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Transcriptome-wide association
study of HIV-1 acquisition identifies
HERC1 as a susceptibility gene

Rodrigo R.R. Duarte,1,2,4,* Oliver Pain,1 Robert L. Furler,2 Douglas F. Nixon,2,3 and Timothy R. Powell1,2,3

SUMMARY

The host genetic factors conferring protection against HIV type 1 (HIV-1) acquisi-
tion remain elusive, and in particular the contributions of common genetic
variants. Here, we performed the largest genome-wide association meta-analysis
of HIV-1 acquisition, which included 7,303 HIV-1-positive individuals and 587,343
population controls. We identified 25 independent genetic loci with suggestive
association, of which one was genome-wide significant within the major histo-
compatibility complex (MHC) locus. After exclusion of the MHC signal, linkage
disequilibrium score regression analyses revealed a SNP heritability of 21% and
genetic correlations with behavioral factors. A transcriptome-wide association
study identified 15 susceptibility genes, including HERC1, UEVLD, and
HIST1H4K. Convergent evidence from conditional analyses and fine-mapping
identified HERC1 downregulation in immune cells as a robust mechanism associ-
ated with HIV-1 acquisition. Functional studies on HERC1 and other identified
candidates, as well as larger genetic studies, have the potential to further our un-
derstanding of the host mechanisms associated with protection against HIV-1.

INTRODUCTION

HIV type 1 (HIV-1) acquisition is a complex trait that depends on environmental and genetic factors,

including dose of viral inoculum (Rodger et al., 2019) and host behavioral, cellular, and immune parameters

moderating susceptibility to infection, viral control, and a systemic spread (Powell et al., 2020). Although

there have been many advances in the development of successful prevention options (i.e., pre- and

post-exposure prophylaxis [PrEP/PEP] [Donnell et al., 2014; Grant et al., 2010; Sultan et al., 2014]), there

is no effective vaccine to prevent a systemic infection. Ultimately, advances in prevention science require

a far greater understanding of the molecular mechanisms underlying susceptibility to HIV-1.

There are several host factors associated with HIV-1 acquisition, including cytokines, CCR5, APOBEC3G,

TRIM5, human leukocyte antigen (HLA) class I genes, and others (Lama and Planelles, 2007; Martin and Car-

rington, 2013). However, most studies so far have been unable to distinguish causation from consequence

of infection or correlation with co-infections. The best established genetic marker of protection against

infection is the CCR5 D32 homozygous mutation (Alkhatib, 2009), which results in a faulty coreceptor

that stops HIV-1 from entering its target cells (Lopalco, 2010). Nevertheless, homozygotes are rare, repre-

senting 1.2% of Europeans and less than 0.1% of individuals from other populations (Auton et al., 2015).

Because studies prior to antiretroviral therapy have showed that up to two-thirds of individuals exposed

to HIV-1 may not become infected despite exposure (Fowke et al., 1996; The Working Group on

Mother-To-Child Transmission of HIV, 1995), it is plausible that there are common genetic variants associ-

ated with protection against infection. Yet, the molecular mechanisms underlying host susceptibility to

infection, particularly those associated with common genetic variants, remain largely unknown.

Genome-wide association studies (GWAS) have the potential to fast-track the identification of common genetic

variants and, consequently, genes and biological processes involved in HIV-1 acquisition. Although there was a

lack of large genetic studies monitoring at-risk populations prior to the development of antiretroviral therapy,

cross-sectional studies analyzing genetic differences between HIV-1-positive and HIV-1-negative individuals

are likely tohighlight relevantgeneticmechanismsof acquisition.However, becauseassociatedvariants areoften

noncoding and located in regions of complex linkage disequilibrium, it is challenging to pinpoint the genes
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directly affected by the risk variants identified inGWAS. In addition, the genetic architecture underlying complex

traits originates frommultiple tissues, and therefore,GWAS results alone cannotdirectly informhoworwhere the

risk signal imparts its effects on gene expression regulation. In this context, transcriptome-wide association

studies (TWAS) are effective tools to establish how genetic susceptibility exerts its effect (i.e., up- or downregu-

lation of susceptibility genes) in a tissue-informedmanner (Gusev et al., 2016, 2018; Mancuso et al., 2017, 2018).

Becausegenetic variants could impingeupon the regulationof keyhostmoleculesmoderating viral entry or repli-

cation (e.g., proteins that act as viral receptorsorDNArepair enzymes thatdegrade foreignnucleic acidmaterial),

identifying such regulatory mechanisms associated with HIV-1 acquisition could provide insight into future

research on drug and vaccine development. Furthermore, considering that HIV-1 acquisition genetics likely en-

compasses immuneandbehavioral factors (Powell et al., 2020),TWAScanhelp isolate immuneprocessesby iden-

tifying cis-regulatory mechanisms that more strongly explain the genetic association signal in lymphocytes or

whole blood relative to other tissues (e.g., brain tissue). Finally, TWAS aggregate SNP associations for each

gene ina functionally informedmanner.Because theycompriseofgene-level analyses,TWASreduce themultiple

testing burden typically associated with GWAS, and thus, they can be useful in identifying susceptibility genes in

less well-powered genetic association studies (Dall’Aglio et al., 2021; Gusev et al., 2016).

The largest GWAS of HIV-1 acquisition to date has identified no common genome-wide significant variants

outside of the major histocompatibility complex (MHC) locus (McLaren et al., 2013). However, considering

the high estimates of SNP heritability (h2SNP) observed for HIV-1 acquisition in that study after removing the

MHC signal (h2SNP = 28–42%) (Powell et al., 2020) and that larger sample sizes typically provide increased

power to detect genetic associations (Ziyatdinov et al., 2021), we meta-analyzed their results with findings

from Johnson et al. (2015), FinnGen (2021), and the UK Biobank (Neale Lab, 2018). We also performed the

first multi-tissue transcriptome-wide association study of HIV-1 acquisition and identified a robust, and

arguably the first, common genetic risk mechanism associated with this trait.

RESULTS

Genome-wide association meta-analysis of HIV-1 acquisition

Our genome-wide associationmeta-analysis of HIV-1 acquisition included 7,303 cases and 587,343 controls

(total N = 594,646, effective N = 17,014.55). We did not expect any sample overlap across the studies

included in themeta-analysis, but we confirmed this through a genetic correlation analysis performed using

linkage disequilibrium score (LDSC) regression (Bulik-Sullivan et al., 2015b) (adjusted p > 0.05 for all pair-

wise comparisons, indicating absence of sample overlap; Table S1).

Our study assessed the effects of 5,347,926 genetic variants in relation to HIV-1 acquisition. We identified

25 independent loci across the genome with suggestive association (p < 5 3 10�6), of which one, at the

MHC, surpassed genome-wide significance (p < 5 3 10�8) (Figure 1A). Demonstrating the consistency of

the signal across the individual studies included in the meta-analysis, we observed that of the 313 variants

with suggestive association that were assessed in all four studies, 301 (96%) showed concordant directions

of effect across all studies. The distribution of peaks in the Manhattan plot and the deviation of the

observed p values from the null hypothesis in the quantile-quantile (Q-Q) plot suggest a high degree of

polygenicity associated with HIV-1 acquisition susceptibility (Figure 1B; see more about genomic inflation

analyses below, in the sensitivity analyses section). LDSC regression estimated the SNP heritability (h2SNP)

as 0.2105 (0.0369), corroborating a polygenic signal for HIV-1 acquisition.

Figure 1. GWAS meta-analysis of HIV-1 acquisition suggests a high degree of polygenicity

(A) SNP-level Manhattan plot and (B) quantile-quantile plot of the associations observed. The top associated SNP

identified was rs41557415 (p = 1.96 3 10�8), located at the MHC locus, on chromosome 6.
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The top associated SNP identified was rs41557415 (p = 1.96 3 10�8), located at the MHC locus, more spe-

cifically in theHLA-B gene. As expected, this SNP is in linkage disequilibriumwith the top association signal

from McLaren et al. (2013), rs4418214 (R2 = 0.43, D’ = 0.98 in Europeans), which the authors suggest tags

HLA-B*57:01 and 27:05. However, because our meta-analysis was performed using summary statistics

only, we were unable to map the MHC signal to a specific HLA haplotype. Further, and as expected,

variants working under a recessive genetic model like the CCR5 D32 mutation (or a proxy for it,

rs113010081 [R2 = 0.94, D’ = 0.98 in Europeans]) did not show an association with HIV-1 acquisition

(p > 0.05).

Genetic correlations with 1,478 complex traits

We investigated traits genetically correlated with HIV-1 acquisition by performing genetic correlation an-

alyses with 1,478 GWAS traits using LD score regression (Bulik-Sullivan et al., 2015a, 2015b; Cuéllar-Partida

et al., 2019). We observed associations with traits such as ‘‘having ever smoked’’ (rg = 0.34, p = 4.823 10�8),

‘‘alcohol usually taken with meals’’ (rg =�0.36, p = 1.693 10�6), ‘‘ever had same-sex intercourse’’ (rg = 0.62,

p = 2.143 10�8), and ‘‘substances taken for depression’’ (rg = 0.37, p = 2.323 10�5; all Bonferroni p < 0.05;

Table S2).

We calculated the genetic causality proportion (GCP) (O’Connor and Price, 2018) of HIV-1 acquisition

on each of the correlated traits separately in an attempt to clarify these relationships (Table S2).

Although these analyses produced GCP estimates indicating a low probability of shared causality (|

GCP| < 0.60), the top trait pair identified with nominal confidence suggested that ‘‘alcohol usually

taken with meals’’ (a sociodemographic indicator) is a protective factor for HIV-1 acquisition (GCP =

�0.597, p = 0.036). However, the low-confidence GCP estimates observed for this and other correlated

traits after multiple testing correction (Bonferroni p > 0.05) indicate a lack of sufficient evidence to sup-

port or dismiss shared genetic causality.

Functional characterization of the GWAS results

To understand whether there were functional genomic categories enriched within the GWAS results, we

performed partitioned heritability using LDSC regression (Table S3). We found that the GWAS results

were negatively enriched within a category named ‘‘MAF_Adj_LLD_AFR’’ (coefficient = �185.15 [36.6],

p = 4.09 3 10�4, Bonferroni p = 0.04). This genomic annotation corresponds to variants whose levels

of linkage disequilibrium (LLD) are similar in a reference African population, after adjusting for minor

allele frequency (MAF) differences. Thus, a negative enrichment suggests that the associated loci in

Europeans will likely have a different LD structure in Africans, thus warranting studies in more diverse

populations.

We also tested the GWAS results for enrichment with gene sets involved in known biological pathways and cell

types, considering 14,462 biological terms and 209 cell and tissue types. The topgene sets associatedwithHIV-1

acquisitionwere ‘‘melanoma-associatedantigen1 (MAGEA1) subnetwork’’ (p=4.52310�4) and ‘‘TLymphocytes

Regulatory’’ (p = 0.024), respectively, but these did not survive multiple testing correction (Bonferroni p > 0.05).

No significant genetic overlap between HIV-1 acquisition and HIV-1 viral control

To investigate whether the genetic mechanisms underlying susceptibility to HIV-1 acquisition were shared

with those regulating viral control in HIV-1-positive individuals, we tested whether PRS for HIV-1 acquisition

was associated with viral load in blood, using a cohort of 288 Europeans. We found a nominal genetic over-

lap between HIV-1 acquisition and viral control, with the most significant effect at the p-value threshold (PT)

of 0.1 (b = �1297.07, S.E. = 601.37, p = 0.03), which explained 1.6% of the variance in viral load in that

cohort. However, this effect did not survive multiple testing correction for the number of thresholds tested

(n = 8; adjusted p > 0.05), suggesting a nonsignificant andminimal overlap between polygenic risk for HIV-1

acquisition and viral control in people living with HIV-1.

Transcriptome-wide association study of HIV-1 acquisition

To identify gene expression profiles associated with susceptibility to HIV-1 acquisition, we performed a

multi-tissue transcriptome-wide association study using FUSION (Gusev et al., 2016) (Figure 2A; see

TWAS expression weights tested in Table S4). The p-value distribution and quantile-quantile plot suggest

that there are many genes whose expression are regulated in association with susceptibility to HIV-1
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acquisition (Figures 2B and 2C). After correcting for the number of unique features tested across all TWAS

weight panels (27,540 unique genes), we observed 26 Bonferroni-significant TWAS association signals

spanning 15 genes and 22 expression panels (p < 0.05/27,540 or 1.823 10�6; Table S5). Themost significant

feature was the gene UEVLD, from chromosome 11p15.1, in one of the cross-tissue modules (Z =�5.60, p =

2.18 3 10�8, Bonferroni p = 6.00 3 10�4). Another significant gene was HERC1, on chromosome 15q22.31,

whose downregulation in EBV-transformed B lymphocytes was associated with HIV-1 acquisition (Z =

�4.85, p = 1.23 3 10�6, Bonferroni p = 0.04). Notably, the other 24 association signals corresponded to

genes located within the MHC locus. These signals must be interpreted with caution due to the complex

LD structure in this region, which can result in associations driven by correlation with other cis-regulatory

mechanisms. We performed conditional analyses in FUSION, where GWAS associations were re-evaluated

after controlling for the expression of TWAS-significant genes within their respective loci. Out of the 26

TWAS association signals, only three represented independent associations with HIV-1 acquisition

(HERC1, UEVLD, HIST1H4K), whereas the remainder correlated with the expression of these three genes

or were unable to explain the GWAS signal in their respective locations. For instance, we observed that

the top GWAS signal on chromosome 15, rs6494412 (GWAS p = 3.30 3 10�6), was no longer significantly

associated with HIV-1 acquisition after controlling for the expression of HERC1 in EBV-transformed B lym-

phocytes (conditional p = 0.06; Figure 3A). Similarly, the top GWAS SNP on chromosome 11, rs7942526

(GWAS p = 9.40 3 10�7) was not associated with HIV-1 acquisition after controlling for the expression of

UEVLD in the cross-tissue weights (conditional p = 0.59; Figure 3B). For the MHC region, we observed

that the top GWAS hit at the HIST1H4K locus, rs13218875 (GWAS p = 1.80 3 10�7), was also no longer

significantly associated with HIV-1 acquisition after controlling for the expression of that gene (conditional

Figure 2. Multi-tissue transcriptome-wide association study of HIV-1 acquisition

(A) Manhattan biplot showing all TWAS associations identified, (B) quantile-quantile plot of the associations identified,

and (C) distribution of p-values. We observed 15 genes whose expression correlated with HIV-1 acquisition susceptibility,

including genes located outside of the MHC complex, such as UEVLD (p = 2.18 3 10�8, Bonferroni p = 6.00 3 10�4), and

HERC1 (p = 1.23 3 10�6, Bonferroni p = 0.04).
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p = 0.0504; Figure 3C). On the other hand, the top GWAS hit at a neighboring MHC location, rs1265099

(GWAS p = 9.703 10�6), remained significant after controlling for the expression ofMICB in the esophagus

muscularis and PSORS1C1 in the anterior cingulate cortex (conditional p = 0.03; Figure 3D), which suggests

that other genes or regulatory mechanisms (e.g., trans-regulatory effects) at this locus may be involved in

susceptibility. Ultimately, these findings corroborate a role for HERC1, UEVLD, and HIST1H4K in HIV-1

acquisition.

TWAS fine-mapping

We used FOCUS to calculate 90%-credible gene sets (i.e., sets likely to contain causal genes) and proba-

bility estimates of causality (PIP) for each gene. We observed that HERC1 expression in EBV-transformed B

lymphocytes (PIP = 0.917) and RTP4 in the aorta (PIP = 0.688) were associated with high estimates of

causality (i.e., PIP >0.50). The only gene expression mechanism robustly associated with HIV-1 acquisition

according to the conditional analyses from FUSION and the FOCUS fine-mapping analysis was the down-

regulation of HERC1, as identified in EBV-transformed B lymphocytes.

HERC1 expression

Analysis of HERC1 expression in the Human Protein Atlas (Uhlén et al., 2015) showed that HERC1 was de-

tected in virtually all cells and tissues examined. A clustering analysis suggests, with maximum statistical

confidence, thatHERC1 expression is associatedwith genes involved in transcription regulation (Figure 4A).

Among blood cell types, HERC1 clustered, also with maximum confidence, with genes associated with

basophils (Figure 4B).

Sensitivity analyses

To ensure that there were no systematic biases in our GWAS meta-analysis, we analyzed it using LDSC

regression (Bulik-Sullivan et al., 2015b). This analysis produced a genomic inflation factor (lGC) estimate

Figure 3. Regional association plots of the TWAS hits

Conditional analyses corroborate independent TWAS associations for (A) HERC1 in EBV-transformed lymphocytes (rs6494412 association before

conditioning, p = 3.30 x 10-6; after, p = 0.06), (B) UEVLD in one of the cross-tissue panels (rs7942526 association before conditioning, p = 9.40 x 10‑7; after,

p = 0.59), and (C) HIST1H4K in the colon transverse (rs13218875 association before conditioning, p = 1.80 x 10-7; after, p = 0.0504). On the other hand,

(D) MICB expression in the esophagus muscularis and PSORS1C1 in the anterior cingulate cortex explain the GWAS association signal at their locus only in

part (rs1265099 association before conditioning, p = 9.70 x 10-6; after, p = 0.03). The dots colored in gray and blue correspond to the degree of association of

individual SNPs with HIV-1 acquisition, before and after conditioning their association on the predicted expression of the gene(s) highlighted in green at

each locus, respectively. The genes highlighted in blue correspond to marginally associated genes.
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of 1.14 with an intercept of 1.07 (0.0077), indicating that there could be an inflation signal due to popu-

lation stratification in one of the studies included. In fact, LDSC regression of the McLaren study, the

largest study included in the meta-analysis, corresponding to approximately 80% of the final effective

sample size, produced a lGC estimate of 1.1491 with an intercept of 1.0833 (0.0076). Although the authors

did not find evidence of population stratification in their study, we corrected their summary statistics using

the intercept genomic control (intercept-GC) method (Bulik-Sullivan et al., 2015b). We meta-analyzed the

corrected summary statistics with the other three studies (i.e., Johnson et al. (2015), FinnGen (2021), UK

Biobank [Neale Lab, 2018]). This new meta-analysis, when analyzed by LDSC regression, produced a

lGC estimate of 1.0649 with an intercept of 1.0031 (0.0072), suggesting that applying the intercept-GC

method to the McLaren study alone was sufficient to remove any potential bias in the meta-analysis

Figure 4. HERC1 expression according to the Human Protein Atlas

Despite the ubiquitous expression of HERC1 in all tissues and cell types, (A) a multi-tissue clustering analysis indicates

that HERC1 expression is likely related to the regulation of transcription.

(B) Analysis of immune cell types only showed that HERC1 expression clustered with genes associated with basophils.

UMAP, uniform manifold approximation and projection, used in clustering analysis for dimension reduction.
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(i.e., intercept closer to 1). Even though heritability estimates are downward biased after genomic control,

we observed that the h2SNP of this new meta-analysis remained high (h2SNP = 0.197 [0.0337]), corroborating

the high degree of polygenicity associated with HIV-1 acquisition. A new TWAS was performed, where we

replicated the TWAS associations observed previously: UEVLD in the cross-tissue module (Z = �5.40, p =

6.53 3 10�8), HERC1 in EBV-transformed B lymphocytes (Z = �4.70, p = 2.54 3 10�6), and HIST1H4K in the

colon transverse (Z = 5.35, p = 8.77 3 10�8) (Table S5). In the FOCUS analysis, the agnostic TWAS fine-

mapping identified HERC1 expression in EBV-transformed B lymphocytes (PIP = 0.858) and RTP4 in the

aorta (PIP = 0.568) as robustly associated with HIV-1 acquisition.

DISCUSSION

Exposure to infectious agents does not always lead to a systemic infection. For instance, epidemiological

studies prior to antiretroviral therapy indicated that up to two-thirds of individuals exposed to HIV-1 do

not become infected (Fowke et al., 1996; The Working Group on Mother-To-Child Transmission of HIV,

1995). Although dose of viral inoculum (Pedraza et al., 1999) and route (Patel et al., 2014) of exposure are

strong predictors of a systemic infection, it has been hypothesized that host genetic differences also

moderate susceptibility to viral entry, replication, and a systemic spread (Limou et al., 2009; Liu et al.,

1996; McLaren et al., 2013, 2015; Powell et al., 2020). However, aside from CCR5, the host genetic factors

involved in susceptibility to HIV-1 acquisition, particularly those related to common genetic variants,

remain elusive. Here, we performed the largest genome-wide association meta-analysis and the first

multi-tissue TWAS of HIV-1 acquisition to advance our understanding of the genetic factors involved

in this trait.

TheGWAS identified 25 independent loci with suggestive association, of which one, at theMHC, surpassed

genome-wide significance. Although the MHC remains a fundamental target for HIV-1 research (e.g., Per-

eyra et al., 2010), we were unable to confidently infer protective MHC haplotypes, given the current lack of

methods to do this using GWAS summary statistics alone. This is a challenging task considering the large

linkage disequilibrium block sizes located in this highly polymorphic region (Dawkins and Lloyd, 2019).

However, in our study, we explored the polygenic architecture of HIV-1 acquisition using genetic correla-

tions, partitioned heritability, gene-set enrichment analyses, and a TWAS. This genome-wide characteriza-

tion of HIV-1 acquisition was needed considering the high h2SNP estimated for this trait using the LD score

regression method, which disregards SNPs located at the MHC to avoid inflated estimates (Bulik-Sullivan

et al., 2015b). Thus, our study represents an important step toward a better understanding of the risk genes

involved in HIV-1 acquisition, beyond those explored due to historical relevance alone, which could reveal

genuine mechanisms associated with susceptibility, identified through hypothesis-free analyses, as

observed in other fields (e.g., psychiatry, see Duarte et al., 2021).

We found that HIV-1 acquisition was associated with a h2SNP estimate of 0.21 (0.04), which represented

a 25% reduction in heritability relative to what we observed previously in the McLaren study alone

(h2SNP = 0.28 [0.05]) (Powell et al., 2020). Although increases in sample size improve the power to

detect the core genes associated with a GWAS trait, it is plausible that the individual studies included

in the meta-analysis also increased the complexity of the phenotype analyzed because of the different

case-control selection criteria used in each study (increased phenotype complexity typically decreases

heritability estimates; see Tropf et al., 2017). For instance, it is plausible that the Johnson et al. (2015)

study, in which cases and controls were matched injecting drug users, may provide insight into the

genetic signals that more strongly reflect immune processes. On the other hand, studies analyzing

cases versus population controls, such as the McLaren et al. (2013) study, may highlight genetic signals

that reflect more socioeconomic or behavioral factors. The observed reduction in heritability is also

consistent with the lower estimates of h2SNP calculated for susceptibility to infections in general

(�2%–7% [Nudel et al., 2019]).

We observed genetic correlations between HIV-1 acquisition and multiple traits that were previously iden-

tified in a study from our group, where we performed LD score regression analyses on the McLaren study

alone (Powell et al., 2020). For example, we confirmed an association with smoking status, which is consis-

tent with epidemiological findings showing that smoking is more prevalent among HIV-1-positive individ-

uals relative to the general population (Batista et al., 2013). Another correlated trait was ‘‘alcohol usually

taken with meals,’’ which is a proxy for socioeconomic status (Zhou et al., 2021). It is plausible that this is

a reflection of the fact that infection is typically higher among individuals with lower income and fewer years
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of education (Bunyasi and Coetzee, 2017). As a reflection of the more extensive GWAS catalog used in the

present screening, we further identified new traits associated with HIV-1 acquisition, including ‘‘ever had

same-sex intercourse’’ and ‘‘substances taken for depression.’’ These results corroborate known risk factors

associated with HIV-1 acquisition, i.e., there is an increased prevalence of HIV-1 among men who have sex

with men (Center for Disease Control and Prevention, 2021) and an increased prevalence of depression in

people living with HIV-1 (Tran et al., 2019).

To identify the gene expression profiles associated with HIV-1 acquisition, we performed a multi-tissue

TWAS. The TWAS identified 15 genes regulated in association with HIV-1 acquisition, of which three genes

had their expression considered independent from other genes in their loci (UEVLD, HERC1, and

HIST1H4K). None of these genes were identified in a recent TWAS of HIV-1 viral control (Li et al., 2021). Us-

ing an agnostic TWAS fine-mapping approach, we found evidence corroborating an association between

HIV-1 acquisition and HERC1 expression in EBV-transformed B lymphocytes and RTP4 expression in the

aorta. Our findings pertaining to HERC1, UEVLD, HIST1H4K, and RTP4, suggest these genes are important

candidates for future research. In fact, the RTP4 protein is a potent inhibitor of pathogenic viruses from the

Flaviviridae family (Boys et al., 2020), whereas UEVLD has been found in urinary extracellular vesicles from

HIV-1-positive individuals (Anyanwu et al., 2018), and HIST1H4K is a histone shown to bind to HIV-1 Tat

(Deng et al., 2001). However, HERC1, which encodes a large ubiquitin ligase protein, was the most inter-

esting candidate identified in our study.

Weobtained converging evidence from FUSION’s conditional analysis and the FOCUSfine-mapping approach

suggestingHERC1 downregulation in EBV-transformed B lymphocytes is robustly associated with HIV-1 acqui-

sition.However, the roleofHERC1 inHIV-1biology remains unclear, particularly in the context of B lymphocytes.

Abnormal levelsofB lymphocytesare a characteristicofHIV-1 infection (Liechti et al., 2019), but it isplausible that

we detected this cis-regulatory effect in EBV-transformed B lymphocytesmerely because these cells comprised

the only expression dataset in the TWAS consisting of a single immune cell type. Considering that typically 50%

of common variants are associatedwith gene expression regulation in any tissue (GTExConsortiumet al., 2017),

it is likely that this regulatory effect also extends to other immune cell types, such as basophils, where HERC1

appears to be more highly expressed. HERC1 is known to regulate the formation of infectious synapses trans-

ferring viruses from basophils to T cells, which are crucial for the establishment of a systemic infection (Jiang

et al., 2015). Downregulation of this gene is also associated with activation of ERK signaling (Schneider et al.,

2018), which is known to decrease the production of the antiviral cytokine IFN-g (Zhang et al., 2018) and to in-

crease HIV-1 infectivity in vitro due to differential phosphorylation of HIV-1 components Vif, Rev, and Tat

(Yang and Gabuzda, 1999). The exact function of HERC1 in relation to HIV-1 susceptibility, however, requires

further study using functional approaches.

Our study highlights regulatorymechanisms associated with HIV-1 acquisition and one in particular pertain-

ing to the downregulation of HERC1 in immune cells. Analysis of larger genetic cohorts and functional

studies of the genes highlighted here are likely to help uncover host mechanisms moderating HIV-1 acqui-

sition, which could ultimately help us to identify novel approaches to tackle and eradicate HIV-1.

Limitations of the study

There are limitations to our study that should be acknowledged. First, the effective sample size of our cur-

rent study is still limited and represents individuals of European ancestry only, and therefore the analysis

of larger and more diverse cohorts is likely to provide additional insight; this is particularly relevant, as we

found that the associated loci in Europeans likely have a different LD structure in Africans, and the func-

tional implications of this observation remain unclear. Second, we explored HIV-1 acquisition genetics us-

ing a cross-sectional analysis of cases and controls defined based on self-report or immunoreactivity, as

opposed to studying at-risk individuals longitudinally using immunoassay tests. Although the latter study

design could be better at identifying genetic variants regulating specific immunological mechanisms asso-

ciated with HIV-1 acquisition, it would also represent a more challenging approach (cohorts likely to be

smaller, study likely to be more time-consuming), which is also ethically questionable (following at-risk in-

dividuals without ensuring they receive PrEP). Although cross-sectional studies may be influenced by

misclassification bias (i.e., population controls are still susceptible to infection) (McLaren and Fellay,

2021), we chose this study design and case-control selection because it would allow us to draw power

from large population genetic studies to detect more genetic associations. Ultimately, it is plausible

that revisiting historical samples from at-risk individuals, collected prior to the development of PrEP,
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may be a useful way to advance our understanding of HIV-1 acquisition genetics. Third, our TWAS

approach assesses only the cis-genetic component of gene expression, and future studies should inves-

tigate other regulatory mechanisms (e.g., trans-eQTL effects) associated with HIV-1 acquisition. Finally,

although we shed light on the relationship between susceptibility to HIV-1 acquisition and regulated

genes, we cannot infer a causal mechanism yet. Functional studies investigating the expression of genes

identified here, particularly HERC1 levels in lymphocytes and basophils, in relation to viral susceptibility

in vitro, will be crucial to understanding this relationship.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resource sharing should be directed to and will be fulfilled by the lead

contact, Rodrigo Duarte (rodrigo.duarte@kcl.ac.uk).

Materials availability

This study did not generate new unique reagents or material.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

GWAS summary statistics from this study This manuscript; dbGap:

phs000454.v1.p1

https://doi.org/10.18742/18166406.v1

GWAS summary statistics from McLaren et al 2013;

6,334 HIV-1-positive cases defined based on serum

immunoreactivity and 7,247 population controls

Provided by the authors

upon request

https://doi.org/10.1371/journal.ppat.1003515

GWAS summary statistics from Johnson et al 2015;

327 HIV-1-positive cases and 805 HIV-1-negative

controls, defined based on serum immunoreactivity

Provided by the authors

upon request

https://doi.org/10.1371/journal.pone.0118149

dbGap: phs000454.v1.p1

GWAS summary statistics from UK Biobank; 285

HIV-positive cases and 360,856 population controls,

defined based on self-report

Neale Lab, publicly available Data release 3, trait ID "20002_1439 HIV/AIDS",

from https://docs.google.com/spreadsheets/d/

1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4y

BmESU/edit#gid=227859291

GWAS summary statistics from FinnGen; 357

HIV-positive cases and 218,435 population controls,

defined based on self-report

FinnGen, publicly available Data release 5, trait ID "AB1_HIV", from https://

console.cloud.google.com/storage/browser/

finngen-public-data-r5/summary_stats

Software and Algorithms

LDSC’s munge_sumstats.py, ldsc.py, reference

Hapmap3 SNPs, partitioned heritability method

Finucane et al., 2015 https://github.com/bulik/ldsc

liftOver Hinrichs et al., 2006 https://genome.sph.umich.edu/wiki/LiftOver

METAL Willer et al., 2010 https://genome.sph.umich.edu/wiki/METAL_

Documentation

Plink 1.9 Chang et al., 2015 https://www.cog-genomics.org/plink/

FUMA Watanabe et al., 2017 https://fuma.ctglab.nl/

FUSION, genotype data corresponding to the

European subset of the 1000 Genomes cohort,

TWAS weights

Gusev et al., 2016 https://gusevlab.org/projects/fusion/

The Genetics of Complex Traits Browser analysis

for gene set enrichment analysis, genetic

correlations and genetic causal proportion calculations

Cuéllar-Partida et al., 2019 https://genoma.io/

FOCUS Mancuso et al., 2019 https://github.com/bogdanlab/focus

PRSice-2 Choi and O’Reilly, 2019 https://www.prsice.info/

Human Protein Atlas Uhlén et al., 2015 https://proteinatlas.org/

R 3.6.1 The R Project for Statistical

Computing, Vienna, Austria

https://www.r-project.org/

All code used in the manuscript This manuscript https://doi.org/10.18742/20343219
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Data and code availability

GWAS summary statistics were deposited at Figshare and are publicly available as of the date of publica-

tion. DOI is listed in the key resources table.

All original code has been deposited at Figshare and is publicly available as of the date of publication. DOI

is listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

GWAS summary statistics

We define HIV-1 acquisition as a binary phenotype corresponding to whether an individual is currently

diagnosed as HIV-1-positive or not. We identify genetic variants associated with HIV-1 acquisition by

investigating genetic differences between HIV-1-positive and HIV-1-negative individuals, defined based

on immunoreactivity or self-report. To perform the meta-analysis, we downloaded summary statistics

from FinnGen (2021) (data release 5, trait ID AB1_HIV, 357 cases and 218,435 population controls, defined

based on self-report), and from the UK Biobank (Neale Lab, 2018) (from the Neale lab, data release 3, trait

ID 20002_1439 HIV/AIDS, 285 cases and 360,856 population controls, defined based on self-report; see

key resources table). These cohorts contribute to less than 10% of the cases in our meta-analysis, and

whilst no distinction was made between HIV-1 and HIV-2 in these studies, cases are assumed to be

HIV-1-positive since 95% of HIV infections worldwide are attributed to HIV-1 (Campbell-Yesufu and Gan-

dhi, 2011; Gottlieb et al., 2018). We also obtained GWAS summary statistics from studies where cases

were confirmed as HIV-1-positive, including Johnson et al. (2015) (327 HIV-1-positive cases and 805

HIV-1-negative controls, defined based on serum immunoreactivity) and McLaren et al. (2013) (6,334

HIV-1-positive cases defined based on serum immunoreactivity and 7,247 population controls), which

were kindly provided by the authors of these studies. All cohorts corresponded to individuals of European

ancestry. Cases and controls from the Johnson et al. (2015) study were drug users, whereas cases from the

McLaren et al. (2013) study, FinnGen (2021) and UK Biobank (Neale Lab, 2018) were likely associated with

multiple infection routes.

GWAS meta-analysis

Summary statistics from individual studies were pre-processed using custom-made code. We analyzed

only non-ambiguous biallelic single nucleotide polymorphisms (SNPs) with minor allele frequency

(MAF) > 1%, imputation R2 > 0.8 (if information was available), that were located on the autosomes.

For the McLaren study (which was a meta-analysis), we isolated only variants that were assessed in all co-

horts, since there was no sample size information available per SNP. For all studies, SNPs were renamed

using their chromosomal position (hg19), and FinnGen’s summary statistics was lifted to hg19 using lift-

Over (Hinrichs et al., 2006), for compatibility. The individual studies were analyzed using linkage disequi-

librium score (LDSC) regression (Bulik-Sullivan et al., 2015b, 2015c) using default settings, to test for

potential sample overlap, analyzing HapMap3 SNPs only. We performed the meta-analysis in METAL (Wil-

ler et al., 2010) using a sample size weighted analysis. The effective weight/sample size (Neff) per study was

calculated using the formula: Neff = 4/(1/Ncases + 1/Ncontrols) (Willer et al., 2010). We report only SNPs

tested in a minimum effective sample size corresponding to half of Neff’s 90th percentile (Bulik-Sullivan

et al., 2015b), that were also annotated in dbSNP 151. We used PLINK 1.9 (Chang et al., 2015) to identify

independent association signals, by clumping variants with p < 1 3 10�4 using an R2 threshold of 0.25 and

a 500 kb window (Lam et al., 2020). Genome-wide significant association was indicated by p < 5 3 10�8,

whereas suggestive association by p < 5 3 10�6 (Coleman et al., 2016b). Manhattan and Q-Q plots were

generated using the Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)

tool (Watanabe et al., 2017).

GWAS quality control

Estimates of SNP heritability (h2SNP), genomic inflation (lGC), and the intercept were calculated using LDSC

regression, following the authors’ manual. As a sensitivity analysis, we applied the intercept genomic con-

trol (intercept-GC)method (Bulik-Sullivan et al., 2015b) to theMcLaren et al. (2013) study, bymultiplying the

SNPs’ standard errors by the square root of that study’s intercept. Next, we re-calculated the p values

based on the adjusted standard errors and respective betas, and meta-analyzed the corrected summary
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statistics alongside the other three studies (i.e., Johnson et al., 2015; FinnGen, 2021; UK Biobank [Neale

Lab, 2018]), where we repeated our quality control procedure and the downstream processes (e.g.,

TWAS, conditional analyses, and TWAS fine-mapping).

GWAS functional mapping

We performed a partitioned heritability analysis using LDSC regression (Bulik-Sullivan et al., 2015b; Finu-

cane et al., 2015), according to the author’s manual, where only HapMap3 SNPs were analyzed after

excluding the MHC locus. LD score weights (baseline model v2.2) and the files corresponding to the Euro-

pean subset of the 1000 Genomes project, used as the reference population, were downloaded from the

authors’ website. The baseline model used included 97 genomic annotations corresponding to promoter

regions, DNA and histone modification sites, DNase I hypersensitivity sites, conserved regions, and others

(Finucane et al., 2015). We also analyzed the GWAS summary statistics using The Genetics of Complex

Traits Browser (Cuéllar-Partida et al., 2019), where independent association signals (variants with

p < 1 3 10�5, clumped using an R2 threshold of 0.05 and a 1 Mb window) were tested for enrichment of

biological terms using DEPICT and a catalog of 14,462 gene sets (Pers et al., 2015). These sets corre-

sponded to biological annotations reflecting molecular pathways from protein-protein interaction studies,

manually curated pathways, and gene sets frommouse knock-out studies. Another enrichment analysis was

performed to test the GWAS results for enrichment of genes expressed in specific cell types or tissues, ac-

cording to 209 Medical Subject Heading (MeSH) annotations derived from 37,427 microarrays (Pers et al.,

2015). Only enrichments surviving correction for the number of gene sets tested in each analysis were

considered significant (Bonferroni p < 0.05).

Transcriptome-wide association study (TWAS)

We ran a TWAS on the autosomes using default settings in FUSION (Gusev et al., 2016), and the TWAS

weights calculated by the authors. We used TWAS weights corresponding to 48 tissues available within

GTEx (GTEx Consortium et al., 2017) (including whole blood, EBV-transformed B lymphocytes, colon, mul-

tiple brain regions, liver, stomach, lungs, ovary, and others; see details in Table S4). We chose this approach

since the impact of susceptibility to HIV-1 in terms of gene expression features across tissues and organs

had not yet been explored. We also analyzed two additional blood cohorts (the Netherlands Twin Registry

(Wright et al., 2014) and the Young Finns Study (Gusev et al., 2016; Raitakari et al., 2008)), which are better

powered to detect heritable expression components, relative to the GTEx whole blood sample. Finally, we

included three gene expression models corresponding to cross-tissue expression weights combining all

heritable gene expression information from across tissues and individuals within GTEx, which improve

the detection of heritable cis expression mechanisms by TWAS (Feng et al., 2021). We used the 1000 Ge-

nomes Phase 3 European panel as LD reference for the TWAS and fine-mapping analysis, downloaded

from the FUSION website. Association signals were corrected using the Bonferroni method, considering

the number of unique genes tested across all weight panels (P cut-off = 0.05/27,540, or 1.82 3 10�6). Plots

were generated using the FUSION pipeline and scripts adapted from https://opain.github.io/MDD-TWAS/

(Dall’Aglio et al., 2021). We performed conditional analyses in FUSION to determine whether the significant

TWAS associations were independent from the expression of other genes in their respective loci.

TWAS fine-mapping

We used FOCUS (Mancuso et al., 2019) to perform TWAS fine-mapping and to narrow down the genes

most likely to be causally related to HIV-1 acquisition. FOCUS uses a standard Bayesian approach to define

90%-credible gene sets (gene sets likely to contain causal genes at susceptibility loci) and calculates the

posterior inclusion probability (PIP) for each gene in the region to be causal given the observed TWAS sta-

tistics. Genes with PIP >0.50 are more likely to be causal for the association than any other gene, or the null

model (i.e., when the causal gene is not present in the TWAS). A FOCUS database was created using the

TWAS FUSION weights mentioned above (except for the cross-tissue weights, since the objective of the

fine-mapping approach was to define relevant gene-tissue pairs). We applied FOCUS across all tissue-spe-

cific SNP weight panels simultaneously using an agnostic analysis to identify genes and tissues more likely

to be involved in the trait, without potentially biasing the analysis by prioritizing specific tissues.

Genetic correlations

We uploaded the GWAS results to The Genetics of Complex Traits Browser (Cuéllar-Partida et al., 2019),

where whole-genome correlations using LD score regression (Bulik-Sullivan et al., 2015a, 2015b) were
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performed against 1478 GWAS traits. Genetic correlation (rg) p values were corrected for multiple testing

using the Bonferroni method. Significant trait correlations with HIV-1 acquisition (Bonferroni p < 0.05) were

further tested in genetic causal proportion (GCP) analyses to quantify partial causality and directionality of

effect (O’Connor and Price, 2018). Resulting GCP values range from 0 (i.e., no genetic causality between

HIV-1 acquisition and the correlated trait) to 1 (i.e., full genetic causality), and the sign of this value indicates

the direction of the effect (positive GCP: HIV-1 acquisition predisposes to the correlated trait; negative

GCP: the correlated trait predisposes to HIV-1 acquisition). GCP p values are considered significant (indi-

cating shared genetic causality) if they survive multiple testing correction for the number of tests made (i.e.,

the number of traits significantly correlated with HIV-1 acquisition; Bonferroni p < 0.05).

Polygenic risk scoring

We performed polygenic risk scoring using PRSice-2 (Choi and O’Reilly, 2019) to test whether there was a

shared genetic relationship between HIV-1 acquisition and HIV-1 viral control. We define viral control as a

quantitative phenotype corresponding to one’s predisposition to a lower viral load (log10 copy/mL) after

the establishment of a systemic infection. We generated polygenic risk scores for HIV-1 acquisition at a

range of p value thresholds (PT = 0.001, PT = 0.05, PT = 0.1, PT = 0.2, PT = 0.3, PT = 0.4, PT = 0.5, PT = 1) using

the summary statistics from our HIV-1 acquisition GWASmeta-analysis, which was performed on individuals

of European ancestry. We then tested whether these scores predicted variability in viral load in a subset of

the Urban Health Study cohort (dbGap: phs000454.v1.p1) (Johnson et al., 2015), corresponding to individ-

uals of European ancestry who had their viral loadmeasured. European ancestry was confirmed bymerging

their genotype data with the 1000 Genomes reference panel. Principal components 1 and 2 were gener-

ated, and all individuals whose Euclidean distance fell within a defined radius of known Europeans (euro-

peanTh, scaling factor = 1) were confirmed as Europeans using plinkQC (Meyer, 2020), and were further

analyzed. We removed individuals with missing genotype data >5%, or variants with missing data >5%, mi-

nor allele frequency (MAF) < 0.05, and those with Hardy-Weinberg test p < 13 10�5 (Coleman et al., 2016a).

To control for remaining ancestry differences, we generated ancestry principal components using LD-

pruned genotype data in PLINK (Chang et al., 2015). Plotting principal components (PCs) revealed that

the first four were sufficient to correct for genetic differences within our sample. We then adjusted viral

load values (log10 copy/mL) by the first four PCs by taking standardized residuals, generating PC-adjusted

Z-scores. After removing outliers (i.e., samples with corresponding Z-scores G2 standard deviations away

from themean), this sub-cohort consisted of 288 individuals, of which 245 weremen, with ages ranging from

20-56 (mean age = 35.34, SD= 7.44). These data were normally distributed (skewness and kurtosis values

between �1 and 1) and were not associated with age or sex according to linear regressions (p > 0.05).

Z-scores were then input into a phenotype file for polygenic risk scoring analysis in PRSice-2.

HERC1 expression interrogation

To advance our understanding of HERC1 biology, we investigated its expression profile in the Human Pro-

tein Atlas (accessed in June 2022) (Uhlén et al., 2015). This database uses gene expression data from 36

tissues from The Genotype-Tissue Expression (GTEx) consortium and their own biobank (69 cell lines, 52

human tissues and 18 blood cell types), to interrogate gene expression profiles across multiple tissues

and cell types. Dimension reduction of the RNA expression data was performed by the authors using

the Uniform Manifold Approximation and Projection (UMAP) method. Confidence scores reflecting the

confidence of genes assigned to manually curated clusters, which range from zero to one, were calculated

by the authors.

Statistical analyses

Analyses were performed in Bash (GNU Project Bourne Again SHell) or R 3.6.1 (The R Project for Statistical

Computing, Vienna, Austria). Linear regressions were performed in IBM SPSS Statistics version 26 (IBM,

Armonk, NY, USA).
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