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Abstract

Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioural 

habituation, enables organisms to detect novelty and devote cognition to important elements of the 

environment. Here we describe in mice a form of long-term behavioural habituation to visual 

grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) 

can be observed both in exploratory behaviour in an open arena, and in a stereotyped motor 

response to visual stimuli in head-restrained mice. We show that the latter behavioural response, 

termed a vidget, requires V1. Parallel electrophysiological recordings in V1 reveal that plasticity, 

in the form of stimulus-selective response potentiation (SRP), occurs in layer 4 of V1 as OSH 

develops. Local manipulations of V1 that prevent and reverse electrophysiological modifications 

likewise prevent and reverse memory demonstrated behaviourally. These findings suggest that a 

form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory 

cortex.

Introduction

The cerebral cortex stores memory1, but precisely how and where specific types of 

information are retained in the neocortex remains poorly understood. The minimal criteria 

necessary to conclude that experience-dependent modification of a particular cortical area is 

an essential substrate of learning and memory would include evidence that: (1) cortical 

electrophysiological responses are persistently modified by experiences that are encoded as 
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memory, (2) such modifications coincide with changes in behaviour that depend upon this 

cortical area, and (3) local manipulations of cortex that prevent or reverse 

electrophysiological modifications likewise prevent or reverse memory demonstrated 

behaviourally.

Previous studies in our laboratory have documented a robust and long-lasting potentiation of 

electrophysiologial responses in the primary visual cortex (V1) following the controlled 

exposure of head-fixed awake mice to high contrast visual grating stimuli2. The underlying 

synaptic mechanism of this response modification has been localized to V13. Because the 

effect is highly selective for the features of the experienced stimulus (e.g., grating 

orientation), the phenomenon has been termed stimulus-selective response potentiation 

(SRP). The current study was designed to determine the behavioural significance of SRP in 

V1.

Here we show that V1 activity is required for the expression of a quantifiable behavioural 

response to novel visual stimuli. We find that behavioural responses to grating stimuli, in 

both head-fixed and freely behaving mice, habituate in a stimulus-selective manner as SRP 

develops across days in V1, and that local V1 manipulations which prevent and reverse SRP 

do the same to stimulus-selective behavioural habituation. Taken together, our results 

support the conclusion that experience-dependent plasticity in primary visual cortex is a 

substrate for visual recognition memory, manifest behaviourally as long-term habituation to 

familiar stimuli.

Results

The vidget: Visually-driven behaviour in head-fixed mice

We developed an assay of visual detection based on our observation that head-fixed mice 

spontaneously fidget in response to visual stimuli. We call this response, induced with full-

field, phase-reversing (2 Hz) sinusoidal grating stimuli, a “vidget” (visually-induced fidget) 

and measure it via a piezo-electric sensor located beneath the forepaws of restrained mice 

(Figure 1a, Video1). These vidgets were quantified as the average stimulus-locked voltage 

signal, rectified and normalized to a pre-stimulus baseline as shown in Figure 1b. We found 

that vidget onset latency, determined by the first time-point greater than one standard 

deviation above the pre-stimulus baseline in 75 stimulus onsets from 15 mice, is ~150 

milliseconds (Figure 1c). The response to individual stimuli was variable, with 

approximately 30 % of trials failing to induce movement (Figure S1). Nevertheless all 15 

mice had quantifiable responses above baseline by averaging 5 onsets per animal (Figure 

1d). Unless otherwise stated, all subsequent behavioural data is reported as per subject 

averages with complete distributions shown in supplementary figures.

We next determined if this behaviour can be used to assess visual contrast sensitivity and 

acuity by simultaneously recording vidgets and visually evoked potentials (VEPs) in 

binocular layer 4 of V1, a surrogate measure of visual detection3,4. We presented 100-

second blocks of grating stimuli at various contrasts and spatial frequencies to 15 implanted 

mice. High contrast stimuli evoked significantly larger vidgets than low contrast stimuli 

(Figure 1e) and low spatial frequencies elicited larger vidgets than high (Figure 1f). 
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Simultaneously recorded VEPs had a similar contrast sensitivity (Figure 1g) and spatial 

acuity (Figure 1h). Thus, the vidget serves as a behavioural metric of visual detection 

aligned with V1 electrophysiology. In all subsequent experiments, we used 5 blocks of 100 

% contrast, 0.05 cycles per degree, full field grating stimuli, separated by 30 seconds of 

grey, for each session because these stimulus parameters yield large and reliable vidgets and 

VEPs.

The vidget requires activity within V1

Many reflexive behavioural responses to visual stimuli occur without V15. We therefore 

locally suppressed cortical activity by micro-infusing the GABAA receptor agonist 

muscimol (4 nmol in 1 μl over 10 minutes in each hemisphere, Figure S2a–c) to test if the 

vidget requires V1. To confirm inactivation we recorded VEPs in 8 mice before and 30 

minutes after muscimol infusions. We then waited 2 days for a full recovery from muscimol 

before infusing vehicle and recording VEPs again. Muscimol significantly reduced VEP 

magnitude (28.18 ± 7.46 μV) compared to pre-infusion (78.58 ± 14.16 μV) or vehicle (74.13 

± 21.55 μV)(Figure S2d). Muscimol also significantly reduced vidget magnitude (1.82 ± 

0.39 a.u.) compared to pre-infusion (4.79 ± 0.73 a.u.) or vehicle treatment (5.01 ± 0.91 a.u.)

(Figure S2e–f). Onset-by-onset analysis also revealed significant impact of muscimol 

treatment over control conditions (Figure S2g).

Pharmacological blockade of activity using muscimol lasts for an extended period and may 

spread beyond V1. In order to overcome these potential issues we transiently inactivated V1 

by expressing channelrhodopsin-2 (ChR2) in putative fast-spiking interneurons using local 

delivery of an AAV viral vector (AAV5-EF1α-DIO-hChR2(H134R)-eYFP) into V1 of mice 

expressing Cre-recombinase only in parvalbumin+ cells (B6;129P2-Pvalbtm1(cre)Arbr/J)

(Figures 2a–e, S3a–b). Ten PV-Cre mice and 8 wild-type littermate control mice were 

infected bilaterally within lateral (binocular) V1 (see Methods for histological confirmation). 

VEP electrodes and optical fibres were also implanted. One month later, mice were 

presented with a sinusoidal grating stimulus of a single orientation (10 s blocks of stimuli). 

Using a laser, we delivered blue light (473 nm) into both hemispheres throughout half of the 

stimulus presentations, commencing 0.5 seconds prior to visual stimulus onset and 

terminating 0.5 seconds after stimulus offset. VEP magnitude was significantly suppressed 

during laser stimulation in the PV-Cre mice (207.90 ± 27.76 μV) compared to when the laser 

was off (292.28 ± 36.89 μV). This suppression was not observed in the wild-type littermate 

mice (VEP with laser on: 303.19 ± 32.68 μV; laser off: 290.16 ± 33.49 μV) demonstrating 

that suppression was due to ChR2-mediated activation of PV+ inhibitory cells (Figure 2f). 

Reduction in V1 activity also significantly impacted the vidget. Laser stimulation 

suppressed the vidget in the PV-Cre mice (1.26 ± 0.24 a.u.) relative both to the absence of 

laser (2.89 ± 0.39 a.u) and the littermate controls during laser (2.90 ± 0.63 a.u.) (Figure 2g–

i). The impact of laser in WT controls was not significant (2.26 ± 0.57 a.u.). Analysis 

conducted per behavioural onset appears in Figure S3c–d. Overall, these results demonstrate 

that the vidget is driven through activity in V1.
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Stimulus-selective response potentiation (SRP)

We next wished to determine if the vidget is modified as SRP develops in V1. SRP is a 

long-lasting potentiation of VEPs as a consequence of brief daily exposure to oriented 

grating stimuli2 and bears all the hallmarks of Hebbian synaptic plasticity3 and visual 

perceptual learning6. Following SRP induction, VEPs evoked by familiar grating 

orientations are significantly larger than those evoked by novel orientations.

Previous recordings of SRP have been limited to VEPs in layer 4 of V1. In addition to 

determining the behavioural correlates of SRP, we wished to better understand the 

modification of translaminar patterns of V1 activity. We therefore implanted laminar probes 

(16 recording sites separated by 50 μm spanning the depth of V1 (Figure 3a). After recovery 

and acclimation to head-fixation, mice viewed a sinusoidal grating stimulus of fixed 

orientation (X°) repeatedly over 6 days. On day-7, we pseudo-randomly interleaved blocks 

of the familiar stimulus (X°) with a novel oriented stimulus (X + 90°) while acquiring VEPs. 

We then performed current source density (CSD) analysis to determine the laminar flow of 

current sinks and sources through V17. In response to each stimulus phase reversal, current 

sinks appeared with progressively longer latencies at different cortical depths, reflecting the 

spread of synaptic activity across the canonical cortical circuit (activation of thalamo-

recipient layers 4 and 6, followed by layers 2/3 and then layer 5)8. A comparison of current 

sinks in response to familiar (X°) and novel (X + 90°) stimuli revealed that the layer 4 sink 

was greater in magnitude for familiar than novel stimuli, while the deep layer 6 sink 

remained unchanged as a result of stimulus familiarity (Figure 3b). Thus, while SRP is 

distributed within the cortical circuit, it is not uniform throughout V1. We have therefore 

restricted our recordings to layer 4 for the remainder of this study, as this is a major site of 

SRP expression.

Although SRP has previously been reported as a synaptic phenomenon we wished to 

determine its impact on the firing of single units within layer 4 because changes in neural 

firing would be necessary to support changes in behaviour. To do this we implanted 10 mice 

with bundles of 8 recording electrodes targeting layer 4 of binocular V1. After recovery, 

mice were subjected to a similar protocol to that described above, viewing a designated 

oriented stimulus (X°) repeatedly over 6 days. On test day-7 mice were again presented with 

this familiar stimulus pseudo-randomly interleaved with a novel orientation (X + 90°) and 

unit activity recorded from each electrode was averaged together for each animal. We found 

that peak firing rate to the familiar stimulus (13.39 ± 2.51 Hz) was significantly elevated 

above the response to the novel stimulus (5.81 ± 1.61 Hz; Student-Newman-Keuls post-hoc 

test, q(9) = 5.51, p = 0.001) or grey screen (1.20 ± 0.21 Hz; Student-Newman-Keuls post-hoc 

test, q(9) = 8.86, p < 0.001) (Figure 3c–d). Thus, both short-latency synaptic and neuronal 

activity in thalamo-recpient layer 4 is potentiated by experience.

SRP is accompanied by orientation-selective behavioural habituation

To document behavioural modification during SRP we acquired VEPs and vidgets evoked 

by an oriented stimulus (X°) presented repeatedly over 8 days in 19 mice. On day-9, blocks 

of X° were interleaved with blocks of a novel stimulus (X + 90°) to test orientation 

selectivity (Figure 4a). SRP was evident by day-2 (183.58 ± 19.42 μV) relative to day-1 
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(125.38 ± 16.20 μV, Figure 4b), and testing on day-9 confirmed the orientation-selectivity: 

The novel orientation evoked significantly lower magnitude VEPs (166.86 ± 19.34 μV) than 

the familiar orientation (289.83 ± 24.53 μV, Figure 4c).

Vidgets diminished as VEPs potentiated, and this was already significant by day-2 (3.24 ± 

0.51 a.u.) relative to day-1 (4.14 ± 0.55 a.u.). This suppression saturated by day-8 (1.51 ± 

0.15 a.u., Figures 4d, S4a). Comparisons across individual onsets also reveal significant 

difference between day-1 and day-2 (Figure S4c). On day-9, a novel stimulus orientation (X 

+ 90°) evoked vidgets of significantly greater magnitude (3.21 ± 0.43 a.u.) than the familiar 

stimulus orientation (1.61 ± 0.23 a.u., Figures 4e, S4b, video1). Comparisons across 

stimulus onsets confirm this effect (Figure S4d). Thus, orientation-selective habituation 

(OSH) of the vidget occurs in parallel with SRP.

OSH in the freely moving mouse

Animals preferentially explore novel objects9 and thereby demonstrate memory of familiar 

objects. To examine the possibility that a similar preference can be observed for a novel 

orientation, we developed an assay to measure the emergence of OSH in freely moving mice 

(Figure 5a-b, Video2). Mice (n = 18) explored an open field arena with two video monitors 

positioned on opposite ends. The monitors showed uniform grey over ~30 minute 

habituation sessions on 2 days. Over the next 8 days, mice were presented with 5 blocks of 

oriented, phase reversing grating stimuli (X°) on each day on each monitor in a pseudo-

random (counterbalanced) sequence. Exploration was quantified as time spent actively 

moving (velocity > 5 cm/s) within the zone next to the stimulus. Exploration on day-1 was 

significantly influenced by the visual stimulus and mice spent more time exploring proximal 

to stimulus presentation, whether on the left (59.5 ± 0.97 %) or right (64.1 ± 0.73 %)(Figure 

5c). Exploration bias was measured using a preference index (see methods). We observed 

preference for the previously viewed stimulus decrease significantly over 8 days as 

familiarity developed (Figure 5d).

On day-9, blocks of novel X + 90° and familiar X° stimuli were shown on each monitor, to 

test if OSH had occurred. Mice exhibited preference for the novel orientation whether it was 

presented on the left (65.8 ± 0.69 %) or the right (59.4 ± 0.65 %) side of the arena. No 

significant preference was observed for the familiar stimulus on the left (50.9 ± 0.77 %) or 

the right (53.1 ± 0.60 %). Overall, there was greater preference for the novel (0.28 ± 0.09) 

than the familiar stimulus (0.03 ± 0.17, Figure 5e–f). Thus, OSH occurs in freely moving 

mice.

We next head-fixed mice (n = 18) that had undergone free exploration of stimuli to 

determine if SRP of the VEP and OSH of the vidget had been induced by experience in the 

arena. The animals were presented with interleaved blocks of X°, which had been viewed 

over the previous 9 days and X + 90°, which they had just viewed for the first time, but only 

in the arena. SRP was clearly induced in V1 by the experience in the open field arena 

(Figure 5g), as VEPs evoked by the familiar visual stimulus (169.2 ± 71.4 μV) were 

significantly greater in magnitude than those evoked by the novel (100.8 ± 53 μV). 

Behaviour was also recorded in a sub-set of these mice (n = 12) and vidgets evoked by the 

familiar stimulus (2.77 ± 0.46 a.u.) were significantly lower in magnitude than the novel 
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(4.79 ± 0.76 a.u.), revealing that OSH transfers from free exploration to head-fixation 

(Figure 5h, S5a–b). Induction of SRP and OSH in both restrained and freely behaving mice 

indicates that V1-dependent behavioural modifications occur as stimuli become familiar, 

regardless of context.

OSH is eye-specific

SRP is eye-specific, consistent with extensive evidence that it is induced by synaptic 

modifications within V12,3. To test if OSH is also eye-specific, we restricted presentation of 

one stimulus (X°) to the left eye and another stimulus (X + 90°) to the right eye over 8 days 

in 14 mice. On day-9, we interleaved blocks of each of these stimuli, along with blocks of a 

third completely novel stimulus (X + 45°, “true novel”) shown to each eye independently 

(Figure 6a–b). Vidgets driven by the familiar stimulus were significantly reduced in 

magnitude (1.54 ± 0.26 a.u.) compared with vidgets driven by the stimulus novel-to-eye 

(2.58 ± 0.36 a.u.) or true novel (3.10 ± 0.50 a.u.). Vidgets driven by the true novel stimulus 

and that novel to the eye were not significantly different in magnitude (Figures 6c–d). There 

was a similar pattern of selective suppression for the stimulus familiar to the eye when 

analysis was performed across all stimulus onsets (Figure S6). Overall, these results show 

that OSH is input-specific and involves modification of a circuit in which information from 

the two eyes can be segregated.

We also assessed SRP in these mice. As anticipated, VEPs evoked by the stimulus familiar 

to the eye evoked VEPs of significantly greater magnitude (124.21 ± 15.29 μV) than either 

true novel (70.70 ± 9.71 μV) or novel-to-eye (77.02 ± 10.89 μV)(Figure 6e). Importantly, 

there was also no significant difference between VEPs driven by novel-to-eye and true 

novel, suggesting no transfer of SRP across eyes.

OSH and SRP require NMDA receptors in V1

SRP induction requires activation of NMDA receptors (NMDARs)2. To test whether OSH 

shares this mechanism, we locally knocked down the mandatory GRIN1 subunit in 1-month 

old GRIN1fl/fl mice (B6.129S4-Grin1tm2Stl/J)10,11 by expressing Cre recombinase using an 

AAV8 viral vector (AAV8-hSyn-GFP-Cre) bilaterally in V1. Infected cells were labelled 

with GFP to track the spread of infection. Control animals were GRIN1fl/fl littermate mice 

that received local infection of just GFP under the same promoter and in the same serotype 

(AAV8-hSyn-GFP)(Figure 7a–b). Three weeks after infection, head-fixed mice were shown 

5 blocks of 100 phase reversals of the grating stimulus per day over 6 consecutive days, 

while recording VEPs and vidgets. On day-7, the now familiar stimulus (X°) and a novel 

stimulus (X + 90°) were pseudo-randomly interleaved to test for expression of both SRP and 

OSH. In comparison to control littermate mice, potentiation of VEPs over days was 

significantly impaired as a result of GRIN1 deletion in V1 (Figure 7c). Additionally, 

expression of SRP on day-7 was selectively disrupted by loss of NMDARs in V1, as VEPs 

evoked by familiar (113.73 ± 14.57 % baseline) and novel stimuli (100.84 ± 12.95 % 

baseline) were of similar magnitude after local expression of Cre in GRIN1fl/fl mice. In 

littermate controls, by contrast, the familiar stimulus evoked VEPs (188.83 ± 19.40 % 

baseline) of significantly greater magnitude than the novel (115.01 ± 14.58 % baseline), 

demonstrating SRP (Figure 7d). OSH was also selectively disrupted only in GRIN1fl/fl mice 
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in which Cre had been expressed. Vidgets of similar magnitude were evoked by familiar 

(2.64 ± 0.48 a.u.) and novel stimuli (3.21 ± 0.61 a.u.) in these mice whereas, in their control 

littermates, the familiar stimulus evoked vidgets (2.03 ± 0.65 a.u.) of significantly lower 

magnitude than the novel (6.92 ± 1.15 a.u.), demonstrating OSH expression (Figure 7e–f). 

This same selective deficit in OSH in the Cre-expressing GRIN1fl/fl mice was observed 

when comparisons were made across all stimulus onsets (Figure S7a–b). These data support 

the conclusion that NMDAR within V1 are required for both SRP and OSH.

Acute blockade of NMDAR prevents acquisition of OSH

Our GRIN1 local knockdown strategy resulted in a chronic loss of NMDAR function in V1, 

which could potentially impair memory recall as well as learning. To address this concern 

we conducted an experiment in which we bilaterally infused the NMDAR antagonist AP5 (5 

nmol in 1 μl, delivered over 10 min in each hemisphere) or vehicle into V1 of 18 mice prior 

to stimulus delivery. A crossover experimental design was employed in which mice were 

divided into 2 groups of 9. One group received infusions of vehicle and the other AP5 30 

minutes before viewing an oriented stimulus (X°). After a day of rest to allow complete drug 

washout we tested whether OSH was present by showing interleaved blocks of X° and a 

novel stimulus (X + 90°). After a further day’s rest, each group then received the opposite 

drug treatment before viewing another novel stimulus (X + 25°). On day-7, allowing another 

rest day for drug washout, we tested for OSH by presenting interleaved blocks of X + 25° 

and a final novel oriented stimulus (X + 115°, Figure 8a).

Vidgets to novel stimuli were significantly greater in magnitude (5.59 ± 0.56 a.u) than those 

to familiar stimuli following vehicle treatment (2.72 ± 0.43 a.u.) demonstrating OSH (Figure 

8b). In contrast, the same mice did not discriminate the previously viewed stimulus (4.16 ± 

0.68 a.u.), from novel (4.97 ± 0.52 a.u., Figure 8c) following AP5 treatment. Significant 

OSH was apparent in a comparison across stimulus onsets, although discrimination of 

familiar and novel stimuli was restricted to post-vehicle sessions (Figure S8c–d). Thus, 

blockade of NMDAR within V1 prevented OSH.

It is possible that NMDAR blockade impeded OSH by reducing activity in V1 and 

preventing information flow to the site of storage elsewhere. With this question in mind we 

compared the magnitude of VEPs evoked in the presence of AP5 (67.93 ± 10.81 μV) and 

vehicle (59.82 ± 7.06 μV) and found no difference between treatments (Figure S8a). We also 

confirmed that SRP did not occur under AP5. Within discrimination sessions after AP5, 

VEPs driven by the previously viewed stimulus (57.71 ± 8.53 μV) did not differ 

significantly from those evoked by novel (57.43 ± 7.31 μV). In contrast, familiar stimuli 

evoked VEPs of significantly greater magnitude (76.17 ± 10.02 μV) than novel (58.95 ± 

7.61 μV) under vehicle treatment. Familiar stimuli experienced previously under vehicle 

also evoked VEPs of significantly greater magnitude than those experienced under AP5 

(Figure S8b). Thus, blockade of NMDAR local to V1 prevents both SRP and OSH.

ZIP in V1 erases OSH

In order to test if OSH requires memory storage in V1 we applied ZIP (PKMzeta inhibitor 

peptide) after OSH had been saturated. This peptide has been shown to reverse LTP12,13, 
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cortical memory14 and SRP3. Mice (n = 36) underwent a typical OSH protocol over 8 days 

(Figure 8d). On day-9, blocks of the familiar X° stimulus and a novel X + 45° stimulus were 

interleaved. On day-10, half the mice (n = 18) were bilaterally infused with ZIP (10 nmol in 

1 μl delivered over 10 min) while the other half (n = 18) received bilateral infusions of 

vehicle (1 μl delivered over 10 min). On day-11, blocks of the familiar X° stimulus and a 

second novel X + 90° stimulus were interleaved.

As previously reported3, VEPs potentiated through induction of SRP returned to baseline 

levels after ZIP application in V1. VEPs driven by the familiar stimulus prior to ZIP 

application (145.00 ± 16.36 μV) dropped significantly in magnitude after ZIP application 

(97.53 ± 14.23 μV), and were no longer significantly different from those evoked by the 

novel stimulus (79.05 ± 8.23 μV, Figure S9a). Importantly, there was also a significant 

impact of ZIP on the expression of OSH. Prior to infusions, OSH was expressed (Figure 8e): 

the novel stimulus elicited vidgets of greater magnitude (4.47 ± 0.81 a.u.) than the familiar 

stimulus (2.32 ± 0.40 a.u.). On day-11, after infusions, a difference between the groups 

emerged. Significant discrimination of familiar (1.81 ± 0.18 a.u.) and novel stimuli (3.96 ± 

0.50 a.u.) was maintained after vehicle (Figure 8f). However, after ZIP treatment mice failed 

to discriminate the novel (3.01 ± 0.53 a.u.) from the familiar stimulus (3.17 ± 0.76 a.u., 

Figure 8g, S9b–c). Thus, local infusion of ZIP into V1 disrupts established OSH, 

demonstrating that information supporting OSH is stored in V1.

Discussion

We have characterized a spontaneous, V1-dependent behaviour in the head-fixed mouse, 

termed the vidget, which accurately reports an animal’s detection of novel visual stimuli. 

Over the course of days, vidgets gradually diminish in response to presentation of the same 

visual stimulus. Comparing the vidget response to familiar and novel stimuli reveals OSH. 

The orientation- and eye-specificity of this behavioural report of stimulus familiarity suggest 

that the neural mechanisms reside within V1. Consistent with this proposal, 

electrophysiological responses in V1 are selectively modified as OSH develops in head-

fixed and freely moving mice. OSH is prevented by local V1 genetic ablation or temporary 

pharmacological blockade of NMDA receptors during visual experience. OSH is also 

reversed by local V1 delivery of the ZIP peptide. Taken together, our findings indicate that 

plasticity within V1 is required for both learning and long-term storage of visual recognition 

memory.

Measuring V1-dependent mouse vision with the vidget

The mouse has gained popularity as a species to study the neurobiology of vision and visual 

cortical plasticity, but it has been challenging to assay V1-dependent vision with behaviour. 

Previous attempts have involved operant conditioning or optokinetic reflexes5,15,16. 

However, operant conditioning is necessarily limited to specific stimulus sets and requires 

extensive training17; and optokinetic reflexes do not require participation of V118. The 

properties of the vidget therefore offer some advantages as a simple assay of mouse vision. 

The vidget is elicited by presentation of visual grating stimuli without pre-training, and is 

abolished by inactivation of V1 with a number of methods. Vidgets are easily quantified and 
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reliably elicited using only a few blocks of stimuli (≤ 5). Vidgets and V1 VEPs show 

parallel decrements as stimulus contrast is decreased and spatial frequency is increased, and 

visual detection thresholds estimated by both methods are comparable. Furthermore, the fact 

that the vidget is measured in head fixed mice enables precise control of stimulus attributes, 

and also makes it compatible with simultaneous recordings of V1 activity.

We initially were concerned that the vidget might be a response to stimuli the mice find 

aversive, raising the possibility that mice actually detect low contrast stimuli but fail to 

respond because they find them less aversive than high contrast stimuli. Arguing against this 

interpretation are the simultaneous recordings of V1 VEPs, which disappear into the noise at 

the same contrasts as the vidgets. Furthermore, the reactions of the mice in the open field to 

presentation of the same high-contrast full-field stimuli are more compatible with the view 

that the vidget reflects an orienting response to novel stimuli the animals find interesting and 

worthy of exploration.

Because the vidget is a response to novel stimuli that does not require pre-training, it has the 

potential to be used in longitudinal studies of mouse vision, for example, after periods of 

monocular deprivation. The obvious complication is OSH. However, like VEPs, vidgets of 

comparable magnitude can be elicited in naïve mice with many different grating 

orientations. Thus, repeated measures of visual function should be possible without the 

complication of habituation as long as different stimuli are used.

Long-term behavioural habituation occurs via synaptic plasticity in V1

Familiarity with stimuli that bring neither reward nor punishment, manifested through 

behavioural habituation, enables organisms to devote cognition to important elements of the 

environment. Here we describe a form of long-term habituation in the mouse that enables 

detection of novel visual stimuli. We find that freely behaving mice actively explore novel 

visual gratings, and that behavioural habituation occurs as these stimuli become familiar. 

The orientation-selective behavioural habituation in the open field transfers to the vidget 

responses in the head-fixed mouse. Using the head-fixed mouse preparation, we have been 

able to identify the locus and some mechanistic requirements of OSH.

Behavioural expression of the vidget requires V1, and several converging lines of evidence 

suggest that a mechanism contributing to OSH also resides within V1. First, vidget 

habituation is eye-specific as well as orientation selective. Although these properties do not 

rule out other cortical areas19, they are consistent with a V1 locus20,21. Second, local genetic 

knockdown of NMDA receptors in V1 or AP5 microinfusion prevents induction of OSH. 

These results show that activation of V1 neurons is required for OSH, and suggest a critical 

involvement of NMDA receptors in the synaptic mechanism. We cannot exclude the 

possibility that AP5 infusion during learning interrupts the flow of information to other 

cortical areas where the information is stored, but we note that this treatment did not 

suppress the V1 VEP. Third, expression of OSH is disrupted by local V1 infusion of ZIP. 

Although the data do not allow us to conclude that treated mice respond to familiar stimuli 

as if they were novel, the results clearly indicate that vidget responses fail to discriminate 

familiar and novel stimuli after ZIP infusion confined to V1.
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ZIP was developed to selectively inhibit protein kinase M zeta (PKMζ), which has been 

implicated in the mechanism for stable expression of long-term synaptic potentiation (LTP) 

at many synapses22. Although it has been questioned whether PKMζ is the relevant target of 

ZIP13,23, there is broad consensus that this peptide can reverse established LTP13 and 

memory in a variety of neural systems12,23,24, including the neocortex14. In mouse V1, 

previous work from our laboratory has shown that ZIP reverses SRP3. SRP is also prevented 

by local microinfusion of AP5 into V1, and is expressed by mechanisms shared with LTP. 

Findings that vidget habituation and SRP (1) are both induced by the same stimuli over the 

same time course, (2) have similar properties of orientation- and eye-specificity, and (3) are 

similarly sensitive to local V1 infusions of ZIP and AP5, together, strongly suggest these 

phenomena are closely related. We hypothesize that SRP is an electrophysiological 

consequence of synaptic modifications that contribute to OSH. The finding that selective 

visual experience that produces OSH in the open field also induces VEP potentiation 

supports this hypothesis.

Given that habituation features a decrement in behavioural response, it is intuitive to 

imagine synaptic depression as an underlying mechanism. Indeed, there is evidence for 

synaptic depression in some neural pathways displaying habituation25–27. However, a viable 

alternative is that the synaptic potentiation observed in SRP enforces a selective suppression 

of a separate response pathway. Given that inactivation of V1 prevents performance of the 

vidget, a logical extension of this hypothesis is that parallel pathways pass through V1: (1) a 

‘response’ pathway that directly mediates the vidget and which does not undergo long-term 

modification and (2) a ‘learning’ pathway that is selectively strengthened through Hebbian 

plasticity and subsequently suppresses the output of the ‘response’ pathway. Although 

speculative, this proposal is anatomically plausible8 and shares common features with 

influential theories of habituation28–30.

We note that deficits in habituation are well documented in schizophrenia. These may 

contribute to the disrupted attention that characterizes the cognitive symptoms of the 

disorder31. Deficits in a physiological phenomenon similar to SRP have also been observed 

in individuals with schizophrenia32. Assays of SRP and OSH in mutant mice engineered to 

carry genetic disruptions linked to schizophrenia therefore have the potential to uncover 

aspects of cortical pathophysiology that could suggest new treatment strategies33.

V1 as a cortical substrate for visual recognition memory

Although much experimental work has now revealed that primary sensory cortices retain the 

capacity for change in response to injury34 or sensory deprivation35,36, it has previously 

been unclear to what degree they encode memory resulting from everyday experience. We 

have shown here that plasticity in V1 contributes to memory. The observation that OSH 

transfers from free exploration of an arena to an apparatus in which the animal is restrained 

suggests that this plasticity supports context-independent recognition based on familiarity37. 

The perirhinal cortex, a higher-order visual region, is a major focus of work on familiarity38 

because this region is necessary for preferential exploration of novel objects39. Interestingly, 

novel object exploration requires mechanisms of synaptic long-term depression (LTD) in 

perirhinal cortex40,41 and neuronal response to familiar objects is reduced in this region 42, 
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contrasting with SRP2,3. It will be interesting to determine in future studies how these 

representations of familiarity are related and whether V1 plasticity contributes to recognition 

of complex objects. Even in rodents, object recognition can be accomplished regardless of 

the viewpoint from which the object is observed43, a property called invariance. OSH is not 

invariant because very simple stimuli are discriminated based simply on shifted orientation. 

Our findings suggest the possibility that low-level plasticity in V1 may serve as a building 

block for more complex representations contributing to invariant visual recognition memory.

On-line methods

Animals

All procedures were approved by the Committee on Animal Care at MIT, Cambridge, MA, 

USA and accorded with the guidelines of the National Institutes of Health. Mice were male 

C57BL/6 mice (Charles River laboratory international, Wilmington, MA) aged from P30–

45. For optogenetic experiments mice expressing Cre recombinase directed by the 

parvalbumin promoter were used (B6;129P2-Pvalbtm1(cre)Arbr/J – Jackson laboratory, ME, 

US. For local NMDAR knockdown experiments GRINfl/fl mutant mice were used 

(B6.129S4-Grin1tm2Stl/J – Jackson laboratory). In all cases mice were housed in groups of 

2–5 with food and water available ad libitum and maintained on a 12 hour light-dark cycle. 

All mice participated only in the individual experiment described and did not undergo any 

prior or future experimental treatment or procedure.

Electrode/cannula implantation

Mice were anaesthetized with an intraperitoneal (i.p.) injection of 50 mg/kg ketamine and 10 

mg/kg xylazine for surgery. 1 % lidocaine hydrochloride anesthetic was injected under the 

scalp of the mouse prior to incision. 0.1 mg/kg Buprenex was delivered sub-cutaneously for 

analgesia. The skull was cleaned with iodine and 70 % ethanol. A steel headpost was affixed 

to the skull anterior to bregma using cyanoacrylate glue. Burr holes (< 0.5 mm) were then 

drilled in the skull over binocular V1 (3.2 mm lateral of lambda). Tungsten electrodes (FHC, 

Bowdoinham, ME, US), 75 μm in diameter at their widest point, were implanted in each 

hemisphere, 450 μm below cortical surface. Silver wire (A-M systems, Sequim, WA, US) 

reference electrodes were placed over prefrontal cortex. For layer-specific analysis, linear 

silicon probes (16 recording sites, 50 μm spacing, NeuroNexus, Ann Arbor, MI, US) were 

implanted with the most superficial recording site just below the cortical surface. For unit 

recordings, custom-made bundles (tungsten H-Formvar wire, 20 μm outer diameter, 

California Fine Wire Company, Grover Beach, CA, US) were implanted 450 μm below the 

cortical surface. For local drug infusions, mice were also implanted bilaterally with 26 GA 

guide cannulae (Plastics One, Roanoke, VA, US), positioned lateral (3.5 mm lateral to 

lambda) to the recording site at a 45° angle to the recording electrode, 0.1 mm below 

surface. All implants were secured in place using cyanoacrylate glue. Finally, dental cement 

was applied to form a stable, protective head-cap. Dummy cannulae were inserted into 

guides. Mice were monitored postoperatively for signs of discomfort and allowed 24 hr for 

recovery.

Cooke et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stimulus presentation

Visual stimuli were generated using custom software written in Matlab (MathWorks) using 

the PsychToolbox extension (http://psychtoolbox.org) to control stimulus drawing and 

timing. The display was positioned 20cm in front of the mouse and centred, thereby 

occupying 92° × 66° of the visual field. Mean luminance was 27cd/m2. Visual stimuli 

consisted of full-field sinusoidal grating stimuli phase reversing at a frequency of 2Hz. 

Grating stimuli spanned the full range of monitor display values between black and white, 

with gamma-correction to ensure constant total luminance in both grey-screen and patterned 

stimulus conditions. For most experiments described, each stimulus block consisted of 200 

phase reversals with 30-second intervals between each stimulus presentation, during which 

the screen was grey but of equivalent luminance. The one exception to this paradigm was 

the opto-genetic experiment (Figure 2), in which stimulus blocks were just 20 phase 

reversals long in order to minimize the required time for each laser pulse delivery. Stimulus 

orientation varied such that a novel orientation was always a minimum of 25° different from 

any experienced previously by the individual subject3 and was never within 20° of 

horizontal because these orientations are known to elicit VEPs of greater magnitude than 

vertical or oblique stimuli. If more than 1 orientation was shown within a session, stimuli 

were pseudo-randomly interleaved such that 3 consecutive presentations of the same 

stimulus never occurred. For acuity experiments stimuli ranged across 0.05, 0.15, 0.3, 0.45, 

0.6 and 1cycle/°. In these experiments stimulus contrast was fixed at 100 %. For contrast 

sensitivity experiments stimuli ranged across 1.5, 3.125, 6.25, 12.5, 25, 50 and 100 % 

contrast. In these experiments spatial frequency was fixed at 0.05cycle/°. Again, these 

stimuli were pseudo-randomized. Because of the large number of stimuli within these acuity 

and contrast sensitivity experiments, 2 separate sessions were used, each containing 5 blocks 

of each frequency or contrasts. Novel orientations were used for each acuity and contrast 

sensitivity session.

Head-fixed behaviour

All behavioural experiments were performed during the mouse subject’s light cycle. A 

piezoelectrical recording device (C.B. Gitty, Barrington, NH, USA) was placed under the 

forepaws of head-restrained mice during all sessions. Mice became accustomed to the 

apparatus by sitting in situ in front of a grey screen for a 30-minute session on each of 2 

days. Before stimulus presentation mice also underwent 5 min of grey screen presentation. A 

continuous voltage signal was recorded from the piezo for the entire session. Movements 

were detected as a shift in the voltage signal. The recording system was automated so that no 

one was ever present in the closed room for any of the recording period and white noise was 

played at 67 dB in order to mask outside noise.

For vidget scoring, the continuous voltage signal was down-sampled to 100 Hz. The period 

of interest in the experiments described here lasted from 2 seconds prior to stimulus onset 

until 5 seconds after stimulus onset (which was the first 10 phase reversals in a block). For 

the eye-specific experiments the measurement was limited to 2 seconds after stimulus onset 

as vidgets were of lower magnitude. Quantification of movement driven by the onset of the 

stimulus (the vidget) was calculated by taking the Root Mean Square (SQRT (X2)) of the 

voltage signal. Post-stimulus signal was then normalized to the average magnitude during 
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the 2-second period prior to stimulus onset. The average normalized magnitude across the 5-

second period subsequent to stimulus presentation was then used to quantify the degree of 

stimulus-driven movement and this is described throughout in arbitrary units (a.u.).

Freely-moving behaviour

The freely moving assay was conducted within a 40 x 40 x 30 cm square arena. 2 opposing 

walls were clear, allowing the mouse to view the stimulus monitors, whereas the other 2 

walls and floor were occluded to minimize reflections and external visual cues. A black 

curtain surrounded the arena. Cineplex software (Plexon inc.) was used to acquire video of 

the mice at a rate of 30 frames/second and to automatically track the mouse’s location.

After mice recovered from electrode implantation they were permitted to freely explore the 

testing area for 2 days over ~30 min per session while both monitors presented full-fields of 

grey. Phase-reversing stimulus presentation began the next day. Each day consisted of 2 

free-exploration sessions separated by ~1 hour, in which the mouse was returned to its home 

cage. Each session began with 5 min of full-field grey on both monitors, followed by 

presentation of the visual stimulus on 1 side of the arena (actual location of the visual 

stimulus was counterbalanced from day to day). The stimulus consisted of a 100 % contrast, 

sinusoidal grating that phase-reversed at a frequency of 2 Hz. The stimulus had a spatial 

frequency of 0.05 cycles/°, as calibrated from the centre of the testing arena. Visual stimuli 

were presented as 5 blocks of 100 phase-reversals per block with 30 seconds of grey screen 

during the inter-block-interval. For the second training session, the stimulus was presented 

on the opposite side of the arena, following the same protocol. This training paradigm was 

implemented for 8 days with a single oriented stimulus. Day-9 consisted of 4 training 

sessions, 2 using the now familiar orientation and 2 using an orthogonal novel orientation. 

Once again, the order of stimulus presentation was counterbalanced from mouse to mouse. 

Subsequently, the mouse was head-fixed for VEP/vidget recordings.

To measure each mouse’s preference for the visual stimulus we split the testing arena into 

halves (zones) and quantified the amount of time the mouse spent within the zone near the 

visual stimulus versus the side near the grey screen. To limit our analyses only to periods of 

active exploration we quantified the mouse’s location for periods where running velocity 

exceeded 5 cm/s. Side preferences were then quantified as the percentage of total 

exploration time spent within each zone. Preference for the stimulus zone was expressed as 

the ratio of time spent exploring within the zone closest to the stimulus minus the time spent 

within the opposite zone over total exploration time ((stimulus zone-opposite zone)/overall 

exploration).

Electrophysiological Data Acquisition and analysis

All data was amplified and digitized using the Recorder-64 system (Plexon Inc., Dallas, TX, 

US). Two recording channels were dedicated to recording EEG/VEPs from V1 in each 

implanted hemisphere and a third recording channel was reserved for the Piezo-electrical 

input carrying the behavioural information for the majority of experiments. Fields were 

recorded with 1 kHz sampling and a 500 Hz low-pass filter. All data was extracted from the 

binary storage files and analyzed using custom software written in C++ and Matlab. VEPs 
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were averaged across all phase reversals within a block and trough-peak difference 

measured during a 200-millisecond period from phase reversal. For experiments described 

in Figure 3, 16 separate channels were used for laminar probe LFP/VEP recordings, each 

dedicated to an individual recording site. Current source density (CSD) analysis measured 

sink and source magnitudes across all cortical layers by calculating the second spatial 

derivative of the averaged VEP responses to familiar and novel stimuli. For spike 

recordings, 8 separate channels were used, each dedicated to a single wire within the 

electrode bundle. Spiking activity was digitized with 25 kHz sampling and multi-unit spikes 

were isolated using Offline Sorter (Plexon Inc.).

Viral infections

All viruses used to locally infect V1 were adeno-associated viruses (AAV). For optogenetic 

experiments we infected V1 of ~1 month old mice expressing Cre recombinase directed by 

the parvalbumin promoter (B6;129P2-Pvalbtm1(cre)Arbr/J – Jackson laboratory, ME, US) or 

wild-type littermates with AAV5-EF1α-DIO-hChR2(H134R)-eYFP (UNC viral core – 

generated by Dr. Karl Deisseroth’s laboratory). Using a glass pipette and nanoject system 

(Drummond scientific, Broomall, PA, US) we delivered 81 nl of virus at each of 3 cortical 

depths: 600 μm, 450 μm and 300 μm below surface. At each depth 6 injections of 13.5 nl 

were delivered, each separated by 15 secs, and 5 mins was allowed between re-positioning 

for depth. For local GRIN1 knockdown, ~1 month old mice GRINfl/fl mutant mice 

(B6.129S4-Grin1tm2Stl/J – Jackson laboratory) were infected locally in V1 with either 

AAV8-hSyn-GFP-Cre (knockdown, UNC viral core) or AAV8-hSyn-GFP (control, UNC 

viral core – generated by Dr Bryan Roth’s laboratory). Again, injections were made at 

multiple depths. In this case 10 injections of 13.5 nl were made for a total of 135 nl at 4 

cortical depths: 600 μm, 450 μm, 300 μm and 150 μm below surface. As before, each 

injection was separated by 15 secs, and 5 mins was allowed between re-positioning for 

depth. Mice were allowed 4 weeks recovery for virus expression to peak before experiments 

were initiated.

Optogenetics

After viral infection mice were also bilaterally implanted with VEP recording electrodes 

positioned in layer 4. Ready-made optic fibres (200 μm girth) mounted in stainless steel 

ferrules (1.25 mm diameter, 2 mm fibre projection, Thor labs, Newton, NJ, US) were then 

implanted positioned lateral (3.5 mm lateral to lambda) to the recording site and at a 45° 

angle to the recording electrode, 0.1 mm below surface in each hemisphere. 1 month later, 

after peak of viral expression, mice were habituated to the head-fixation apparatus over 2 

days before conducting optogenetic experiments. We delivered 11-second long continuous 

pulses of blue light (473 nm, 150 mW) into V1 using a laser (Optoengine LLC, Midvale, 

UT, US). These light pulses were delivered simultaneous to 50% of the 10-second long 

visual stimulus presentations, commencing 30 ms prior to visual stimulus onset and ending 

30 ms after offset. Animals were sacrificed and perfused within a week after this experiment 

for histological analysis.
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Drug infusions

Infusions of ZIP and AP5 were conducted blind to treatment. Prior to infusion experiments, 

during which mice became accustomed to the recording apparatus, dummy cannulae were 

removed and repositioned in order to prevent blockage. On the day of infusion, syringes and 

guide tubing, attached to 33 GA injection cannulae, were filled with distilled water, which 

was separated from the injected solution with an air bubble. Dummies were again removed 

and injection cannulae were inserted through guides and allowed to sit in place for 5 min 

before injection. If blockade prevented smooth infusion the animal was excluded from the 

study (10 animals were excluded for this reason prior to inclusion in any dataset). Using a 

KD scientific infusion pump, slight positive pressure was maintained on the syringe while 

inserting the injection cannulae in order to prevent blockage. The vehicle solution was aCSF 

(124 mM NaCl, 5 mM KCl, 1.25 mM Na2PO4, 26 mM NaHCO3, 1 mM MgCl2, 2 mM 

CaCl2) stored and defrosted on the day of injection. Muscimol (4 mM, Sigma, St. Louis, 

MO), AP5 (5 mM, Tocris, Bristol, UK) and ZIP (myr-SIYRRGARRWRKL-OH, 10 mM, 

Sigma, St. Louis, MO) were infused at 6 μl/hour over 10 minutes to inject 1 μl. The resulting 

local quantities are described in the manuscript. Hemispheres were injected in sequence.

Histology

Mice were deeply anaesthetized with fatal plus (pentobarbital) and perfused with saline 

followed by 4 % paraformaldehyde in 0.1 M phosphate buffer. The brain was removed and 

post-fixed for 24h at room temperature. After fixation, the brain was sectioned into 60 μm 

coronal slices using a vibratome. For assessment of the spread of viral infusions we 

performed Hoechst and FluoroMyelin Red stains were performed. Slices were incubated 

with a permeabilization solution (0.2 % Triton X-100 in PBS) for 30 mins at room 

temperature and then with a staining solution (Hoechst 33342, Life Technologies, 1:10,000 

and FluoroMyelin Red, Life Technologies, 1:100 in PBS) for 30 mins. Slices were washed 

three times with PBS and mounted. Fluorescence images were taken with a confocal 

fluorescence microscope (Olympus). The margins of V1 were determined using the 

established techniques of observing the pronounced increase in thickness of layer 4 44–46 

and of increased myelination demarcating primary sensory areas 47. A description of this 

approach is described in Figure S10.

Immunohistochemistry

Mice were deeply anaesthetized with fatal plus (pentobarbital) and perfused with saline 

followed by 4 %paraformaldehyde in 0.1M phosphate buffer. The brain was removed and 

post-fixed for 24h at room temperature. After fixation, the brain was sectioned into 60 μm 

coronal slices using a vibratome. Slices were incubated with blocking solution (10 % fetal 

bovine serum in PBS with 0.2 % Triton X-100) for 1 hour at room temperature and then 

with anti-Parvalbumin mouse primary antibody (MAB1572, Millipore; 1:1,000) diluted in 

blocking solution overnight at 4 degrees Celsius. Slices were then washed three times with 

PBS and incubated with the secondary antibody for 1h at room temperature (Alexa594-

conjugated anti-mouse IgG, Invitrogen, 1:500. Slices were washed three times with PBS and 

mounted with 49,6-diamidino-2 phenylindole (DAPI)-containing Vectashield (Vector 
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Laboratories). Fluorescence images were taken with a confocal fluorescence microscope 

(Olympus).

Statistical analyses

In the results section, all data is expressed as a mean ± standard error of the mean (S.E.M). 

Sigmaplot and SPSS were used for statistical analysis. For all experiments, normality of 

distribution and homogeneity of variation was tested. Parametric ANOVA (for multiple 

groups) or 2-tailed t-tests (for 2 groups) were performed when data passed these tests. 

Otherwise, non-parametric ANOVAs or t-tests on ranks were used. If ANOVAs yielded 

significance, Student-Newman-Keuls post-hoc tests with adjustment for multiple 

comparisons were applied for individual comparisons. Repeated measures ANOVAs or 

paired t-tests were applied for all within subject comparisons. For other comparisons 

unpaired ANOVAs or t-tests were used. Individual tests used are described in the results. P 

< 0.05 is used as a threshold for significance throughout but exact P values are given for all 

comparisons for which the P value is above 0.001, except for post-hoc tests conducted after 

non-parametric tests on ranks. No explicit statistical methods were used to predetermine 

sample sizes, but our sample sizes throughout are similar to or greater than those generally 

employed to assess mouse behaviour.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Visually-induced fidget (vidget) reports visual detection
a) A piezoelectric disk was positioned under the forepaws of head-fixed, awake mice to 

record movements initiated by the onset of a full-field, phase-reversing, sinusoidal grating 

stimulus. In parallel, visual evoked potentials (VEPs) were recorded from the binocular zone 

of V1. b) Piezoelectric voltage signals were (1) rectified and (2) normalized to a 2-second 

pre-stimulus baseline period, indicated here by vertical dotted lines (see methods for 

details), and (3) quantified as the average magnitude over the first 5 seconds of stimulus 

presentation in arbitrary units (a.u.). The average vidget over multiple stimulus presentations 
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within a session provides an accurate measure of stimulus detection. c) The average vidget 

(15 mice, 75 stimulus presentations) shows a response latency of ~150 ms. d) Despite the 

variability across individual stimulus onsets, vidgets are observed in all mice. e) High 

contrast visual stimuli evoked greater magnitude vidgets than low contrast (n = 15 mice; 

Friedman 1-way repeated measures ANOVA on ranks, X2
(5) = 29.13, p < 0.001). Averaged 

vidgets were taken from 10 stimulus blocks per contrast in each of 15 mice across a range of 

contrast values (spatial frequency was fixed at 0.05 cycles/° during varied contrast 

presentation). f) Sensitivity to varying spatial frequency was quantified in the same mice 

(contrast was fixed at 100 % during varied spatial frequency presentation). Low spatial 

frequency stimuli elicited greater magnitude vidgets than high spatial frequency (n = 15 

mice; Friedman 1-way repeated measures ANOVA on ranks, X2
(5) = 44.91, p < 0.001). 

Dashed line represents pre-stimulus baseline. Averaged vidgets including 2-second baselines 

are presented at the top of panels e–f. g) Averaged VEPs recorded in parallel reveal similar 

psychometric curve for contrast sensitivity to that observed with behaviour (n = 15; 

Friedman 1-way repeated measures ANOVA on ranks, X2
(5) = 68.83, p < 0.001). h) VEP 

magnitude across a range of spatial frequencies also share a similar profile to the vidget (n = 

15; Friedman 1-way repeated measures ANOVA on ranks, X2
(5) = 60.87, p < 0.001). 

Dashed line represents noise levels. Averaged VEPs are displayed at top of panels g–h. 

Error bars represent S.E.Ms, asterisks denote significance of p < 0.05.
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Figure 2. The vidget requires activity in V1
Optical fibres were implanted below the cortical surface targeting V1 and VEP electrodes 

positioned in layer 4. Light could then be delivered to the recording site in vivo while the 

animal views a visual stimulus and optogenetic strategies used to alter activity locally. By 

selectively expressing Channelrhodopsin2 (ChR2) in parvalbumin expressing (PV+) cells 

using Cre recombinase technology, blue light (473 nm) could be used to suppress activity in 

V1 through PV+ inhibition. a) An example coronal section through a mouse brain (DAPI 

stained) showing eYFP labelled cells (green) that express ChR2 bilaterally restricted to 

lateral (binocular) V1. b) Example histology showing eYFP label in select cortical cells 

expressing ChR2 (green). c) Immunoshistochemistry for parvalbumin reveals all those PV+ 

putative fast spiking interneurons (red) within the image in (b). d) DAPI label (blue) labels 

the nuclei of all cells in this region. e) eYFP+ cells are also PV+. Other DAPI+ cells (blue) 

are not co-labelled in green, demonstrating that they do not express ChR2. f) VEPs evoked 

by full-field sinusoidal grating stimuli were significantly suppressed in PV-Cre mice (n = 

10) when blue light (473 nm) was applied using a laser (2-way repeated measures ANOVA: 

genotype x treatment interaction: F(1,55) = 13.395; p = 0.001), measuring 207.90 ± 27.76 μV 

while the laser was on (light blue) and 292.28 ± 36.89 μV when it was off (black, n = 20 

hemispheres; Student-Newman-Keuls post-hoc test, q(19) = 6.906, p < 0.001). This 
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suppression was not observed in wild-type littermate mice (n = 8) infected with the same 

AAV5 virus, demonstrating that the laser had no impact without ChR2. In these animals 

VEPs measured 303.19 ± 32.68 μV when the laser was on (blue) and 290.16 ± 33.49 μV 

when it was off (grey, n = 16 hemispheres; Student-Newman-Keuls post-hoc test, q(15) = 

0.866, p = 0.546). Averaged VEPs are presented at top of panel. Dashed line represents 

noise levels. g) Vidgets were significantly suppressed by blue light (473 nm) in the same 

PV-Cre mice (2-way repeated measures ANOVA: genotype x treatment interaction: F(1,35) = 

6.639; p = 0.020). The vidget was suppressed in the PV-Cre mice (light blue, 1.26 ± 0.24 

a.u.) relative both to the absence of laser (black, 2.89 ± 0.39 a.u.; n = 10 mice; Student-

Newman-Keuls post-hoc test, q(9) = 3.919, p = 0.014) and littermate controls during laser 

(blue, 2.90 ± 0.63 a.u.; n = 8 mice; Student-Newman-Keuls post-hoc test, q(16) = 3.572, p = 

0.017). Again, significant suppression of behaviour did not occur in WT mice relative to the 

absence of light application (grey, 2.26 ± 0.57 a.u.; n = 8 mice; Student-Newman-Keuls 

post-hoc test, q(7) = 1.384, p = 0.343). Averaged vidget responses are presented at top of 

panel. Dashed line represents pre-stimulus baseline. h) Cumulative distribution of averaged 

vidget per PV-Cre mouse pre-laser (black) and during laser (light blue). i) Cumulative 

distribution of averaged vidget per infected WT littermate mouse (n = 8) pre-laser (grey) and 

during laser (blue). Dashed line represents pre-stimulus baseline. Throughout figure error 

bars are S.E.Ms, asterisks denote significance of p < 0.05 and non-significant comparisons 

are denoted with n.s.
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Figure 3. SRP is distributed but not uniform and impacts neural spiking
a) Example of a laminar probe implantation in mouse V1 with 16 recording sites separated 

by 50 μm increments. b) Current Source Densities (CSDs) were calculated from the local 

field potential (LFP) data and are presented for the familiar stimulus (left), the novel 

stimulus (middle) and a scaled subtraction of novel from familiar (right). Dark colours 

reflect current sinks and light colours current sources. c) Example raster plots showing 

multiunit firing from a single animal across the course of a familiarity test session in which 

familiar and novel oriented stimuli were pseudo-randomly interleaved and separated by 

viewing of a grey screen. In the left hand panel is the unit response to 30-second bouts of 

static grey stimuli interleaved between grating stimuli. This is presented arbitrarily time-

locked for comparison with the phase reversing stimuli in the adjacent 2 panels. The middle 

panel shows the event-related response to each of 500 phase reversals across 5 blocks of a 2 

Hz phase reversing familiar oriented stimulus. The right panel shows the event-related 

response to each of 500 phase reversals across 5 blocks of a 2 Hz phase reversing novel 

oriented stimulus. d) Summary plot of peak firing rate for multi-unit recordings across 10 

mice. Peak firing after phase reversal is significantly elevated for the familiar stimulus (blue, 

13.39 ± 2.51 Hz, n = 10; 1-way repeated measures ANOVA; F(2,18) = 20.01, p < 0.001) 

relative to novel (red, 5.81 ± 1.61 Hz; Student-Newman-Keuls post-hoc test, q(9) = 5.51, p = 

0.001) and grey (grey, 1.20 ± 0.21 Hz; Student-Newman-Keuls post-hoc test, q(9) = 8.86, p 

< 0.001). The ratio of peak firing rate to familiar/novel (black) is around 4.38 ± 1.71, 

indicating that, on average, the familiar stimulus evokes around 4 times greater peak firing 

rate than the novel. Error bars are SEMs. Asterisks denote significance of p < 0.05.
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Figure 4. Orientation-selective habituation (OSH) occurs in parallel with stimulus-selective 
response potentiation (SRP)
a) Mice were implanted bilaterally in V1 with recording electrodes. Upon recovery they 

became accustomed to head-fixation for 2 days, viewing a grey screen. Over the next 8 days, 

mice were presented with 5 blocks of an X° oriented grating stimulus per day. On day-9, 5 

blocks of the same stimulus were interleaved with 5 blocks of a novel orthogonal stimulus 

(X + 90°). b) VEPs underwent SRP (n = 19; Friedman 1-way repeated measures ANOVA 

on ranks, X2
(7) = 69.05, p < 0.001), reaching significance by day-2 (183.58 ± 19.42 μV) 

relative to day-1 (125.38 ± 16.20 μV; Student-Newman-Keuls post-hoc test, q(18) = 11.36, p 

< 0.05). c) Orientation-selectivity was revealed by the significant difference in VEP 

magnitude driven by the familiar (blue, 289.83 ± 24.53μV) and novel stimulus (red, 166.86 

± 19.34 μV, 2-tailed paired t-test, t(18) = 10.081, p < 0.001) on day-9. d) The vidget was 

significantly suppressed over the same time course as VEPs were potentiated, indicating 

habituation (n = 19; Friedman 1-way repeated measures ANOVA on ranks, X2
(7) = 25.13, p 

< 0.001). This suppression was also significant by day-2 (3.24 ± 0.51 a.u.) relative to day-1 

(4.14 ± 0.55 a.u.; Student-Newman-Keuls post-hoc test, q(18) = 6.49, p < 0.05). Behavioural 

suppression saturated by day-8 (1.51 ± 0.15a.u.; Student-Newman-Keuls post-hoc test, q(18) 

= 6.28, p < 0.05). e) Habituation was revealed to be orientation-selective on day-9 when the 

novel stimulus (red, 3.21 ± 0.43 a.u.) elicited vidgets of significantly greater magnitude than 

the familiar (blue, 1.61 ± 0.23 a.u.; n = 19; 2-tailed paired t-test, t(18) = −3.28, p = 0.004). 

Throughout figure error bars are S.E.Ms and asterisks denote significance of p < 0.05.
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Figure 5. Freely moving mice explore sinusoidal grating stimuli, resulting in OSH
a) Mice (n = 18) explored a 40 cm x 40 cm arena with stimulus monitors at each end. b) 

Mice were habituated to the arena in 15-minute sessions during which static grey stimuli 

were presented on both monitors. Five blocks of a sinusoidal grating stimulus (X°) were 

then presented on each monitor (not simultaneously) on each of the next 8 days. On day-9, 5 

blocks each of the familiar (X°) and a novel (X + 90°) oriented stimuli were presented on 

each monitor in order to test for OSH. Note that mice were habituated to the head-fixation 

apparatus without visual stimulation on days 7 and 8, 3–4 hours after free exploration. c) On 

day-1, the mice spent significantly more “active time” (velocity > 5cm/s) within the zone 

closest to stimulus presentation (i.e. left zone when stimulus was shown on the left monitor, 

etc.), indicating stimulus exploration (between subjects interaction: stimulus x zone: F(1,68) 

= 48.23, p < 0.001). Mice spent more time exploring proximal to stimulus presentation, 

whether on the left (black, 59.5 ± 0.97 %) or right (grey, 64.1 ± 0.73 %). d) Stimulus zone 

preference, quantified by the difference in time spent exploring the zones proximate and 

distal to stimulus presentation divided by the total exploration time, decreased significantly 

over days (1-way repeated measures ANOVA: F(7,119) = 3.43, p = 0.002, demonstrating 

habituation. e–f) On day-9, there was a significant effect of stimulus location and orientation 

on exploration (within-subjects 3-way interaction: Orientation x location x zone; F(1,68) = 
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28.92, p < 0.001). Mice exhibited preference for the novel orientation (red, between subjects 

interaction: Location x zone; F(1,68) = 78.89, p < 0.001) irrespective of stimulus location (i.e. 

on the left (65.8 ± 0.69 %) or the right (59.4 ± 0.65 %) of the arena). No significant 

preference was observed for the familiar stimulus (blue, between subjects interaction: 

Location x zone: F(1,68) = 1.95, p = 0.167) on the left (50.9 ± 0.77 %) or the right (53.1 ± 

0.60 %). Overall, there was greater preference (Paired t-test: t(17) = −4.51, p < 0.001) for the 

novel (red, 0.28 ± 0.09) than the familiar stimulus (blue, 0.03 ± 0.17). g–h). In the head-

fixed condition following free exploration, the familiar stimulus evoked significantly larger 

VEPs (blue, 169.2 ± 71.4 μV) than the novel stimulus (red, 100.8 ± 53 μV; n = 18; paired t-

test: t(17) = 8.78, p < 0.001), demonstrating the occurrence of SRP. In addition, the novel 

stimulus elicited significantly larger vidgets (red, 4.79 ± 0.76 a.u.) than the familiar stimulus 

(blue, 2.77 ± 0.46 a.u.; paired t-test: t(11) = 2.295, p = 0.042), recorded in a subset of mice (n 

= 12), indicative of OSH. Throughout figure error bars are S.E.Ms and asterisks denote 

significance of p < 0.05.
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Figure 6. Orientation-selective habituation (OSH) is eye-specific
a) Presentation of full-field visual stimuli was limited to just one eye using an occluder. 

VEPs driven through the viewing eye were recorded in contralateral V1 while also recording 

vidgets. b) 14 mice were implanted bilaterally with VEP electrodes. On recovery they 

became accustomed to the recording apparatus for 2 days. A phase reversing sinusoidal 

grating stimulus was then selectively presented to the left eye only (X°). The orthogonal 

oriented stimulus was presented to the right eye only (X + 90°). Five stimulus blocks were 

delivered each day to each eye over 8 days. On day-9, each eye viewed the stimulus 

presented only to that eye for the previous 8 days as well as the stimulus viewed only by the 

opposing eye. A second novel stimulus, which had never been viewed by either eye, was 

also presented (X + 45°, here called ‘true novel’). Five blocks of each stimulus were 

interleaved during this session. c) OSH is eye-specific as revealed on day-9 (n = 28 eyes 

from 14 mice). The stimulus familiar to an eye elicited vidgets of significantly lower 

magnitude (blue, 1.54 ± 0.26 a.u.; n = 28 eyes; Friedman 1-way repeated measures ANOVA 

on ranks, X2
(2) = 14.72, p < 0.001) than the stimulus novel to the eye but familiar to the 

opposite eye (orange, 2.58 ± 0.36 a.u.; Student-Newman-Keuls post-hoc test, q(27) = 6.55, p 

< 0.05) or the true novel stimulus (red, 3.10 ± 0.50 a.u.; Student-Newman-Keuls post-hoc 

test, q(27) = 4.73, p < 0.05). There was no significant difference between the averaged 

magnitude of vidgets elicited by a stimulus novel only to the eye (orange) and the true novel 

stimulus (red, Student-Newman-Keuls post-hoc test, q(27) = 0.13, n.s.). d) The cumulative 

distribution of average vidget magnitude elicited through each eye by the familiar (blue 

circles), novel only to eye (orange circles) and true novel stimulus (red circles) on day-9 
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shows that OSH is reliably eye specific. e) VEPs in response to the stimulus familiar to the 

eye elicited VEPs of significantly greater magnitude (blue, 124.21 ± 15.29 μV; n = 28 

hemispheres; Friedman 1-way repeated measures ANOVA on ranks, X2
(2) = 26.74, p < 

0.001) than either true novel (red, 70.70 ± 9.71 μV; Student-Newman-Keuls post-hoc test, 

q(27) = 6.48, p < 0.05) or novel-to-eye (orange, 77.02 ± 10.89 μV; Student-Newman-Keuls 

post-hoc test, q(27) = 8.65, p < 0.05). There was also no significant difference between VEPs 

driven by the stimulus novel to the eye (orange) and true novel (red, Student-Newman-Keuls 

post-hoc test, q(27) = 0.52, n.s.). Throughout figure error bars are S.E.Ms, asterisks denote 

significance of p < 0.05 and non-significant comparisons are denoted with n.s.
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Figure 7. NMDA receptors in V1 are required for induction of OSH
a) NMDA receptors were locally ablated bilaterally in V1 of GRIN1fl/fl mice by locally 

expressing Cre recombinase through infection with an AAV8 virus. A GFP tag reveals the 

local spread of infection in V1, targeting the lateral binocular portion (V1b) and not the 

medial monocular region (V1m). b) Littermate GRIN1fl/fl mice locally expressing just GFP 

through infection with a matched AAV8 viral vector served as controls. c) SRP induction 

was significantly deficient in 11 Cre-expressing GRIN1fl/fl mice (light green circles) relative 

to interleaved littermate GFP only-expressing GRIN1fl/fl mice (dark green circles, 2-way 

repeated measures ANOVA: treatment x day interaction: F(1,263) = 5.523; p < 0.001). d) 

Failure of SRP induction (ANOVA: treatment x stimulus interaction: F(1,87) = 25.634; p < 

0.001) is reflected by the equal magnitude of VEPs driven by novel (red outlines, 100.84 ± 

12.95 % baseline) and familiar stimuli (blue outlines, 113.73 ± 14.57 baseline), in Cre-

expressing GRIN1fl/fl mice (light green bars; n = 22 hemispheres; Student-Newman-Keuls 
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post-hoc test, q(21) = 2.142, p = 0.137) during the final session familiarity test. Normal 

selectivity between novel (red outlines, 115.01 ± 14.58 % baseline) and familiar stimuli 

(blue outlines, 188.83 ± 19.40 % baseline) was observed in GFP only-expressing GRIN1fl/fl 

mice (dark green bars, n = 22 hemispheres; Student-Newman-Keuls post-hoc test, q(21) = 

12.268, p < 0.001) during interleaved test sessions. Averaged VEPs are shown at the top of 

panels c–d. e) OSH was similarly selectively blocked by knocking down NMDAR function 

in V1 (2-way repeated measures ANOVA: treatment x stimulus interaction: F(1,43) = 8.615; 

p = 0.008). The cumulative distributions of average vidget magnitude per mouse driven by 

familiar (blue outlines, 2.03 ± 0.65 a.u.) and novel stimuli (red outlines, 6.92 ± 1.15 a.u.) in 

GFP only-expressing GRIN1fl/fl control mice (dark green), reveal consistent suppressive 

effect of familiarity (n = 11 mice; Student-Newman-Keuls post-hoc test, q(10) = 6.643, p < 

0.001), reflecting OSH. f) Vidgets of similar magnitude were evoked by familiar (blue 

outlines, 2.64 ± 0.48 a.u.) and novel stimuli (red outlines, 3.21 ± 0.61 a.u.; n = 11 mice; 

Student-Newman-Keuls post-hoc test, q(10) = 0.773, p = 0.591) after deletion of GRIN1 in 

V1 (light green), demonstrating blockade of OSH. Average vidgets are presented at top of 

insets in panel e–f. Dashed lines represent pre-stimulus baseline for panels e–f. Throughout 

figure error bars are S.E.Ms, asterisks denote significance of p < 0.05 and non-significant 

comparisons are denoted with n.s.
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Figure 8. Local blockade of learning and erasure of memory in V1
a) Either the selective NMDAR antagonist AP5 (5 nMol in 1 μl over 10 minutes) or vehicle 

was infused bilaterally 30 minutes prior to stimulus onsets into binocular V1 of mice 

bilaterally implanted with injection cannulae and VEP recording electrodes. Mice were 

separated into 2 groups of 9 for a crossover experimental design. b) OSH occurred 

selectively after vehicle treatment but not AP5 treatment (2-way repeated measures 

ANOVA; n = 18; F(1,17) = 7.794, p = 0.013). The cumulative distributions of average vidget 

per mouse driven by familiar (blue circles, 2.72 ± 0.43 a.u.) and novel stimuli (red circles, 

5.59 ± 0.56 a.u.) after vehicle treatment, reveal consistent suppressive effect of familiarity 
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(Student-Newman-Keuls post-hoc test, q(17) = 4.82, p = 0.002). c) After AP5 treatment, 

cumulative distributions of average vidget per mouse driven by previously viewed ‘familiar’ 

stimulus (blue circles, 4.16 ± 0.68 a.u.) and the novel stimulus (red circles, 4.97 ± 0.52 a.u.) 

are largely overlapping (n = 18) and, inset, no significant difference was observed (Student-

Newman-Keuls post-hoc test, q(17) = 1.36, p = 0.34). d) After saturation of OSH, 1 group of 

18 mice were infused bilaterally with ZIP (10 nMol ZIP in 1 μl over 10 minutes) while 

another group of 18 mice were bilaterally infused with vehicle through infusion cannulae 

implanted bilaterally in binocular V1. This experiment revealed that OSH was susceptible to 

erasure by ZIP (3-way ANOVA, interaction of treatment x session x stimulus: F(1,136) = 

4.27, p = 0.041). e) Prior to infusions, OSH was expressed (n = 18; 2-way repeated measures 

ANOVA, effect of stimulus: F(1,34) = 11.80, p = 0.002) and did not differ across treatment 

(treatment x stimulus: F(1,34) = 0.52, p = 0.48). Prior to infusions of ZIP on day-9 (black 

bars), vidgets of significantly greater magnitude were observed in response to the novel 

stimuli (red outlines, 4.47 ± 0.81 a.u.) than the familiar (blue outlines, 2.32 ± 0.40 a.u.: 

Student-Newman-Keuls post-hoc test, q(17) = 4.16, p = 0.006), reflective of OSH. f) On 

day-11, after infusions, a difference between the groups emerged (2-way repeated measures 

ANOVA, treatment x stimulus: F(1,34) = 4.63, p = 0.039). On day-11, discrimination 

between novel and familiar stimuli was still present in the vehicle control group. Cumulative 

distributions of average vidget per mouse after vehicle infusions show separated 

distributions for familiar (blue, 1.81 ± 0.18 a.u.) and novel stimuli (red, 3.96 ± 0.50 a.u.) 

and, inset, this difference was statistically significant (Student-Newman-Keuls post-hoc test, 

q(17) = 4.00, p = 0.008). g) In contrast, after ZIP infusions cumulative distributions of 

average vidget per mouse overlapped for familiar (blue, 3.17 ± 0.76 a.u.) and novel stimuli 

(red, 3.01 ± 0.53 a.u.) and, inset, any difference was not statistically significant (Student-

Newman-Keuls post-hoc test, q(17) = 0.31, p = 0.830). Dashed lines represent pre-stimulus 

baseline. Scale bar is 5 seconds horizontally and 1 a.u. vertically. Throughout figure error 

bars are S.E.Ms, asterisks denote significance of p < 0.05 and non-significant comparisons 

are denoted with n.s.
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