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Chronic inflammation in the kidneys and vascular wall is a major contributor to hypertension. However, the stimuli and
cellular mechanisms responsible for such inflammatory responses remain poorly defined. Inflammasomes are crucial initiators
of sterile inflammation in other diseases such as rheumatoid arthritis and gout. These pattern recognition receptors detect
host-derived danger-associated molecular patterns (DAMPs), such as microcrystals and reactive oxygen species, and respond
by inducing activation of caspase-1. Caspase-1 then processes the cytokines pro-IL-1β and pro-IL-18 into their active forms
thus triggering inflammation. While IL-1β and IL-18 are known to be elevated in hypertensive patients, no studies have
examined whether this occurs downstream of inflammasome activation or whether inhibition of inflammasome and/or
IL-1β/IL-18 signalling prevents hypertension. In this review, we will discuss some known actions of IL-1β and IL-18 on
leukocyte and vessel wall function that could potentially underlie a prohypertensive role for these cytokines. We will describe
the major classes of inflammasome-activating DAMPs and present evidence that at least some of these are elevated in the
setting of hypertension. Finally, we will provide information on drugs that are currently used to inhibit
inflammasome/IL-1β/IL-18 signalling and how these might ultimately be used as therapeutic agents for the clinical
management of hypertension.
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Introduction

Hypertension is associated with chronic inflammation in key
tissues and organs involved in the regulation of BP such as
the kidneys and blood vessels. Renal inflammation results in
glomerular injury and impaired sodium urinary excretion,
while inflammation in the vasculature can contribute to
impaired endothelial function, resistance and stiffening, all
of which are key factors involved in the development of
hypertension (Ross, 1999; Pauletto and Rattazzi, 2006;
Rodriguez-Iturbe et al., 2012). The signalling platforms
known as inflammasomes have emerged as crucial initiators
of inflammation in response to diverse pathogen- and host-
derived danger signals. The primary function of inflam-
masomes is to activate the cysteine protease, caspase-1, which
in turns processes the proinflammatory IL-1 family cytokines
IL-1β and IL-18 from their inactive to active forms (Schroder
and Tschopp, 2010a). While it is clear that circulating levels
of IL-1β and IL-18 are increased in hypertension (Dalekos
et al., 1997; Rabkin, 2009), to date, no studies have examined
whether this occurs downstream of inflammasome and
caspase-1 activation. It is also not known whether inhibition
of the production or actions of IL-1β and/or IL-18 reduces
renal and vascular inflammation and thereby affords protec-
tion in hypertension. This review will highlight the role that
IL-1β and IL-18 play as early initiators of inflammation. Fur-
thermore, we will describe what inflammasomes are and
present evidence for why they might be considered as
important mediators of renal and vascular inflammation in
hypertension, and thus potential targets for future antihyper-
tensive therapies.

Renal and vascular inflammation
in hypertension

Hypertension is a major risk factor for the two leading causes
of death worldwide, ischaemic heart disease and stroke

(WHO, 2013). It is widely accepted that chronic overactiva-
tion of the renin-angiotensin-aldosterone system is a major
contributor to hypertension (Weir and Dzau, 1999). The
actions of angiotensin II on AT1 receptors expressed on resi-
dent cells of blood vessels, kidneys and the CNS are respon-
sible for its ‘classical’ prohypertensive actions, including
vasoconstriction, increased vascular superoxide production,
enhanced sodium reabsorption and elevated sympathetic
activity (Palatini, 2001; Levy, 2004; Probstfield and O’Brien,
2010). However, it has recently been shown that angiotensin
II may contribute to renal and vascular inflammation by
inducing the activation and accumulation of leukocytes in
the kidneys and artery wall respectively (Johnson et al., 1992;
Haller et al., 1997; Suzuki et al., 2003; Rodriguez-Iturbe et al.,
2004; Guzik et al., 2007).

Chronic low-grade inflammation appears to play an
important role in the pathogenesis of hypertension. In hyper-
tensive patients and in animal models, there is increased
activity of the prototypic transcription factor, NF-κB
(Ruiz-Ortega et al., 2001; Zhou et al., 2010a), which leads to
increased tissue and/or circulating levels of proinflammatory
mediators including the acute phase protein, C-reactive
protein (CRP) (Bautista, 2003), adhesion molecules including
intercellular adhesion molecule 1 and vascular cell adhesion
molecule 1, chemokines, such as CCL2 (MCP-1) and CCL5
(RANTES) (Mervaala et al., 1999; Dorfmuller et al., 2003;
Boulbou et al., 2005; Madej et al., 2005; Chan et al., 2012),
and proinflammatory cytokines such as IL-6, TNF-α (Gu et al.,
2006; Zhang et al., 2012) and, of direct relevance to the
current review, IL-1β and IL-18 (Dalekos et al., 1997; Rabkin,
2009). Furthermore, numerous studies have shown that by
blocking the actions of several of the above mediators either
by genetic deletion or pharmacological inhibition, it is pos-
sible to reduce disease parameters in hypertension. For
example, mice lacking IL-6 display a blunted increase in sys-
tolic BP and a reduction in renal damage and fibrosis com-
pared with wild-type mice following induction of
hypertension by acute stress or the infusion of angiotensin II
(Lee et al., 2004; 2006; Zhang et al., 2012). Chemokine recep-
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tor antagonists prevent the accumulation of immune cells in
target tissues by blocking chemokine-dependent chemotaxis
of these cells. A selective antagonist of the chemokine recep-
tor CCR2 was shown to reduce macrophage infiltration into
the aorta, and consequently to reduce systolic BP in deoxy-
corticosterone acetate/salt-treated mice (Chan et al., 2012).
Similar protective actions have been reported following inhi-
bition of TNF-α and NF-κB in various experimental models of
hypertension (Muller et al., 2000; Zhou et al., 2010a;
Sriramula et al., 2013; Wang et al., 2013).

IL-1β and IL-18 are elevated in
hypertension and are potential
mediators of renal and vascular
inflammation

IL-1β and IL-18 are members of the proinflammatory IL-1
cytokine superfamily (Dinarello, 2002). The major cellular
sources of IL-1β and IL-18 are monocytes and macrophages
(Kahlenberg and Dubyak, 2004; Dinarello et al., 2013),
however other cell types, such as vascular endothelial cells
and renal tubular epithelial cells, may also generate these
cytokines under certain conditions (Ala et al., 1992; Dewberry
et al., 2000; Striz et al., 2005). The proinflammatory actions of
IL-1β and IL-18 are achieved by stimulation of their specific
cell surface receptors, namely the IL-1 type 1 receptor (IL-1RI)
and the IL-18 receptor α chain (IL-18Rα) respectively
(Dinarello, 2002). These receptors are found on several leu-
kocyte subsets relevant to renal and vascular inflammation in
hypertension. These include immune cells, such as lympho-
cytes, monocytes and macrophages, constitutive cell types of
the vessel wall, such as vascular endothelial cells and vascular
smooth muscle cells (VSMCs), as well as cells in the kidney
such as renal endothelial cells and tubular epithelial cells
(Nakamura et al., 2000; Gerdes et al., 2002; Miyauchi et al.,
2009). Both receptors are members of the immunoglobulin
superfamily and display remarkable similarities in terms of
their amino acid sequences, overall architecture and the
signal transduction mechanisms they utilize (O’Neill, 2002;
Sims, 2002).

The binding of IL-1β and IL-18 to their receptors causes
the recruitment of distinct yet highly homologous accessory
proteins, which facilitate high-affinity binding between the
ligand-receptor complex. For the IL-1β/IL-1RI complex, the
relevant accessory protein is termed IL-1RAcP, whereas that
for the IL-18/IL-18Rα complex is IL-18Rβ (Figure 1) (Sims,
2002; Arend et al., 2008). The binding of accessory proteins to
IL-1RI and IL-18R also initiates the recruitment of several
adapter molecules to the cytoplasmic domains of the recep-
tors. Such adapter molecules include myeloid differentiation
factor 88, IL-1R-associated kinase and TNF receptor-
associated factor 6 (Figure 1) (Thomassen et al., 1998; Arend
et al., 2008). These in turn activate signal transduction path-
ways involving the kinases, JNK and p38 MAPK, as well as
transcription factors such as NF-κB and activator protein-1
(AP-1) (Thomassen et al., 1998; Arend et al., 2008) which are
renowned for inducing a proinflammatory gene expression
profile in various cell types.

IL-33 is a more recently identified member of the IL-1
family (Arend et al., 2008). In contrast to IL-1β and IL-18, it is
the uncleaved form of IL-33 that is active. Moreover, IL-33
triggers an anti-inflammatory type 2 immune response when
it binds to its receptor, ST2, which results in the release of
cytokines such as IL-5 and IL-13 (Pei et al., 2014). While
recent studies have suggested a possible protective role of
IL-33/ST2 signalling in other cardiovascular diseases such as
heart failure and atherosclerosis (Miller and Liew, 2011;
Januzzi, 2013), to date no studies have investigated the role of
IL-33 in hypertension.

It is important to note that the actions of IL-1β and IL-18
in a given tissue are governed not only by their concentra-
tions within that tissue and the expression profile of their
respective receptors, but also by the presence of several
inhibitor molecules that exist for each cytokine (Figure 1).
For IL-1β, these include the decoy receptor, IL-1R type II
(IL-1RII), which is similar in structure to the extracellular
domain of the IL-1RI, however, it has a very short cytoplas-
mic tail and thus lacks the ability to stimulate intracellular
transduction mechanisms (Dinarello, 1996; Schroder and
Tschopp, 2010a). Furthermore the IL-1 receptor antagonist
(IL-1Ra) is another endogenous inhibitor of IL-1β. IL-1Ra
occurs in two forms, one that is secreted from circulating
leukocytes and another that is retained intracellularly, espe-
cially in monocytes and epithelial cells (Arend et al., 1998).
Similarly, there exists an endogenous antagonist of IL-18
known as the IL-18 binding protein (IL-18BP). IL-18BP is
constitutively secreted and binds to IL-18 with high affinity
(400 pM), thereby neutralizing the actions of this cytokine
(Dinarello et al., 2013). The experimental and clinical use of
these inhibitors in inflammatory disease models are discussed
in further detail later in this review.

IL-1 family cytokines are considered to be ‘early-response’
cytokines. This means that they are released in the earliest
stage of an immune response and act as a trigger for a subse-
quent cascade of proinflammatory cytokines. IL-1β stimulates
the release of IL-6 and IL-17a, while IL-18 promotes the pro-
duction of IFN-γ, IL-2 and IL-12 (Labow et al., 1997;
Dinarello, 2002; Cahill and Rogers, 2008; Mills et al., 2013).
These downstream cytokines are associated with highly pro-
inflammatory T-helper 1 (Th1)- and T-helper 17 (Th17)-type
immune responses and there is evidence to suggest that Th1
and Th17 cells play a major role in hypertension (Shao et al.,
2003; Platten et al., 2009; Madhur et al., 2010). In addition to
these well-described actions on immune cells, IL-1β and IL-18
have also been shown to have direct effects on the vascular
wall that might be consistent with a prohypertensive role. For
example, large and resistance-like rat arteries that had under-
gone ex vivo incubation with IL-1β displayed impaired
endothelium-dependent relaxation responses to ACh
compared with vessels that were incubated with vehicle
(Loughrey et al., 2003; Jimenez-Altayo et al., 2006). This effect
appeared to be due to increased vascular reactive oxygen
species (ROS) production, as IL-1β-treated vessels expressed
higher levels of the pro-oxidant enzymes, inducible NOS and
xanthine oxidase, and generated more superoxide than
controls (Briones et al., 2005; Jimenez-Altayo et al., 2006).
Moreover, treatment of the vessels with superoxide dismutase
partially reversed the impaired relaxation response to
ACh (Jimenez-Altayo et al., 2006). In a separate study on
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isolated aortas from spontaneously hypertensive rats, IL-1β
directly evoked contractile responses and augmented those
to the α1-adrenoceptor agonist, phenylephrine (Dorrance,
2007). Together with the IL-1β-mediated impairment of
endothelium-dependent vasodilatation, such increases in
contractile activity could conceivably contribute to increased
total peripheral vascular resistance, which is a major deter-
minant of BP.

Although no studies have examined the effects of IL-18
on vascular tone, this cytokine has been shown in several
studies to promote the proliferation and migration of VSMCs
(Chandrasekar et al., 2006; Valente et al., 2012); processes
that are critical to the vascular remodelling associated with
and contributing to hypertension. Again these effects
appeared to result from increases in NADPH oxidase (NOX)-
derived ROS production and the subsequent activation of
NF-κB- and AP-1-dependent signalling pathways (Valente
et al., 2012). Furthermore, the proliferative response of
cultured VSMCs to angiotensin II was blocked following
siRNA-mediated knockdown of IL-18 (Valente et al., 2012),
indicating that IL-18 may be a crucial intermediate in the

pathway by which angiotensin II promotes vascular remod-
elling. The actions of IL-1β and/or IL-18 in mediating inflam-
mation associated with hypertension are summarized in
Figure 2.

As mentioned, there is evidence that circulating and vas-
cular levels of IL-1β and IL-18 are elevated in hypertension.
For instance, patients with essential hypertension had higher
serum levels of IL-1β than normotensive controls (Dalekos
et al., 1997). Furthermore, monocytes isolated from periph-
eral blood of hypertensive individuals generated higher
amounts of IL-1β in response to ex vivo stimulation with
either angiotensin II or LPS than monocytes from normoten-
sive controls (Dörffel et al., 1999; Li et al., 2005). These find-
ings not only suggest that monocytes from hypertensive
individuals are primed for the production of IL-1β, but they
also indicate that angiotensin II may directly act on mono-
cytes to initiate the production and/or release of the cytokine.
Consistent with this latter concept, angiotensin AT1 receptor
antagonists inhibited IL-1β production by monocytes taken
from hypertensive individuals, either when administered to
patients in vivo or when pre-incubated ex vivo with cells fol-

Figure 1
Signalling pathway and endogenous antagonists of IL-1β and IL-18. Binding of IL-1β to IL-1R1 and IL-18 to IL-18Rα is facilitated by the accessory
proteins IL-1RAcP and IL-18Rβ, respectively, resulting in recruitment of the adapter proteins myeloid differentiation factor 88 (MyD88), IL-1
receptor-associated kinase (IRAK) and TNF receptor-associated factor (TRAF), which then causes NF-κB activation. Endogenous inhibitory
molecules also exist for both cytokines. For IL-1β, these include an IL-1R antagonist (IL-1Ra), which competes with the IL-1RI for IL-1β binding,
as well as a second IL-1β receptor, IL-1RII. The membrane-bound form of IL-1RII receptor contains a short cytosolic signalling domain whereas the
soluble form of IL-1RII contains only the extracellular portion of the receptor. Thus, while they bind IL-1β, they fail to support the activation of
intracellular signal transduction pathways. Similarly, the actions of IL-18 are negatively regulated by a binding protein known as IL-18BP.
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lowing their isolation (Dörffel et al., 1999; Li et al., 2005).
Given that monocytes accumulate in the vessel wall and
interstitium of the kidneys during hypertension (Haller et al.,
1997; Boos and Lip, 2006), these cells could represent a sig-
nificant source of vascular and renal IL-1β. There is also
evidence of enhanced responsiveness to IL-1β in hyperten-
sion. Specifically, ex vivo treatment with IL-1β caused a greater
vasoconstrictive response in aortas from hypertensive rats
compared with normotensive rats, and this involved activa-
tion of COX (Dorrance, 2007). Whether this increased vascu-
lar responsiveness was due to up-regulation of IL-1R1 or
downstream signalling elements remains to be determined.
Finally, levels of IL-1Ra were found to be elevated in patients
with essential hypertension compared with normotensive
individuals (Peeters et al., 2001), and this might be indicative
of a compensatory response to offset elevated concentrations
of IL-1β.

Regarding IL-18, a meta-analysis investigating the associa-
tion between IL-18 and hypertension identified a significant
positive correlation between BP and circulating IL-18 levels
(Rabkin, 2009). IL-18 levels are also positively correlated with
intima-media thickness of the carotid artery (Yamagami et al.,
2005), which is a downstream consequence of hypertension
and a marker of future cardiovascular risk in patients (Van
Bortel, 2005). Taken together, the points raised earlier high-
light the role of IL-1 family cytokines as early mediators of
inflammation and as potential contributors to the pathogen-
esis of hypertension.

Release of IL-1β and IL-18 occurs as a
consequence of caspase-1 and
‘inflammasome’ activation

Caspases are cysteine proteases that are best known for their
role in regulating apoptosis. However, it is now known that
the primary function of some members of the caspase family
is to regulate inflammation (Wolf and Green, 1999). Collec-
tively, these proinflammatory caspases are termed group I
caspases (Martinon and Tschopp, 2007). Of the 13 mamma-
lian caspases identified, five are thought to regulate inflam-
mation (caspases 1, 4 and 5 in humans and caspases 1, 11 and
12 in mice) (Martinon and Tschopp, 2004; 2007), with
caspase-1 being the best characterized proinflammatory
caspase in humans and mice. The major role of caspase-1 in
inflammation is to catalyze the intracellular processing of the
proinflammatory cytokines, pro-IL-1β (31 kDa) and pro-IL-18
(24 kDa) into their mature and biologically active forms,
IL-1β (17.5 kDa) and IL-18 (18 kDa) respectively (Dinarello,
2002). This step is essential as it allows the cytokines to be
released from the cytosol into the extracellular space where
they can act in a paracrine fashion on receptors on neigh-
bouring cells to exert their proinflammatory influence. There
is some evidence that IL-1β can be activated independently of
caspase-1 by neutrophil-derived serine proteases such as
elastase, cathepsin G and proteinase 3. However, these path-
ways are likely to play a role in the maturation of the cytokine
only in disease conditions associated with an increase in
neutrophil infiltration (Guma et al., 2009).

Caspases are themselves synthesized as zymogens and
must be cleaved in order to be activated. This is achieved by
the multi-protein enzyme complexes known as inflam-
masomes (Petrilli et al., 2007; Schroder and Tschopp, 2010a).
Inflammasomes are comprised of upstream NOD-like recep-
tors (NLRs), which are part of the pattern recognition recep-
tor (PRR) superfamily (Lamkanfi and Dixit, 2014). PRRs are
known to play an integral role in the innate immune
response (Gordon, 2002; Kanneganti et al., 2007). NLRs are
auto-activated when they detect ‘pathogen-associated
molecular patterns’ (PAMPs) such as conserved motifs on
microbes such as LPS and flagellin (Jha and Ting, 2009).
Furthermore, host-derived stress signals otherwise known as
danger-associated molecular patterns (DAMPs) have also
been shown to induce activation of NLRs. DAMPs that have
been shown to activate NLRs include ROS such as superoxide
and hydrogen peroxide (Davis and Ting, 2010; Latz, 2010;
Zhou et al., 2010b), high concentrations of extracellular ATP
(Mariathasan et al., 2006), hyaluronan, which is released
from the extracellular matrix in response to injury (Yamasaki
et al., 2009), β amyloid, the major peptide present in amyloid
plaques characteristic of Alzheimer’s disease (Halle et al.,
2008) and crystalline substances such as uric acid (Martinon
et al., 2006), cholesterol (Duewell et al., 2010) and silica
(Hornung et al., 2008), which are thought to mediate the
chronic inflammatory responses in gout, atherosclerosis and
silicosis respectively.

While several NLRs have been identified, information on
functional significance is only available for a few of these
receptors. This includes the NLRP3-, NLRP1- and IPAF-
containing inflammasomes, all of which respond to a diverse

Figure 2
Actions of IL-1β and/or IL-18 in mediating hypertension. IL-1β and
IL-18 are mainly secreted by monocytes, macrophages and neutro-
phils. These proinflammatory cytokines can act on immune cells such
as macrophages, dendritic cells and neutrophils as well as non-
immune cell types, including vascular endothelial and smooth
muscle cells, to induce inflammation and other prohypertensive
effects.
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range of stimuli (Schroder et al., 2010b). To date, the NLRP3-
containing inflammasome (also known as NALP3) is the best
characterized and the isoform that is reported to link inflam-
mation to several metabolic diseases, including diabetes and
atherosclerosis (De Nardo and Latz, 2011; Wen et al., 2012; Lu
and Kakkar, 2014). There are three basic subunits that make
up the NLRP3 inflammasome: (i) the NLRP3 protein, which
consists of the basic NLR structure [leucine-rich repeats at
the C-terminus, a central nucleotide-binding and oligomeri-
zation domain (NACHT) and a pyrin-domain at the
N-terminus]; (ii) ASC, a heterodimeric adapter protein also
consisting of a pyrin domain as well as a caspase activation
and recruitment domain (CARD); and (iii) pro-caspase-1 (Jha
and Ting, 2009; Schroder et al., 2010b).

Inflammasome activity and production of IL-1β and IL-18
in monocytes and macrophages are tightly regulated via a
two-step signal process. Signal I involves NF-κB- and/or AP-1-
dependent up-regulation of the genes that encode for the
various signalling components including NLRP3, pro-
caspase-1, pro-IL-1β and pro-IL-18. Signal II involves the
detection of PAMPS or DAMPs by NLRP3, and this in turn

promotes the recruitment of ASC and pro-caspase-1 to the
complex (Figure 3). The clustering of pro-caspase-1 at the
inflammasome complex initiates its autocleavage into two
subunits, p10 (10 kDa) and p20 (20 kDa), which heterodimer-
ize to form the active caspase-1 enzyme (Schroder and
Tschopp, 2010a).

Evidence of a role for inflammasome
activation in hypertension

The consistent observation that levels of IL-1β and IL-18 are
elevated in hypertension (Dalekos et al., 1997; Rabkin, 2009)
might be taken as circumstantial evidence that the condition
is associated with an increase in inflammasome-dependent
caspase-1 activation. However, apart from a single study
describing an increase in mRNA expression of pro-caspase-1
in the aorta and renal artery of spontaneously hypertensive
rats compared with normotensive Wistar Kyoto rats (Chen
et al., 1997), no studies have directly investigated whether

Figure 3
Schematic representation of activators and effectors of the NLRP3 inflammasome. The NLRP3 inflammasome consists of the pattern recognition
receptor, NLRP3, the adaptor protein, ASC, and pro-caspase-1. Activation of the NLRP3 inflammasome occurs in two steps. Signal I occurs
downstream of Toll-like receptors (TLR) and receptors for cytokines such as TNF, and involves NF-κB-mediated up-regulation of NLRP3, pro-IL-1β
and pro-IL-18 gene expression. Signal II occurs when danger-associated molecular patterns (DAMPs) including ATP, microcrystals and ROS, all of
which have been shown to be elevated in hypertension, are detected by NLRP3. This leads to oligomerization of NLRP3 subunits and recruitment
of ASC and pro-caspase-1. Pro-caspase-1 then undergoes autocleavage into two subunits p10 and p20, which heterodimerize to form the fully
active caspase-1. Caspase-1 then processes pro-IL-1β and pro-IL-18 into their active, proinflammatory forms.
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hypertension is associated with inflammasome activation. In
a genotype association analysis, Omi et al. (2006) showed
that the incidence of a specific gain-in-function polymor-
phism of the NLRP3 gene was significantly higher in hyper-
tensive than normotensive individuals. Furthermore, these
authors described a gene–dose relationship whereby homozy-
gotes for the polymorphism displayed higher BPs than het-
erozygotes (by 3 mmHg), who in turn displayed higher BPs
than wild-type individuals (by 2 mmHg) (Omi et al., 2006).

If inflammasome activity is indeed a crucial determinant
of hypertension, we are left with the question: what stimuli
are responsible for inflammasome activation in the setting of
hypertension? While we can presently only speculate on the
nature of such stimuli, it is worth noting that hypertension is
associated with increased levels of certain DAMPs that are
often regarded as ‘classical’ activators of the NLRP3 inflam-
masome. These stimuli, which include microcrystals, high
levels of extracellular ATP and ROS (Schroder and Tschopp,
2010a), are described in the succeeding paragraphs.

Microcrystals
There is a growing body of evidence that microcrystals can
induce inflammasome activation, and may be implicated in
the pathogenesis of various inflammatory diseases, including
atherosclerosis and inflammatory lung diseases (Dostert et al.,
2008; Duewell et al., 2010). Microcrystals, which range in size
from 0.5 to 3.0 nm, form as a result of high concentrations of
relatively insoluble solutes in the circulation and tissues.
Microcrystals are detected by phagocytes and engulfed into
the phagolysosome within the cell. However, the shard-like
structures of many microcrystals rupture the lysosomal mem-
brane, releasing its contents, including cathepsins and other
proteolytic enzymes, into the cytosol. These lysosomal
enzymes are thought to act as the triggers of inflammasome
activation (Schroder et al., 2010b).

Monosodium urate crystals are known to trigger NLRP3
inflammasome activation, and thereby mediate inflamma-
tion associated with gout and pseudo-gout (Martinon et al.,
2006). Importantly, a high serum level of urate (hyperuricae-
mia) is considered a risk factor for the development of hyper-
tension (Ward, 1998; Bos et al., 2006). Studies dating back to
the 19th century have reported a strong association between
hyperuricaemia and hypertension (Haig, 1889; Bos et al.,
2006). In support of a causal link between the two conditions,
induction of mild hyperuricaemia in rats resulted in a marked
increase in BP (Mazzali et al., 2001). Furthermore, clinical
trials have shown that allopurinol, a drug used for the treat-
ment of hyperuricaemia and gout, was highly effective at
reducing BP in hypertensive adolescents, but less so in older
individuals, suggesting that hyperuricaemia may have an
especially important role early in the pathogenesis of hyper-
tension (Feig et al., 2008). It remains to be determined
whether microcrystal-induced inflammasome activation rep-
resents the mechanistic link between hyperuricaemia and
elevated BP.

Extracellular ATP
Extracellular ATP acting at the P2X7 receptor is a well-
described stimulus for NLRP3 inflammasome activation and
there is evidence that this receptor might play a role in

hypertension. In general, high levels of extracellular ATP
occur as a consequence of cellular damage and a loss of
plasma membrane integrity and thereby serve as a danger
signal to the immune system (Trautmann, 2009). There is
some controversy surrounding how ATP/P2X7 signalling
actually leads to inflammasome assembly. The P2X7 receptor
is a ligand-gated ion channel and initially it was thought that
the K+ efflux that followed activation of this receptor repre-
sented the signal for inflammasome activation (Mariathasan
et al., 2006). It has also been suggested that P2X7-dependent
activation of inflammasomes may involve the recruitment of
the pore-forming protein, pannexin-1, to the plasma mem-
brane, in turn allowing the entry of DAMPs into the cell
which are ultimately the stimuli for inflammasome activation
(Schroder and Tschopp, 2010a). However, more recently, it
was suggested that DAMPs, including microcrystals, are able
to directly stimulate the release of endogenous ATP to cause
IL-1β production in a P2X7-dependent mechanism (Riteau
et al., 2012). Regardless, all of these possibilities involve a
central role for the P2X7 receptor in inflammasome activa-
tion. In addition, expression of this receptor was elevated in
various models of hypertension in rodents, and its deletion
(i.e. in P2X7 receptor-knockout mice) is associated with lower
BP and less renal fibrosis and inflammation (Vonend et al.,
2004; Ji et al., 2012a,b).

ROS
It is clear that ROS and NF-κB play important roles in priming
of the inflammasome (i.e. Signal I) to cause transcrip-
tional up-regulation of NLRP3, pro-IL-1β and pro-IL-18
(Bauernfeind et al., 2009; 2011). However, the role of ROS in
NLRP3 and caspase-1 activation (i.e. Signal II) still remains
controversial. On the one hand, high levels of ROS have been
shown to oxidatively modify caspase-1 protein resulting in a
reduction in its catalytic activity (Meissner et al., 2008). Con-
versely, various DAMPs that are known to activate the NLRP3
inflammasome induce the production of ROS (Cruz et al.,
2007; Dostert et al., 2008; Tschopp and Schroder, 2010). Fur-
thermore, several studies have shown that inhibition of ROS
can prevent ATP- and microcrystal-induced inflammasome
activation (Dostert et al., 2008; Liao et al., 2013; Kojima et al.,
2014) and it has thus been proposed that ROS (rather than
microcrystals and extracellular ATP) are the actual triggers
for assembly of the NLRP3 inflammasome (Schroder and
Tschopp, 2010a).

It is well established that hypertensive stimuli, such as
angiotensin II, aldosterone and endothelin-1, increase the
expression and activity of a family of enzymes called NOX in
both immune and non-immune cell types (Drummond et al.,
2011; Touyz and Briones, 2011). NOX enzymes are consid-
ered primary sources of ROS and play key roles in physiologi-
cal redox signalling and in the host-defense response to
invading pathogens (Drummond et al., 2011). However, in
the setting of hypertension, elevated NOX expression may
lead to excessive ROS production, which can in turn result in
oxidative modifications to other enzymes including endothe-
lial NOS (eNOS), xanthine dehydrogenase and the subunits
of the mitochondrial electron transport chain (Touyz and
Schiffrin, 2004; Touyz and Briones, 2011). Such modifications
uncouple these enzymes from their normal catalytic function
and render them as additional enzymatic sources of ROS. In
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summary, hypertension is associated with elevated ROS pro-
duction by a range of enzymic sources. Furthermore, inhibi-
tion of ROS production reduces BP and renal and vascular
dysfunction in hypertension (Touyz and Schiffrin, 2004;
Chan et al., 2007; Araujo and Wilcox, 2014). Thus, it will be
interesting to determine the role of ROS-dependent inflam-
masome priming and activation in the pathogenesis of
hypertension.

Therapeutic opportunities

The data discussed above provide evidence for an association
between hypertension and inflammasome and/or caspase-1-
dependent IL-1β/IL-18 production. However, it remains to be
established conclusively whether there exists a causal rela-
tionship between inflammasome activation and vascular and
renal inflammation. Testing for such an association will
involve studies examining the effects of strategies that either
inhibit inflammasome activation, or block the actions of
IL-1β and IL-18, on renal and vascular inflammation and
other disease parameters in experimental models of hyper-
tension. Transgenic mice with selective deficiencies in various
components of the inflammasome/IL-1 signalling cascade are
available and could be readily used to examine the role of this
system in hypertension. Several studies have demonstrated
that mice with deficiencies in either caspase-1, IL-1β, IL-1R or
IL-18 have a dampened immune response and an impaired
ability to produce cytokines such as IL-6, TNF and/or IFN-γ,
and that this is associated with protection against chronic
inflammatory diseases such as arthritis, atherosclerosis
and inflammatory bowel disease (Siegmund et al., 2001;
Dinarello, 2002; Chamberlain et al., 2009; Joosten et al.,
2009; Duewell et al., 2010). However, to our knowledge, the
only study to have utilized such transgenic models for the
study of hypertension is that by Chamberlain et al. (2009). In
this study, it was shown that deficiency of the IL-1R in
atherosclerosis-prone apolipoprotein E knockout mice (i.e.
IL-1R−/−/ApoE−/− double knockouts) was associated with a
blunted hypertensive response to high fat diet-feeding com-
pared with the ApoE−/− single knockout strain, as well as
reductions in vascular oxidative stress and endothelial dys-
function (Chamberlain et al., 2009). Further studies like this
are expected to provide the necessary proof-of-concept that
the inflammasome and its cytokine products are promising
targets for future antihypertensive therapies. The following
section will review the broad classes of pharmacological
agents that have been identified as inhibitors of
inflammasome-dependent signalling and which could there-
fore represent future therapeutic agents for the treatment of
hypertension.

Inhibitors of IL-1β signalling
The IL-1Ra is an endogenous antagonist that specifically
inhibits the actions of IL-1α and IL-1β, but not IL-18
(Dinarello, 2002). Anakinra is a recombinantly synthesized
IL-1Ra consisting of the same structure as endogenous
human IL-1Ra except for an additional methionine residue at
the N-terminus to confer stability (Muller et al., 2000). It is
currently used for the clinical treatment of the auto-

inflammatory disease, rheumatoid arthritis (Mertens and
Singh, 2009). Despite its short half-life and poor oral bioavail-
ability (it must be administered subcutaneously), anakinra
has been shown in clinical trials to be effective at reducing
monocyte infiltration and inflammation in the synovial
joints of patients with rheumatoid arthritis (Fleischmann
et al., 2004).

Canakinumab is a high-affinity human monoclonal anti-
body against IL-1β (Kuemmerle-Deschner and Haug, 2013). It
has a longer plasma half-life and more favourable safety
profile than anakinra and is currently approved for clinical
use in the treatment of cryopyrin-associated periodic syn-
drome – a rare inflammatory condition caused by a mutation
in the NLRP3 gene (Kuemmerle-Deschner and Haug, 2013).
In a Phase IIb trial on men and women with well-controlled
diabetes and a high cardiovascular risk profile, canakinumab
treatment for 4 months was shown to reduce circulating
markers of inflammation including CRP, IL-6 and fibrinogen,
without altering plasma lipid profiles (Ridker et al., 2012).
Based on these promising findings, canakinumab was taken
into a large multinational Phase III clinical trial [Canaki-
numab Anti-Inflammatory Thrombosis Outcomes Study
(CANTOS)], to investigate its effects on recurrent cardiovas-
cular events such as myocardial infarction and stroke in
patients with coronary artery disease and elevated levels of
high-sensitivity CRP (Ridker et al., 2011). Results from this
study are expected to be released in 2017 and it will be
interesting to see what effects (if any) canakinumab treat-
ment has on BP in these high risk patients.

Caspase-1 inhibitors
Caspase-1 has been a prime target for several inflammatory
diseases including arthritis and inflammatory bowel disease
(Randle et al., 2001). Because caspase-1 inhibition should
block the production of both IL-1β and IL-18, it is reasonable
to expect that inhibitors of this enzyme will be more effica-
cious than IL-1R antagonists at reducing inflammation.
However, it is also conceivable that caspase-1 inhibitors
might have more off-target effects than drugs that selectively
target either IL-1β or IL-18 alone.

Ac-YVAD-cmk and ac-YVAD-CHO are tetrapeptides that
specifically and irreversibly inhibit caspase-1. These inhibi-
tors are highly selective for caspase-1 (Ki ∼ 1 nM) over other
caspase isoforms (Ki = 163 to more than 10 000 nM)
(Rabuffetti et al., 2000). Moreover, several studies have shown
that ac-YVAD inhibits capsase-1 activity in vivo, thereby
reducing inflammation in experimental models of spinal cord
injury and cerebral haemorrhage (Karaoglan et al., 2008;
Suzuki et al., 2009; Wu et al., 2010). Several low MW
caspase-1 inhibitors have also been developed and tested in
clinical trials for the treatment of inflammatory conditions
including rheumatoid arthritis, psoriasis and hepatitis C
(Cornelis et al., 2007; MacKenzie et al., 2010). However, each
of these trials were terminated either because of toxicity,
especially with regard to liver function, or as a result of poor
efficacy (MacKenzie et al., 2010). A clinical trial is currently
underway to assess the effects of another caspase-1 inhibitor,
VX-765, for the treatment of epilepsy (Kaminski et al., 2014).
Post hoc analysis of data from this trial suggests that VX-765
decreased seizure frequency and that this effect was sustained
for >2 weeks after treatment was discontinued (Kaminski
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et al., 2014). Epilepsy is a condition that is not classically
associated with inflammation. Rather, IL-1β is thought to
contribute to epilepsy through directly enhancing NMDA
receptor activity via a Src kinase-dependent mechanism
(Viviani et al., 2003; Kaminski et al., 2014). It is unclear what
effect this action of caspase-1 inhibition would have in terms
of treatment of hypertension. On one hand, Src kinase activ-
ity is enhanced in VSMCs of spontaneously hypertensive rats
and is thought to contribute to vascular remodelling associ-
ated with hypertension (Touyz et al., 2002). On the other
hand, activation of NMDA receptors in the nucleus tractus
solitarius (NTS) has been associated with a reduction in BP
(Kubo and Kihara, 1988), and thus caspase-1-mediated inhi-
bition of these receptors might be expected to worsen hyper-
tension. Clearly, these issues, as well as those relating to
toxicity, need to be resolved before caspase-1 inhibition can
be considered as a therapeutic option for the treatment of
hypertension.

P2X7 receptor antagonists
The P2X7 receptor is an ATP-gated ion channel that allows
the passage of cations such as Na+, Ca2+ and K+ (Volonté et al.,
2012; Alexander et al., 2013). It displays a restricted expres-
sion profile found primarily in macrophages, certain lympho-
cytes and fibroblasts (Carroll et al., 2009). As mentioned,
activation of P2X7 receptors is thought to induce inflamma-
some activation by facilitating K+ efflux and/or recruitment of
the hemi-channel pannexin-1 and subsequent entry of
DAMPs into the cell. A-438079 is a competitive reversible
inhibitor of the P2X7 receptor that is at least 100-fold more
selective for this receptor than other members of the P2
receptor family (Donnelly-Roberts and Jarvis, 2007). Of direct
relevance to the present discussion, A-438079, as well as a
structurally distinct inhibitor of P2X7 receptors, Brilliant Blue
G, were shown to reduce urinary albumin excretion, mac-
rophage infiltration and BP in a rat model of salt-sensitive
hypertension (Ji et al., 2012a). These findings highlight the
potential of P2X7 receptor antagonists as novel therapies for
the treatment of hypertension.

Pleiotropic actions of statins
Statins (3-hydroxy-3-methylglutaryl-coenzyme A [HMG-
CoA] reductase inhibitors) are widely used in the clinic to
reduce serum cholesterol levels – and thus cardiovascular risk
– in patients with hypercholesterolaemia (Sirtori, 2014).
However, in addition to cholesterol lowering, statins display
pleiotropic effects that likely contribute to their beneficial
effects on the cardiovascular system. Thus, statins have been
shown to have modest antihypertensive effects, especially in
patients with resistant hypertension (Borghi et al., 2000;
Wassmann et al., 2001; Strazzullo et al., 2007; Briasoulis et al.,
2013), and the ability to enhance endothelial function
(Tsunekawa et al., 2001; de Jongh et al., 2002; Landmesser
et al., 2005) and inhibit ROS production (Wassmann et al.,
2001; Delbosc et al., 2002). In addition, statins possess anti-
inflammatory properties such as reducing circulating levels of
proinflammatory cytokines and suppressing adhesion mol-
ecule expression on vascular endothelial and smooth muscle
cells (Albert et al., 2001; Chung et al., 2002; Rezaie-Majd et al.,
2002). In a recent study, it was shown that treatment of bone

marrow-derived macrophages from mice with statins inter-
fered with the processing of pro-IL-1β (Davaro et al., 2014).
Specifically, statin treatment was associated with the forma-
tion of a 28 kDa intermediate form of IL-1β, which came at
the expense of production of the mature 17 kDa form. The
partly processed form of IL-1β failed to induce IL-6 produc-
tion in HEK 293T cells, indicating that it had no intrinsic
agonistic activity. Furthermore, pretreatment of cells with the
28 kDa variant blocked the ability of mature IL-1β to stimu-
late cytokine production in the same assay, suggesting that it
may be a novel IL-1RI antagonist. While these findings need
to be confirmed in vivo in humans, it is tempting to speculate
that inhibition of IL-1β processing may explain at least some
of the pleiotropic actions of statins in reducing cardiovascular
risk.

Conclusion

In summary, there is a growing body of evidence to suggest
that hypertension is associated with elevated production of
the IL-1 family cytokines, IL-1β and IL-18. At this stage, it is
not known whether elevated levels of IL-1β and IL-18 are
causes or mere consequences of chronically elevated BP
and/or its disease sequelae such as vascular remodelling, ath-
erosclerosis and renal dysfunction. It also remains to be deter-
mined whether inflammasome activation is involved and, if
so, which stimuli are responsible. Several drugs that are cur-
rently in clinical use or undergoing trials for the treatment of
other inflammatory disorders act by targeting different com-
ponents of the inflammasome/IL-1 signalling pathway.
Therefore, a better understanding of the activation mecha-
nisms and role of inflammasome-derived IL-1 family
cytokines in hypertension has a high potential to improve
the way we manage the condition in the clinic.
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