For RNA-seq data analysis, we first evaluated RNA-seq reads quality
using FastQC (version 0.10.1). Total RNA-seq reads were trimmed from
the 3’ end until the final base had a quality score > 30, using
Trimmomatic. Then, RNA-seq was mapped to the human reference ge-
nome (hg38) with HISAT2 and summarized as gene level fragments
per kilobase per million reads sequenced (FPKM) using cufflinks. Differ-
ential testing and log2 fold change calculation was performed using
cuffdiff with two biological replicates. Gene ontology (GO) analysis
and gene set enrichment analysis (GSEA) were performed as previously
described [30,31].

2.14. Statistical analysis

All the experiments were performed at least three times. Graphpad
prism 6 was used for statistical analysis. t-test were used to determine
the significance of differences between groups. P <.05 was considered
to be statistically significant.

3. Results

3.1. Patient-derived DIPG cell lines with H3.3K27 M mutation have high
CDK4/6 expression

The limitation of tumor tissues and experimental models used to be
the major barrier for DIPG research. Recent advances in establishment

of patient derived cell lines and orthotopic xenograft mouse models
provided opportunity to explore the origin of the disease and biological
features of DIPG [3,32,33]. Initially the DIPG patient derived primary cell
lines were established from autopsy samples, for which the patients
may have been treated with radiotherapy or chemotherapy. These cell
lines are not the ideal materials for testing drug efficacy because radia-
tion and chemotherapy could induce extra mutations.

We established patient-derived primary DIPG cell lines from
treatment-naive patients' stereotactic biopsy or open biopsy samples,
which provide better materials to be investigated to reveal the cause
of the disease and explore the potential therapeutic strategies for
DIPG. The clinical and molecular characteristics of the patients are sum-
marized in Fig. 1a, Supplementary Fig. S1, Table. S1 and S2. Patients’
brain magnetic resonance imaging (MRI) reveal infiltrative tumors in
pons. All the cancer cell lines and tumors have H3.3K27 M mutation.
Most of cell lines have high percentage of CD133, Nestin, and Olig2 pos-
itive cells [23] (Supplementary Table S2), suggesting that these DIPG
cell lines are similar to neural progenitor cells (NPCs) or oligodendro-
cyte precursor cells (OPCs). Given the unavailability of para-carcinoma
tissues from DIPG patients, we also established fetal pons primary neu-
ral progenitor cell lines (PPCs) from the hindbrain of aborted 10-week
fetuses as normal control for DIPG cells, which has high percentage ex-
pression of neural progenitor markers (Supplementary Table S2). West-
ern blot analyses indicate that our DIPG cell lines show decreased levels
of H3K27me3 and modestly increased levels of H3K27ac compared to
U87 (Uppsala 87 Malignant Glioma) and PPCs, which share the similar
global changes in key histone modifications with previously reported
H3K27 M DIPG cell lines [12] (Fig. 1b). The majority of DIPG tumor tis-
sues and cell lines express higher levels of CDK4/6 than do PPCs
(Fig. 1c), plus most of the DIPG cell lines have much lower expression
of CDK4/6 inhibitor P16™4* (Fig. 1d), suggesting high levels of CDK4/
6 kinase activity in patient-derived DIPG cell lines with the H3.3K27 M
mutation. Retinoblastoma tumor suppressor protein (RB) in DIPG cell
lines remain intact (Fig. 1e). Phosphorylation of RB by CDK4/6 leads to
E2F activating transcription of a plethora of genes involved in cell
cycle progression from G1 to S phase.

3.2. CDK4/6 is a potential therapeutic target for DIPG in vitro

Targeting CDK4/6 activity is one of the options to block G1/S cell
cycle transition, which has been shown to induce cell cycle arrest in
cancer therapy [34]. Depletion of CDK4 or CDK6 in our patient-
derived cell line TT150630 blocks the progression of cell cycle from
G1 to S phase and thereby inhibits the growth of DIPG cells in vitro
(Fig. 2a, b and Supplementary Fig. S2a). This suggests that CDK4/6 is
a potential therapeutic target in DIPG. Palbociclib is a specific and cy-
tostatic inhibitor of CDK4/6. We further investigated anti-tumor effi-
cacy of palbociclib in our treatment naive patient-derived DIPG cell
lines. Sphere formation assay was used to evaluate the self-renewal
ability of DIPG cells. Palbociclib uniformly inhibits sphere formation
in all nine patient-derived DIPG cell lines (Fig. 2c and Supplementary
Fig. S2e). The IC50 values, calculated for all DIPG cell lines, H3.3 wild
type GBM cell line U87 and normal control PPC cells (Supplementary
Fig. 2b and Supplementary Table. S4). And 100 nM of palbociclib was
sufficient to repress expression of the E2F target gene CCNA in all DIPG
cells (Supplementary Fig. S2¢ and S2d) and to block phosphorylation
of RB at Ser780 in all nine DIPG cell lines (Fig. 2d). Palbociclib treat-
ment also leads to G1 arrest (Fig. 2e and Supplementary Fig. S3a).
Meanwhile, proliferation-associated marker Ki67 decreases in all
DIPG cell lines treated with palbociclib (Fig. 2f). In addition,
senescence-associated (SA)-Pp-galactosidase activity is increased in
palbociclib-treated TT150630 and TT150728 cells (Fig. 2g). We did
not detect significant apoptosis in cells treated with palbociclib (Sup-
plementary Fig. S3b). In conclusion, palbociclib inhibits the growth of
DIPG cells in vitro by blocking G1/S transition and inducing senescence
but not apoptosis.
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Fig. 1. Patient-derived DIPG cell lines with H3.3K27 M mutation have high CDK4/6 expression. (a) Clinical information of the treatment-naive patients, from which the DIPG cell lines were
established. The pathology of the tumor tissues reveals high grade glioma. T2 weighted axial image of magnetic resonance imaging show the infiltrative tumors in pons. (b) Western blot
analysis of acid-extracted histones from DIPG cells and pontine neural progenitor cells (PPCs) with indicated Histone H3 antibodies (n = 3). The percentage 12.5%, 25%, 50% and 100%
respresent the titrated loading volume of the cell lysis to setup a scale reference. (c) qRT-qPCR analysis of CDK4/6 mRNA levels in DIPG tumor tissues, primary DIPG cell lines, U87, and PPCs.
The CDK4/6 mRNA levels in various DIPG cell lines and tumors are significantly higher than those in PPCs. Unpaired t-tests were performed. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001) (n = 3). (d) qRT-qPCR analysis of CDKN2A(coding for P16 protein)mRNA levels in primary DIPG cell lines and PPCs. The CDKN2A mRNA levels in various DIPG cell lines are sig-
nificantly lower than those in PPC. Unpaired t-tests were performed. (***p < 0r.001) (n = 3). (e) Western blot analysis of RB expression in primary DIPG cell lines (n = 3).

3.3. Genome wide impact of palbociclib to DIPG

Next, we explored the biological impact of palbociclib treatment in
DIPG cells at the whole-transcriptome level by high-throughput se-
quencing (RNA-seq). 306 of the genes are down-regulated whereas
65 genes are upregulated (two folds higher or 50% lower than control,
FDR < 0.05, fragment per kilo base per million reads (FPKM) > 1 in
control) (Fig. 3a), which suggests that palbociclib mainly represses
gene expression. Gene ontology (GO) analysis indicates that most of
the affected genes are cell cycle-related genes (Fig. 3a). Gene set en-
richment analysis (GSEA) shows that the E2F target genes are signifi-
cantly down-regulated in DIPG cells with FDR < 0.01 (Fig. 3b). Some of
these down-regulated genes are involved in mitotic spindle and G2/M
transition, both of which are cell cycle-related (Supplementary
Fig. S4). Interestingly, MYC target genes were found in the down-
regulated gene list with FDR < 0.01 (Fig. 3b). MYC is an oncogene
that contributes to pathogenesis of most human cancers. Therefore,
this finding suggests that palbociclib could inhibit the growth of
DIPG via downregulation of MYC target genes in addition to affecting
E2F pathway.

3.4. Palbociclib inhibits the growth of DIPG in orthotopic xenograft mouse
models

To further investigate the anti-tumor efficacy of palbociclib in vivo,
we established luciferase-modified TT150630 and TT150728 xenografts
by injecting tumor cells into the pons of a cohort of B-NDG (B:
Biocytytogen; N: NOD background; D: DNAK (Prkdc) null; G: IL2rg
knockout) mice. Tumor formation was detected two weeks after the im-
plantation. The mice bearing the similar volume of tumor were

randomly divided into vehicle and palbociclib-treated groups.
150 mg/kg palbociclib or vehicle was administered orally every day to
the tumor-bearing mice. In vivo bioluminescence imaging was per-
formed every week to monitor tumor growth (Fig. 4a). The control
mice exhibited faster xenograft growth than the mice treated with
palbociclib (n = 5 control mice, 5 palbociclib-treated mice for
TT150630; p = 0.0079 and n = 5 control mice, 6 palbociclib-treated
mice for TT150728; p = 0.0043, Fig. 4b). The overall survival of the
palbociclib-treated group was significantly longer than the control
group (p = 0.0064 for TT150630 and p = 0.0044 for TT150728,
Fig. 4c). Hematoxylin and eosin (H&E) staining of tumor sections of
palbociclib-treated mice shows fewer pleomorphic tumor cells com-
pared to the control mice (Fig. 4d). The immunohistochemistry (IHC)
of phosphorylated RB (Ser-780) demonstrates that RB phosphorylation
was efficiently blocked in palbociclib-treated tumor sections (Fig. 4e).
The shrinkage of DIPG tumors, down-regulation of phosphorylated-RB
at Ser780, and longer survival in palbociclib-treated xenografted mice
suggest a direct and strong anti-tumor effect of palbociclib treatment
on DIPG in vivo. We tested one more patient-derived DIPG brainstem
orthotopic xenograft mouse models (TT151201, Supplementary
Fig. S5, a-d) using the same protocol and observed the similar anti-
tumor effect of palbociclib treatment on DIPG in vivo.

We further used TT150728 to test whether palbociclib could be com-
bined with other drugs for more efficient treatment. There was relative
high expression of EGFR in TT150728, hence we examined whether
combination of palbociclib with EGFR inhibitor, erlotinib, arrest tumor
growth in vitro and in vivo. Palbociclib and erlotinib treatment synergis-
tically inhibited self renewal and proliferation of TT150728 and
TT151201 in a dosage-dependent manner (Supplementary Fig. S6, a-
¢). Anti-tumor effect of combination of palbociclib with erlotinib was
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also observed in orthotopic xenograft mouse model of TT150728 (Sup-
plementary Fig. S6d). This further confirmed the feasibility of
palbociclib treatment on DIPG.

4. Discussion
4.1. Establishment of treatment-naive DIPG cell lines

DIPG are currently the number one cause of brain tumor-related
death in children [35,36]. No effective treatment available for DIPG
makes it urgent to explore effective therapeutic targets. In our study,
all the cell lines were established from biopsy of treatment-naive pa-
tients. We also established neural progenitor cells from human fetal
hindbrain (PPCs) as normal control cells. We found that our eight cell
lines are more sensitive to palbociclib treatment in vitro compared to
previous report [22]. Using these cell lines for study will lead to better
understanding of the mechanisms involved in tumorigenesis and even-
tually to achieve the goal of individualized drug therapy. Our treatment-
naive patient derived DIPG cell lines showed higher sensitivity to
palbociclib treatment in vitro than previously reported (IC50 =
100-500 nM vs 8000-16,000 nM) [22]. This might suggest to treat
H3.3 mutant DIPG patients with palbociclib prior to other treatments
(radiotherapy or chemotherapy).

4.2. Palbociclib as a potential therapeutic strategy for DIPG

Palbociclib was originally developed by David Fry and Peter Toogood
and is a specific inhibitor to CDK4/6 kinases [16,37]. Since then the an-
titumor activity of palbociclib has been tested in multiple cancers both
in cell based or human cancer xenograft model [16,18,38-44]. These in-
tensive studies of palbociclib eventually led to approval from the US
Food and Drug Administration (FDA) in February 2015 and in February
2016 for using palbociclib to treat postmenopausal patients with estro-
gen receptor-positive, HER2 - negative metastatic breast cancer [16,17].
So far there has been >50 clinical trials using palbociclib as treatment in-
volving a broad spectrum of cancers [45]. A clinical trial
(NCT02255461), which recruited patients with recurrent pediatric
brain stem glioma, has already completed on March 20, 2019. The phar-
macokinetics data were available for a variety of species in a pharmacol-
ogy review for FDA approval application of palbociclib (please see the
link at the end of this paragraph). In this review, when the palbociclib
was administrated orally at the dose of 200 mg/kg in a rat model, the
Cnax Was 2240 ng/ml.

(https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/
2071030rig1s000PharmR.pdf)

Our study confirmed the efficacy of palbociclib in three patient de-
rived xenograft DIPG mouse models for the first time. The decreased
p-RB at Ser780 in IHC section of the tumor tissue confirmed the
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penetration of palbociclib to the blood brain barrier (BBB) of
brainstem, which is commonly deemed to be more intact than the
hemispheric BBB [46]. The shrinkage of the tumor further demon-
strated that palbociclib could efficiently repress DIPG xenograft
tumor. All these evidences suggest that CDK4/6 specific inhibitor,
palbociclib, could be promising option for DIPG treatment. Palbociclib
has been reported to be more effective when it was combined with
other treatments, such as mTOR inhibitor [47], PI3K inhibitor [48] or
EGFR inhibitor [49]. In this study, we showed that combination of
CDK4/6 and EGFR inhibitors in a EGFR highly expressed DIPG cell
line TT150728 arrested tumor cells growth synergistically both
in vitro and in vivo.

4.3. Targets of palbociclib in DIPG

Genome-wide analyses have identified recurrent amplifications of
cell-cycle regulatory genes in DIPG, which include CDK4/6 and
CCND1/2/3 [14,50]. We showed that high E2F activity was prominent
in patient derived DIPG cells or tissues compared to PPCs, which is less
common in adult GBM [51]. This further confirmed the notion that the
pathogenesis of pediatric high grade glioma was different from adult
hemispheric GBM [52]. The administration of CDK4/6 inhibitor
palbociclib inhibited DIPG derived cells self-renewal, proliferation and
cell cycle progression from G1 to S phase in vitro. Palbociclib treatment
also induced senescence, which was demonstrated by increased
senescence-associated (SA)-P-galactosidase activity, and has been re-
ported in several types of cancer cells treated with palbociclib
[18,53-55]. In our RNA-seq data, the palbociclib treatment dramatically
decreased the mRNA levels of FOXM1, which was reported to be a sub-
strate of CDK4/6 and played the role of anti-senescence in the pathogen-
esis of cancers [53]. The upstream regulators of FOXMT1 related to CDK4/
6 inhibition were needed to be identified. There was no obvious evi-
dence of apoptosis followed by palbociclib treatment, which was also
not observed in adult GBM [51].

Interestingly, transcriptome profile analysis shows palbociclib
treatment significantly down-regulated genes expression. Palbociclib
treatment not only down-regulated E2F activity, it also repressed
“MYC target genes” dramatically. Inhibition of CDK4/6 by palbociclib
was reported to be a highly effective strategy for the treatment of
SHH and MYC-amplified group 3 medulloblastoma [56]. Previous
study grouped DIPG into three subgroups: MYCN, silent and
H3K27M. The amplification or gain of MYC is exclusive to the
H3K27 M subgroup [57]. In addition to the cell cycle G1 arrest, we
also observed that G2/M phase-associated genes were also affected
by palbociclib treatment. These observation was not reported in
other palbociclib related researches. We also found the global epige-
nome change after palbociclib treatment (data not shown), for exam-
ple, the H3K27me3 level was increased and H3K27ac was subtlely
decreased in several DIPG lines. The global change of modification of
histone H3 may contribute to the transcriptome shift beyond CDK4/
6-RB-E2F signaling. However, this need further be validated. Study
has reported the immune response triggered by CDK4/6 inhibitor,
which was attributed to the increased activity of antigen presentation
|58]. However, in our immunodeficient mouse model, this effect of
palbociclib was abolished by the defect immune system. As a result,
to some extent, the efficacy of palbociclib may be underestimated
from the data of this mouse model.
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