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Hypocretin system is composed of hypocretins (hcrts) and their receptors (hcrtrs), which has multiple vital functions. Hypocretins
work via hypocretin receptors and it is reported that functional differentiation occurred in hcrtrs. It is necessary to figure out the
evolution process of hypocretin receptors. In our study, we adopt a comprehensive approach and various bioinformatics tools to
analyse the evolution process of HCRTR gene family. It turns out that the second round of whole genome duplication in early
vertebrate ancestry and the independent round in fish ancestry may contribute to the diversity of HCRTR gene family. HCRTR1 of
fishes and mammals are not the same receptor, which means that there are three members in the family. HCRTR2 is proved to be
the most ancient one in HCRTR gene family. After duplication events, the structure of HCRTR1 diverged from HCRTR2 owing to
relaxed selective pressure. Negative selection is the predominant evolutionary force acting on the HCRTR gene family but HCRTR1
of mammals is found to be subjected to positive selection. Our study gains insight into the molecular evolution process of HCRTR
gene family, which contributes to the further study of the system.

1. Introduction

Hypocretin system is composed of hypocretins (hcrts) and
their receptors (hcrtrs). In vertebrates, there are two hypocre-
tins, hcrta and hcrtb. Both of them are derived by proteolytic
processing from a common precursor preproorexin coded by
HCRT [1]. Hypocretins work via hypocretin receptors. Up to
now, there are two types of receptors found in vertebrates,
named hcrtr1 and hcrtr2. hcrtr2 has similar affinity for both
hypocretins, whereas hcrtr1 favors hcrta [2]. Since discovered
in 1998 [3, 4], hypocretin system has been reported to par-
ticipate in various physiological processes including dietary
and metabolic regulation [5], sleep-wake circuit [6, 7], drug
addiction and reward process [8], and even cancerous cells
apoptosis [9–13]. Studies on knockout or neuron-depleted
animal models indicate hypocretin system is important in
maintaining normal vital signs such as basal blood pressure
[14], respiratory rate [15], and energy expenditure [16–18].

Given the diverse functions of hypocretin system, antag-
onists targeted at hcrtr1 or hcrtr2 are considered as potential
drugs for treatment of many diseases. Take insomnia, for
example. Existing drugs such as benzodiazepines and mela-
tonin receptor antagonists play a role in the treatment of
insomnia, but most of them will lead to the change of sleep
architecture, with many side effects. It has been found that
hypocretin plays a crucial role in the sleep regulation and can
be used as a novel therapeutic target for insomnia. Hypocre-
tin receptor antagonists can selectively block hypocretin
receptors with no side effects like benzodiazepines, and
they have stronger pharmacological activity than existing
hypnotics. This not only provides a new approach for the
treatment of insomnia, but also provides an alternative
treatment strategy for other hcrtr-mediated pathologies such
as drug addiction, obesity, and depression. At present, the
development of orexin receptor antagonists has made great
progress. Suvorexant [19] has already been launched to the
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market. Lemborexant [20], Filorexant [21], and SB-649868
[22] are in phase II or phase III trials, and MK-1064 [23] and
MK-3697 [24] have become clinical candidate drugs.There is
huge potential and great prospect for the drug researches.

Moreover, functional differentiation occurred in hcrtrs.
Dogs and mice lacking functional HCRTR2 are observed
to show narcolepsy [25, 26], yet HCRTR1 knockout mice
hardly act abnormally in the sleep-wake circuit [17]. Hcrtrs
are synthesized solely within a restricted region of the dorsal
hypothalamus, including the lateral hypothalamus proper,
adjacent perifornical area, and dorsomedial hypothalamus.
Despite that, hypocretin neurons project widely throughout
the brain targeting two receptors with partially overlapping
distributions [27].Hcrtr2 in histaminergic neurons of tubero-
mammillary is a key mediator for stimulating arousal, and
hcrtr2 in PVN and autonomic nuclei of medulla plays a role
in stress responses. Hcrtr1 mainly exists in LC and areas in
control of food intake and motivated behaviors [28].

With more and more genomes sequenced, an increasing
number of HCRTR sequences spring up. HCRTR1 forms
after mammals appear. There was a long time that two
hypocretins corresponded to one receptor. It is interesting to
figure out the evolution process of the hypocretin receptors.
However, the evolution process of hypocretin system has
rarely been discussed. Once, scientists thought that hypocre-
tin and secretin were evolutionarily relevant because they
shared similar sequence [3, 29]. However, the study between
hypocretin/secretin and their receptors rejected the point
[30]. Because HCRTR2 is widespread in vertebrates and
HCRTR1 is specific to mammals, it is generally believed
that HCRTR2 is more ancient and that HCRTR1 forms
in mammals from HCRTR2 [31]. However, the HCRTR1
found in fishes indicates that HCRTR gene family is more
complicated than anticipated. A thorough evolution analysis
is yet to be conducted.

In our study, we adopted a comprehensive approach and
various bioinformatics tools to analyse the evolution process
of HCRTR gene family, which gains insight into hypocretin
system. Tons of researches demonstrate that hypocretin
system is closely related to a large amount of diseases, such as
obesity [32, 33], panic anxiety [34], age-related anorexia [35],
multiple system atrophy [36], neurological disorders [37],
Parkinson’s disease [38], Alzheimer disease [39], and obstruc-
tive apnea-hypopnea syndrome [40]. Different receptors may
be linked to different diseases. There are crystal clear benefits
to figure out the evolution process of HCRTR gene family.

2. Materials and Methods

2.1. Mining Databases and Collecting Sequences. The coding
sequences and amino acid sequences of HCRTR gene family
were downloaded from the public databases, NCBI (http://
www.ncbi.nlm.nih.gov/) and Ensembl (http://asia.ensembl
.org/index.html), which involved a total of 166 species (Addi-
tional File 1). 38 representative species were chosen (Addi-
tional File 1) and Blastn (https://blast.ncbi.nlm.nih.gov/Blast
.cgi) was used to retrieve HCRTR-likes in respective genome
with its own HCRTR1 sequence as reference. Most uncertain
sequences were deleted after alignment.

2.2. Prediction of Protein Structure Domains (PSDs). The
amino acid sequences were submitted to SMART (http://
smart.embl-heidelberg.de/) to predict protein structure
domains. After PSDs were predicted, we obtained the
corresponding nucleotide and amino acid sequences from
the data set we collected above. Because the difference
mainly consisted in one structure domain (Orexin rec2),
we then compared Orexin rec2 domains of 11 representative
species including human, mouse, cow, platypus, zebra
finch, chicken, zebrafish, tiger puffer, West Indian Ocean
coelacanth, American alligator, and African clawed frog.

2.3. Phylogenetic Analysis. The amino acid sequences of
the conserved structure domain (7tm 1) were aligned with
MAFFT [41] with default parameters. Before phylogenetic
tree was constructed, the best model was predicted with
ProtTest 3.4.2 [42]. Phylogenetic treewas calculatedwith 1000
bootstrap replicates with two methods, Maximum likelihood
and Neighbor-joining, under JTT + G model. Vase tunicate
was the out-group in both trees.

2.4. Gene Microsynteny Analysis. Gene microsynteny
analysis was performed with a public platform Genomicus
(http://www.genomicus.biologie.ens.fr/) on which we
obtained microsynteny of HCRTR gene family. Owing
to the limited species, we selected 12 species for further
analysis including human, mouse, cow, chicken, zebra finch,
coelacanth, zebrafish, spotted gar, fugu, frog, lizard, and vase
tunicate.

2.5. Selective Pressure Analysis. Weanalysed all the conserved
PSDs of hcrtrs, respectively. Because the sequence num-
ber of 7 tm1 structure domain of hcrtr1 of fishes was not
enough for analysis and no Orexin rec2 structure domain
was predicted from the amino acid sequences of hcrtr1s,
we just divided PSDs into three group: Group (1) 7 tm1
structure domain of hcrtr1 amongmammals; Group (2) 7 tm1
structure domain of hcrtr2; Group (3) Orexin rec2 struc-
ture domain of hcrtr2. Unreliable sequences were deleted
after alignment in case of false annotation. The nucleotide
sequences were aligned with Muscle (Codons) in MEGA7
[43]. We then analysed selective pressure of each group with
Datamonkey (http://www.datamonkey.org/) [44] to detect
positive selection sites. The automatic model selection tool
was executed to choose the best model and three groups
matched three different nucleotide substitution bias models.
Also, two methods (SLAC and FEL) were used to analyse
selective pressure of each site.

3. Results

3.1. Members of HCRTR Gene Family. We obtained a set
of HCRTR sequences from 109 species which consisted of
48 HCRTR1s and 109 HCRTR2s (Additional File 1). In the
past, it was universally believed that HCRTR1 was specific
to mammals while HCRTR2 existed in all the vertebrates.
However it turned out that there were three HCRTR1-likes in
fishes, one namedHCRTR1 inWest Indian Ocean coelacanth
(Latimeria chalumnae), one annotated HCRTR1 in spotted
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Figure 1: Phylogenetic tree (Neighbor-joining). All the information is indicated with different colors and annotations in the figure. The label
of each branch is shown in the form of x-x|xxx. The first x indicates gene family the gene belongs to. The second x stands for its order in list
of Additional File 1. And xxx represents the scientific name of species.

gar (Lepisosteus oculatus), and one without annotation shar-
ing 48% common sequence withHCRTR2 of Atlantic salmon
(Salmo salar). In addition, vase tunicate (Ciona intestinalis),
a type of Urochordata, was found to have HCRTR2 as well.
More andmore exceptions indicated thatHCRTRgene family
was larger than anticipated.

During analysis, we also found a false annotation in
NCBI database. Detailed phylogenetic and structure analysis
suggested that the annotated HCRTR1 of Dalmatian pelican
(Pelecanus crispus) was more similar to HCRTR2. There was
no HCRTR1 in birds.

3.2. Phylogenetic Analysis of HCRTR Gene Family. The phy-
logenetic trees with two methods were similar and highly
consistent with the species tree (Figures 1 and 2). HCRTR1
and HCRTR2 diverged in a very early time in both trees
and HCRTR2 of vase tunicate (out-group) was not grouped
into any clade of vertebrates. However, in Neighbor-joining
tree (Figure 1), HCRTR1s of spotted gar and West Indian
Ocean coelacanth were grouped into HCRTR1 clade while in
Maximum likelihood tree (Figure 2) HCRTR1 of spotted gar
did not belong to any existing clades and HCRTR1 of West
Indian Ocean coelacanth was grouped into HCRTR2 clade.
In both trees, no matter what clade HCRTR1 of fishes was

grouped into, they diverged from the common ancestors very
early.

3.3. GeneMicrosyntenyAnalysis. Genes aroundHCRTRgene
family were conserved and arranged in a particular order
(Figure 3). We showed 11 genes that were close to HCRTR
gene family and it could be seen that genes around HCRTR2
were more conserved. Except for HCRTR2 of fishes and birds
who lost one flanking gene, all 11 flanking genes were detected
in other vertebrates. As for HCRTR1, mammals kept 6 flank-
ing genes and 4 of them changed gene direction compared to
HCRTR2. Moreover, what was interesting was that HCRTR1
of fishes had better microsynteny with HCRTR2 rather than
HCRTR1 of mammals and HCRTR2 of vase tunicate had
no flanking genes in common with HCRTR1 and had one
common gene with HCRTR2 of vertebrates.

3.4. Protein Structure Domains Analysis. The diagrams were
shown in Figure 4 which illustrated protein structure
domains of HCRTRs in 12 representative species. Hcrtr1
contained one protein structure domain (7tm 1) at an average
length of 296.2 amino acids and hcrtr2 consisted of two
protein structure domains. One domain (7tm 1, average
293.3-amino-acid long) was highly conserved with 7tm 1 in
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Figure 2: Phylogenetic tree (Maximum likelihood). All the information is indicated with different colors and annotations in the figure. The
label of each branch is shown in the form of x-x|xxx.The first x indicates gene family the gene belongs to.The second x stands for its order in
list of Additional File 1. And xxx represents the scientific name of species.

hcrtr1, and the other domain (Orexin rec2) was specific to
hcrtr2 which had 53.4 amino acids on average.

7tm 1 was composed of several transmembrane struc-
tures and highly conserved. However, Orexin rec2 varied
among species. It consisted of about 58 amino acids in mam-
mal lineages and about 56 amino acids in birds, amphibians,
and reptiles. However, as for fishes, Orexin rec2 was shorter
with only 39 amino acids.

In addition, West Indian Ocean coelacanth, an ancient
fish, possessed both hctrt1 and hcrtr2 and hcrtr1 of West
Indian Ocean coelacanth had both 7tm 1 and Orexin rec2.

In conclusion, differences primarily consisted in the
Orexin rec2. In Figure 5, we compared corresponding amino
acid sequences and could see hcrtr1 lost more amino acids
than hcrtr2. Hcrtr1 of West Indian Ocean coelacanth lost
the least amount of amino acids and it was the only species
whose hcrtr1 predicted Orexin rec2. It suggested that the
loss of Orexin rec2 in hcrtr1 was not owing to the deletion
of the whole functional segment but multiple signal amino
acid sites. Moreover, low complexity regions (LCRs) of hcrtr1
and hcrtr2 were different in amount. In Figure 4 HCRTR1 of
mammals had more LCRs.

3.5. Selective Pressure Analysis. Under the optimal model,
results (Table 1) indicated hcrtrs were highly conserved in
the evolution process. There were lots of negative selection
sites detected in all the groups at 0.1 significant level. Only
the 143rd site of 7 tm1 structure domain of hcrtr1 among
mammals was proved to be undergoing positive selection.
And no positive selection sites were found in other two
groups of hcrtr2.

4. Discussions

To investigate the evolution process of HCRTR gene family,
we took advantage of published nucleotide and amino acid
sequences, identified or predicted, which were recorded in
Additional File 1. HCRTR2 of vase tunicate was the most
ancient hypocretin receptor in our study, which revealed that
hypocretin receptor had already formed in at least part of
Urochordata. HCRTR2 existed in all the vertebrates while
HCRTR1 was specific to mammal. This was consistent with
previous studies [31]. But 3 HCRTR1-likes of fishes suggested
that HCRTR gene family might be larger than anticipated,
at least in fishes. The diversity of gene family resulted from
evolution.
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Table 1: Selective sites in each group.

Negative selection Positive selection
Method Group Number Number codon dN-dS Normalized dN-dS p-value
SLAC 1 123 1 143rd 1.77 1.33 0.084

2 268 0 - - - -
3 44 0 - - - -

FEL 1 208 1 143rd 0.79 0.59 0.062
2 269 0 - - - -
3 48 0 - - - -

The phylogenetic trees illustrated that HCRTR1 and
HCRTR2 diverged early. And according to gene microsyn-
teny analysis, it could be seen that homology is high between
two segments where HCRTR1 and HCRTR2 were located.
Gene duplication event had been considered as a reason
for new gene. Orthologs were separated by speciation, yet
paralogs were generated by gene or genome duplication event
[45]. Duplication event was important to gene family expan-
sion. In early vertebrates, the dynamic genome reorganiza-
tion model [46] indicated that the vertebrate chromosomes
were derived from 10 proto-chromosomes through several
rounds of whole genome duplications (WGDs, 2 rounds in
vertebrates and 3 rounds in fishes) and multiple fissions and
fusions. The model divided vertebrate chromosomes into
many regions and HCRTR1 of human was located roughly
in B3 region of chromosome 1 and HCRTR2 was located in

B2 region of chromosome 6. HCRTR2 of Chicken was in
B2 region of chromosome 3. Proto-chromosome B was the
common ancestor of chromosomes 1 and 6 of human and
chromosome 3 of chicken, and B2/B3 regions originated from
the second round of WGD (Figure 6). HCRTR gene family
was likely to originate in the second round of WGD.

As for the HCRTR1 of fishes, it was different from
HCRTR1 of mammals and HCRTR2 of vertebrates according
to phylogenetic trees. Moreover, HCRTR1 of fishes had
better microsynteny with HCRTR2 rather than HCRTR1 of
mammals, whichmeant that HCRTR1 of fishes andmammals
probably did not originate from the same duplication event.
The origin of HCRTR1 of fishesmight be closely related to the
third round of WGD [47] that was specific to the ancestor of
fishes.The extra independent genome duplication events had
been confirmed in Chinese paddlefish [48] and fishes in the
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Figure 5: Alignment of corresponding sequences of Orexin rec2 structure domain. We align the amino acid sequences of HCRTRs of 11
species with MEGE7. Different amino acids are marked in different colors.
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family Salmonidae [49]. Incomplete HCRTR1-like segment
was also detected in Atlantic salmon (Salmonidae) in our
study.

New genes produced by gene duplication events would
not be subject to selective pressure.The structure of HCRTR1
of West Indian Ocean coelacanth suggested that early
HCRTR1 might have both 7tm 1 and Orexin rec2 and then
the structure of Orexin rec2 was destroyed because of relaxed
selective pressure. HCRTR2, which HCRTR1 was derived
from, was more ancient. It was also supported by gene
microsynteny analysis. HCRTR2 of vertebrates had one
common flanking gene with HCRTR2 of vase tunicate but
HCRTR1 did not. In addition, studies showed that new
receptors always acquired ligand binding ability in a newway.
Once they acquired this ability, it could gradually develop
into specific binding ability [50]. LCRs were reported to be
important for the ability of ligand binding [51] and LCRs
of hcrtr1 possibly contributed to the specific binding ability,
which supported our point as well.

As a vital neuropeptide, it had been well studied that
hcrtr1 was a specific receptor to hcrta while hcrtr2 was a
nonselective receptor [52]. Due to the structures of hcrtr1 and
hcrtr2, we speculated that 7tm 1 mainly responded to hcrta
andOrexin rec2 responded to hcrtb.The remaining structure
of Orexin rec2 of hcrtr1 might account for hcrtr1’s inefficient

activation by hcrtb [53]. Some held the view thatmutations in
genes generated by duplication events would not do harms to
organisms but actually help them adapt to the environment,
such as antifreeze proteins in Antarctic notothenioid fish
[54]. HCRTR gene family was highly conserved among
species. Selection pressure analysis showed that the negative
selection was the predominant evolutionary force acting on
the HCRTR gene family, and only one codon was found to
be subjected to positive selection in HCRTR1 of mammals.
The appearance of HCRTR1 might promise more advanced
functions in mammals and fishes.

5. Conclusions

The second round of whole genome duplication in early
vertebrate ancestry and the independent round in fish ances-
try may contribute to the diversity of HCRTR gene family.
HCRTR1 of fishes and mammals is not the same receptor,
which means that there are three members in the family.
HCRTR2 is proved to be themost ancient one inHCRTRgene
family. After duplication events, the structure of HCRTR1
diverged from HCRTR2 owing to relaxed selective pressure.
Negative selection is the predominant evolutionary force
acting on the HCRTR gene family but HCRTR1 of mammals
is found to be subjected to positive selection.
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