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Abstract
The term “IgY technology” was introduced in the literature in the mid 1990s to 
describe a procedure involving immunization of avian species, mainly laying hens 
and consequent isolation of the polyclonal IgYs from the “immune” egg yolk 
(thus avoiding bleeding and animal stress). IgYs have been applied to various 
fields of medicine and biotechnology. The present article will deal with specific 
aspects of IgY technology, focusing on the currently reported methods for 
developing, isolating, evaluating and storing polyclonal IgYs. Other topics such as 
current information on isolation protocols or evaluation of IgYs from different 
avian species are also discussed. Specific advantages of IgY technology (e.g., novel 
antibody specificities that may emerge via the avian immune system) will also be 
discussed. Recent in vitro applications of polyclonal egg yolk-derived IgYs to the 
field of disease diagnosis in human and veterinary medicine through in vitro 
immunodetection of target biomolecules will be presented. Moreover, ethical 
aspects associated with animal well-being as well as new promising approaches 
that are relevant to the original IgY technology (e.g., development of monoclonal 
IgYs and IgY-like antibodies through the phage display technique or in transgenic 
chickens) and future prospects in the area will also be mentioned.
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Core Tip: IgY technology has been widely used during the last decades, especially as a 
means for the efficient in vitro immunodetection of biomolecules in various fields of 
research and disease diagnosis. Despite the very promising relevant new approaches, 
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there is still space to further exploit the original IgY technology due to functional, 
practical, and ethical reasons/advantages associated with the unique features of IgYs, 
the highly efficient isolation of large amounts of IgYs from the immune egg yolk, and 
the avoidance of animal bleeding, respectively.
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INTRODUCTION
The term “IgY technology” was introduced in the 1990s to describe a procedure 
consisting of immunization of birds, especially laying hens, in order to produce 
polyclonal antibodies of the Y class (IgYs). IgYs can be isolated in large quantities from 
“immune” egg yolk (thus avoiding the animal bleeding procedure, which is stressful 
for an animal) and has been applied to various fields of biotechnology and biome-
dicine[1-3]. To date, IgYs developed in poultry and isolated from the egg yolk as 
aforementioned have been and are still being used as specific laboratory tools, 
especially for detecting biomolecules in biological specimens through various in vitro 
techniques (and also as in vivo immunotherapeutic agents).

The origins of the IgY technology can be traced back many years, i.e. at the end of 
the 19th century, when Klemperer observed that immunized hens (Gallus domesticus) 
generated antibodies that were present in the egg yolk[2-4]. Subsequently, a new type 
of immunoglobulin was found in the blood and egg yolk of birds (also in lungfish, 
amphibians and reptiles), which was called IgY[3,5]. Actually, birds, which do not 
produce colostrum like mammalian organisms do, use the yolk of their eggs as a very 
effective source of antibodies through which they can transfer humoral immunity to 
their offspring, until the latter develops fully mature immune system[6]. Transfer/ac-
cumulation of IgY from blood to/in the egg yolk, which is realized by a selective 
transport mechanism in avian mature oocytes and mediated by specific receptor(s)[7-
9], enables the non-invasive isolation of antibodies and eliminates the need to bleed 
the animal. Isolation and subsequent application of egg yolk–derived antibodies 
minimize animal suffering and this meets at least one of the three main requirements 
for animal welfare, i.e. “Reduction,” “Replacement,” “Refinement,” as they have been 
summarized in the “3Rs principle”[10]. As a consequence, in 1996 the European Centre 
for the Validation of Alternative Methods to animal testing (ECVAM) strongly 
recommended avian antibodies as alternative to mammalian ones[1]. In parallel, in the 
mid 1990s the term “IgY technology” was introduced in the literature, as already 
mentioned; in 1999, the IgY technology was approved as an alternative method for 
supporting animal welfare by the Veterinary Office of the Swiss Government[3].

Egg yolk is composed mainly of water, which accounts for approximately 50% of its 
weight, and contains many important nutrients and preservatives, since it serves the 
role of a protective chamber for the hen embryo. The dry weight of egg yolk is 
composed mostly by lipids (67%) and also proteins (33%). Egg yolk proteins are 
distributed between granules and plasma, in which granules are suspended. Granule 
proteins are divided into α- and β-lipovitellins (70%), phosvitin (16%), and low-density 
lipoproteins (12%), whereas plasma proteins include α-, β- and γ-livetins and low-
density proteins[11]. A precursor of the major egg yolk proteins is vitellogenin, 
consisting of vitellogenin I (molecular weight [MW]: 260 kDa), vitellogenin II or major 
vitellogenin (MW: 246 kDa), and vitellogenin III (MW: 210 kDa)[12-14]. IgYs, which 
are the main constituent of γ-livetin, are among the most important and most 
abundant egg yolk proteins[11].

IgY is considered to be the functional equivalent and evolutionary precursor of 
mammalian IgG and probably of mammalian IgE[15]. Due to this functional and 
evolutionary relationship, some researchers use the term (avian) IgG instead of IgY; 
however, the first articles in the field have put emphasis on the distinct differences 
between IgG and IgY and strongly suggested use of the term IgY[5]. In addition to 
IgYs, there are two more avian immunoglobulin classes, avian IgM and IgA, which are 
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similar to mammalian IgM and IgA. Mammalian equivalents of IgE and IgD have not 
been found in hens[16].

Like mammalian IgG, IgY is composed of two heavy (H) and two light (L) 
polypeptide chains, which are organized in the Y-shaped characteristic “unit,” and 
contains two identical binding sites for the antigen. However, the structure of IgY is 
actually different than that of IgG and this results in distinct properties, as well. The 
nucleotide sequence corresponding to the hen upsilon (“υ”) heavy chain has revealed 
that the molecule contains four constant and one variable Ig heavy chain domains; the 
additional domain (Cυ2) has been conserved in mammalian IgE, but “transformed” 
into the flexible hinge region in mammalian IgG. As a consequence, the IgY molecule 
has higher molecular mass (approximately 180 kDa), than mammalian IgG (approx-
imately 160 kDa). Moreover, the Fc part of IgY has a different carbohydrate content 
compared to the Fc part of IgG. An intact Fc part is necessary for the transfer of IgY 
from blood serum to egg yolk. In ducks an alternatively spliced form of IgY, the so-
called IgY ΔFc, is also present. This variant lacks the Fc region and is mainly found in 
the blood serum. Hen as well as ostrich and pigeon express only the full-length 
version of IgY. In some birds, including hen, duck, zebra finch and ostrich, only a 
single κ light-chain locus has been found. The bursa of fabricius is the site in which 
immature B-cells are differentiated into mature and competent B-cells, while the 
spleen is the organ in which plasma cells, i.e. the antibody-producing cells, proliferate 
and memory cells are located. IgY’s heavy and light chain loci consist of single 
functional V, D, and J genes; in addition to the single functional V genes, there are 
several pseudo-V genes that lack the usual transcription-regulatory and signal-
recognition sequences and are not functional. The antibody diversity in avian 
organisms is mainly achieved by the so-called gene conversion, through which 10 to 
more than 120 base pairs from not functional pseudo-genes are transferred to the 
functional V gene[3,16,17].

The distinct structural features of IgY offer several functional advantages to this 
unique immunoglobulin type, rendering IgY a versatile and invaluable in vitro tool in 
biotechnology research and in disease diagnostics. Moreover, many reports have 
suggested in vivo application of IgYs in various fields of immunotherapy. The 
advantages of IgYs include: high potential for developing specific IgYs against 
conserved mammalian proteins due to the evolutionary distance between mammals 
and birds, avoidance of activating the mammalian (including human) complement 
system and reaction with mammalian Fc receptors, ability to isolate substantial 
amounts of IgYs from immune egg yolks, and avoidance of animal bleeding, which 
fulfills the “refinement” ethical requirement, as already mentioned[3,18,19].

In the last several decades, more complicated technologies associated with the 
original IgY technology have emerged, such as the development of avian monoclonal 
antibodies via hybridoma and recombinant techniques, mainly through the phage 
display technique[20]. Although the above antibodies are IgYs (or IgY-like) immuno-
globulins and therefore have all (or part of) the consequent advantages, they are 
isolated from the supernatant of suitable cell cultures and are not egg yolk-derived. 
Thus, strictly speaking and at least in our opinion, the techniques leading to the 
development of monoclonal IgYs cannot be classified as a part of the original IgY 
technology. On the other hand, transgenic chickens[21] have been used for the 
production of recombinant proteins, including recombinant antibodies (mostly 
human/humanized ones), which can be isolated mainly from egg white and are 
recommended especially for in vivo therapeutic applications. Though the aforemen-
tioned antibodies have not gained wide application yet and their development and 
evaluation are considered outside the main scope of the present article, they are 
considered very promising and will be briefly presented.

The present review article will focus on specific aspects of the original IgY 
technology, such as immunization of laying hens, isolation of the IgYs developed from 
the immune egg yolk and consequent immunochemical evaluation. Various recent 
applications of polyclonal IgYs to the in vitro immunodetection of various biomo-
lecules will be also presented and discussed.

DEVELOPMENT AND EVALUATION OF EGG YOLK-DERIVED POLYCLO-
NAL IGYS 
General aspects
IgY technology has produced a large number of valuable immunochemical tools for 
biotechnology and medicine since the 1990s. Various parameters that are associated 
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with and can affect the results of the IgY technology have been reported in the 
literature such as housing and breeding conditions, line, age, and stage of develop-
ment of the immunized birds[2,3,18,22]. Laying hens are the avian organisms of choice 
(e.g., White Leghorn and Rhode Island Red hens) and are used for immunization to 
produce polyclonal IgYs throughout their egg-laying period. Other types of poultry 
such as duck, goose, ostrich, and quail have been referred to in the literature, though 
to a lesser extent[23-26]. Normal hen lines and conventional housing, e.g., in suitable 
cages[27], are usually adequate to produce IgYs for research purposes; however, when 
the IgYs are to be applied as human therapeutics, the use of specific pathogen-free 
hens is considered necessary[1,3]. Administration of specific food supplements during 
hens’ breeding, e.g., carnitine, has been proposed in the literature as a means to 
improve overall yield of IgY production, but the results are often contradictory[28].

Immunizing protocols
Parameters that may influence the immune response include antigen nature and dose, 
use of adjuvants, route of administration, and overall immunization schedule[3].

Both, complex antigens, e.g., whole viruses, bacteria and parasites[29-33] and 
individual biomolecules, e.g., large proteins[34,35], or small peptides conjugated to a 
suitable carrier protein, such as keyhole limpet hemocyanin (KLH)[36,37], have been 
used to stimulate development of specific IgYs in hens. Our team tried to develop IgYs 
against various antigens, including a recombinant protein of high molecular mass, i.e. 
human kallikrein-related peptidase 6[38] as well as peptides of the alpha- and beta-
thymosin families isolated from mammalian tissues or synthetically prepared, either 
conjugated to KLH or not[39-41]. Moreover, we successfully developed IgYs against 
the olive fruit fly pheromone by using a KLH-conjugate of the synthetic hapten (±)-β-
[3-(1,7-dioxaspiro[5.5]undecane)] propionic acid[27].

The antigen dose may be also critical, since too much or too little antigen can lead to 
an undesirable immune response[2]. Different antigen doses have been reported in the 
literature. In an early study, a good immune response in hens immunized with bovine 
serum albumin at doses as low as 0.1-1.0 μg was reported[3]; however, higher doses 
ranging from 10 to 1000 μg (most often 50-100 μg) have been also used. Information on 
the doses administered to immunize hens has been presented in a recent review[18].

The outcome of immunization is commonly enhanced by the addition of adjuvants, 
though successful immunization of hens without any adjuvant has been reported in 
the literature[3]. Among the adjuvant preparations that have been described till now, 
Freund’s complete adjuvant (FCA) is still considered the gold standard for generating 
high levels of antibodies in animals, including birds. FCA is a suspension of heat-
killed and dried mycobacteria (Mycobacterium spp.) in mineral oil, which forms a depot 
at the injection site and slows down release of the antigen in the host organism, so that 
long-lasting exposure and a non-specific immune stimulation is achieved. The main 
problem of FCA is the severe tissue damage it causes at the injection sites, which is 
usually attributed to the mycobacteria it contains. Although a few studies have 
reported that hens can better tolerate FCA, in comparison with mammals, other 
studies have reported contradictory data. For this reason, Freund’s incomplete 
adjuvant, i.e. Freund’s adjuvant without mycobacteria, is commonly used for booster 
injections as an alternative to FCA, which is used only in the first immunization[18]. 
Use of other adjuvants has been also reported in IgY technology, such as the so-called, 
mineral-oil based Montanide adjuvant, along with oligodeoxynucleotides containing 
C-phosphate guanosine motifs, which are promising immunoenhancing agents[28]. 
Research in the area of developing new adjuvants, both highly efficient and animal 
welfare-friendly, is being continued.

Regarding the route of administration, several approaches have been tested. The 
most recommended one is the intramuscular injection (i.m.) into the breast tissues[3,
29,34,42] in multiple sites; i.m. administration in the thigh muscle has been also used 
but according to some reports it may cause lameness and has to be avoided[18]. 
Subcutaneous (s.c.) immunization in the neck has also been used by several research 
teams including our team[27,38,39]. As reported, i.m. immunization in breast muscle is 
most suited especially for young hens[18]. The intravenous (i.v.) route has been very 
rarely used, without adjuvants and at a very slow injection rate. The intraperitoneal 
(i.p.) route, which Klemperer has followed in his pioneer work, is hardly used these 
days. Efforts to immunize hens orally have been also reported[3,30,43].

The interval between the first and second (i.e. first booster) immunization is 
considered a critical parameter in hen immunization protocols. Age of hens when first 
immunized might also be an issue. However, literature information on these specific 
parameters substantially varies. A general recommendation is to administer a booster 
immunization when the IgY titer reaches a plateau or begins to decrease[44]. If a 
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substantial decrease in the antibody titer has been observed, further immunizations 
can be performed during the entire laying period, which lasts about 72 wk[22], to keep 
the antibody titer adequately high for as long as possible, in many cases for more than 
150 d[18]. As presented in a previous review[3], some immunization protocols have 
recommended antigen administration at days 0, 14 and 28, or once a week for 7 
consecutive weeks, or at day 0, week 10, and week 15. Other protocols propose hen 
immunization at 10-d intervals, but in most cases, the interval between the first and 
second immunization is at least 4 wk, while another protocol has reported achieve-
ment of a high antibody titer by prolonging the boost interval from 14 to 42 d. 
Intervals among booster injections also vary, averaging 2 wk[3]. Our team has mainly 
used 3-mo-old hens for immunization; the first booster was administered 2 wk after 
first immunization, while several further injections were given, mostly at 4 wk-
intervals[27].

In general, eggs are collected weekly, starting 1 wk prior to the first immunization 
(pre-immune eggs), eggshells are washed or sanitized with 70% ethanol, and stored at 
4℃ until further processed for IgY isolation. Lyophilization of egg yolk has also been 
reported, resulting in an easy-to-mix egg yolk powder with an extended shelf-life[45].

Immunization with plasmids: “DNA-designed” IgYs 
Apart from the conventional administration of antigen along with adjuvant, the so-
called genetic immunization has also been applied to the production of polyclonal 
IgYs in avian species[46]. In this context, avian organisms have been immunized with 
plasmid vectors encoding target eukaryotic antigens, e.g., bovine interferon gamma 
protein[47], prokaryotic antigens, e.g., Botulinum toxin A1[48], as well as viral ones, 
e.g., antigens from Andes virus[23]; in almost all cases, antibodies Y of desired 
immunochemical characteristics have been developed. A great deal of effort has been 
put forth to improve DNA-vaccine delivery, and consequently, immunogenicity. The 
“gene gun” method has garnered much attention, since low doses of DNA applied via 
a gene gun can efficiently induce high antibody titers against the antigen encoded[49]. 
Although DNA immunization is a promising approach, which prevents costly and 
tedious preparation of purified antigens or presence of adjuvants in the immunization 
mixture, it has not yet gained wide application.

Isolation of IgYs from the egg yolk
Hen eggs are an excellent source of high amounts of antibodies[19]. An average hen 
can lay roughly 325 eggs a year. Given that according to the literature an egg can 
produce 60-150 mg[50], or 40-80 mg total IgY per egg yolk depending on the hen’s age
[22], one hen can roughly produce 20-40 g of antibodies a year, with 1%-2% up to 10% 
of the antibodies being antigen-specific[18,51], which is much higher than that 
obtained from mammalian sources[11].

Isolation of IgYs from the “immune” egg yolk in pure form is a challenging task. 
Several protocols have been described, with different characteristics in terms of total 
yield, purity, duration, convenience, and cost[42]. IgYs account for about 3%-5% of the 
egg yolk proteins, which are dispersed in a lipid emulsion combined with lipoproteins 
and glycoproteins. Consequently, in most cases, IgY isolation involves, first, removal 
of lipids to form a water-soluble fraction (“de-lipidation” step), and then precipitation 
of the antibodies that are present in the water- soluble fraction with various approa-
ches[3,18].

The most commonly used de-lipidation technique is the “acidified water dilution 
method”[52], using 6- to 10-fold dilution of egg yolk in water at pH ~5, incubation for 
several hours at 4℃ and then centrifugation, at the end of which the lipid portion is 
precipitated and the water-soluble portion is collected in the supernatant. Altern-
atively, lipid removal has been successfully performed by means of organic solvents 
(chloroform, acetone, isopropanol)[53,54], acids (caprylic acid, trichloroacetic acid)[55] 
or natural gums (polyanionic polysaccharides, e.g., xanthans)[56]. A de-lipidation 
solution containing polysaccharides (such as pectin, λ-carrageenan, carboxymethylcel-
lulose, methylcellulose, and dextran sulfate) has been also reported[57].

After de-lipidation, various IgY extraction methods that can be applied either to 
laboratory- or to large-scale production have appeared in the literature; these methods 
can be divided into three main groups, i.e. precipitation, chromatographic and 
filtration methods.

Precipitation methods, involving precipitation of IgYs with saturated salt solutions, 
such as ammonium sulfate, sodium sulfate or sodium chloride[58,59], polyethylene 
glycol (PEG)[60], caprylic acid[61,62] and carrageenan[63]. PEG precipitation usually 
involves, first, dilution of egg yolk in phosphate-buffered saline (PBS) containing PEG 
6000 at low concentration (3.5%), to facilitate de-lipidation. After centrifugation, the 
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supernatant is treated with 8.5% and then with 12% PEG 6000 to precipitate IgYs[30]. 
Among the above methods, ammonium sulfate precipitation is considered one of the 
best choices for the scale-up purification of IgY[11], with most suitable concentration 
of ammonium sulfate being 20%[55]. Extracted IgY samples usually undergo a final 
dialysis step, usually against PBS, to eliminate residual salts from the extraction 
procedure.

Chromatographic methods include low-pressure chromatography[30], ion exchange 
chromatography[52,59], highresolution chromatography through multicolumn 
systems[64] and affinity chromatography[65]. Conventional affinity chromatographic 
methods using protein A or protein G columns cannot be performed for IgY 
purification, since IgYs, contrary to IgGs, do not bind to protein A or G[66]. Other 
types of ligands are therefore required, such as the elastin-like polypeptide-tagged 
immunoglobulin-binding domain of streptococcal protein G[67]. Still other ligands, 
such as IgY-binding peptides screened from a random peptide library, have been also 
proposed as a means of IgY purification[68]. IgY can also be purified with thiophilic 
adsorption chromatography, usually through commercially available IgY-extraction 
columns[18,69]. However, chromatographic techniques are generally expensive and 
impractical for the large-scale production of antibodies, while they have not proven to 
substantially increase purity of the final product when compared with simple precip-
itation methods, such as ammonium sulfate precipitation.

Filtration methods, such as ultrafiltration[52,70], have also been used as IgY 
extraction methods.

As reported, a combination of the aforementioned methods, e.g., a combination of 
PEG precipitation with affinity chromatography[22] or ammonium sulfate precip-
itation with ion exchange chromatography[59], can further increase the purity of the 
IgY preparation. Moreover, sequential precipitation with 31% ammonium sulfate and 
12% PEG resulted in IgY antibodies of more than 95% purity without any loss in 
immunoreactivity[64].

Despite the numerous protocols described in the literature, the most popular 
isolation strategy of IgYs from immune eggs involves a de-lipidation step, in which 
IgY is extracted in the supernatant after treating the egg yolk with 10 volumes of acidic 
water and a subsequent precipitation step, in which IgY precipitates with ammonium 
sulfate or PEG, at suitable concentrations[30].

Storage 
According to the literature, after their isolation, IgYs can be stored for long periods 
(from a few months to a few years), preferably at -20 °C[22,71], since they are 
considered reasonably stable biomolecules, like mammalian IgGs[72]. IgY is stable at 
pH 4-9 and up to 65 °C in aqueous solutions. The addition of stabilizing reagents or 
high concentrations of salts can further increase resistance of the IgY molecule; e.g., 
heat stability could be increased up to 70 °C by the addition of sugars, such as 30% 
sucrose, trehalose or lactose[3]. Useful information concerning earlier findings on the 
stability and storage conditions of IgYs has appeared in recent review articles[73]. 
Freeze-drying has been used to facilitate long storage of IgYs[74], though some 
researchers have reported that freeze-drying may lead to some loss of antigen-binding 
activity of IgY[45]. Lyophilization of proteins, including IgYs, induces freezing and 
dehydration stresses, which may result in protein structural changes or even unfolding
[75]. Therefore, the addition of cryoprotectants and lyoprotectants has been 
recommended to protect IgYs during lyophilization[45]. Our team has recently 
evaluated IgYs that were developed against a KLH-conjugate of the polypeptide 
prothymosin alpha many years ago and kept as lyophilized powder at -30 °C. As 
revealed, the IgYs have kept immunoreactivity and were successfully applied to a 
specific enzyme-linked immunosorbent assay (ELISA) for prothymosin alpha[76].

Evaluation of egg yolk IgYs
Protein concentration: Determination of protein concentration in IgY extracts is 
usually performed before proceeding to further IgY evaluation. Total protein concen-
tration in IgY extracts has been determined mainly with the Bradford method 
(indicative references[30,34,35,38,42]), the Lowry method[58] and the bicinchoninic 
acid protein assay[77]. In addition, protein concentration was assessed with ultraviolet 
absorption at 280 nm, according to the Lambert-Beer law (indicative references[29,32,
33,57,76]).

Purity: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is 
considered the gold standard technique and has been widely used to assess the purity 
of the egg yolk-isolated IgYs (indicative references[30,33,34,62,78]). SDS-PAGE 
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separation under non-reducing or reducing conditions would reveal one or two 
protein bands, the latter corresponding to heavy and light IgY chains.

Western blotting has been used complementarily with SDS-PAGE to confirm the 
presence and assess purity of IgYs isolated from immune egg yolks (indicative 
references[31,33,62,78]). Visualization of the specific protein bands is performed 
mainly through a color or chemiluminescence development.

In a few cases, additional analytical methods such as high-performance liquid 
chromatography[57] have also been used to evaluate the purity of IgYs.

Immunoreactivity: The immunoreactivity of egg yolk-derived IgYs is evaluated with 
well-established immunochemical methods such as dot-blot and ELISA. Dot-blot can 
be actually considered as a simplified form of ELISA offering mostly qualitative 
results. Nevertheless, it is a fast, easy, and low-cost technique that may provide useful 
information and has, therefore, been used by several researchers to evaluate 
immunoreactivity of IgYs[32,34,36,39,76]. In most cases, however, evaluation of IgY 
immunoreactivity involves determination of titer against the target antigen through 
non-competitive ELISAs (indicative references[32,35,45,76,78]). Moreover, other 
immunochemical characteristics of the isolated IgYs are assessed, such as putative 
cross-reactivity with various substances through competitive ELISAs (indicative 
references[31,36,39]). It should be noted that till now and despite the numerous new 
technologies introduced in the field, ELISA remains the gold standard method for 
evaluating the basic immunological characteristics of any antibody developed, 
independently of the antibody class or the production method.

IN VITRO APPLICATION OF EGG YOLK-DERIVED POLYCLONAL IGYS TO 
THE DETECTION OF BIOMOLECULES 
IgY is considered an excellent tool especially for developing in vitro methods to detect 
biomolecules of interest in biological specimens for a series of reasons. First, the 
evolutionary distance between mammals and birds may facilitate generation of 
specific IgYs against conserved mammalian proteins, since avian organisms possess a 
different antibody repertoire than that of mammals and the epitope spectrum of avian 
antibodies is potentially larger/different than that of mammalian IgGs including novel 
specificities[19,64]. Second, IgY does not activate the mammalian (including human) 
complement system and does not react with mammalian Fc receptors; this feature has 
rendered IgYs an ideal in vitro reagent, especially for immunoassays designed to detect 
biomolecules in human blood serum[64]. Third, substantial amounts of IgY can be 
isolated from egg yolks; as already mentioned (isolation of IgYs from the egg yolks), 
one hen can produce 20-40 g of IgY in 1 year, 1%-10% of which is antigen-specific. This 
advantage of egg yolk IgY is accompanied by other practical superiorities, such as low 
animal care cost, ease of isolation of antibodies from the egg yolk with simple 
biochemical methods and overall low production cost[73]. These advantages along 
with the large-scale facilities currently available render production of egg yolk-derived 
IgYs, a technically feasible and efficient procedure at industrial level. Some other 
positive characteristics of IgYs have been reported in the literature, e.g., they can be 
developed even when hens are immunized with very small amounts of the corres-
ponding antigens[64,71] or that they show higher specificity, binding affinity, and 
avidity for their targets in comparison with mammalian IgGs[38,73], although other 
reports have shown controversial data[3]. Last but not least, in the list of IgY 
advantages is that use of egg yolk IgYs is especially desirable from an ethical aspect of 
view, concerning refinement of animal experimentation, as already mentioned. Some 
recent indicative applications of IgYs to the in vitro detection of biomolecules (as well 
as whole viruses/microorganisms) have been summarized and presented in Table 1. 
Lately, specific IgYs have been developed and used for the immunodiagnosis of 
pandemic coronavirus disease-2019 (COVID-19)[79], while non-specific IgY has been 
used to form/visualize the “control line” in point-of-care in vitro tests that detect 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens[80].
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Table 1 In vitro applications of polyclonal IgYs

Target biomolecule(s) In vitro immunochemical technique Proposed field of application Ref.

Major surface antigen of Toxoplasma gondii 
(SAG1)

Latex agglutination assay Diagnosis of Toxoplasmosis Cakir-Koc et al
[132], 2020

Protein A of Staphylococcus aureus Immunocapture PCR assay Detection of Staphylococcus aureus in food 
samples, skin and nasal swabs

Kota et al[133], 
2020

Peptides/proteins present in detoxified 
western Russell’s viper venom

Paper-based microfluidic 
immunochromatographic test

Differential diagnosis of Russell’s viper 
envenomation

Lin et al[134], 
2020

SARS-CoV-2 antigen Fluorescence immunochromatographic 
rapid-antigen test

Diagnosis of COVID-19 Porte et al[79], 
2020

Antigens present in total saline extract of 
Taenia crassiceps metacestodes

ELISA Detection of neurocysticercosis daSilva et al
[32], 2020

Antigens present in total saline extract of 
Ancylostoma ceylanicum

ELISA Diagnosis of Hookworm infection Souza et al[135], 
2020

Non-glycosylated synthetic oligopeptides of 
Dermatophagoides group I allergens 

Immuno-dot blot assay (with the use of 
IgY-colloidal gold nanoparticles 
conjugates)

Detection of indoor dust mite allergens Egea et al[136], 
2019

Antigens present in whole bacterial 
suspension of formalin- and heat- 
inactivatedSalmonella typhimurium and 
Salmonella enteritidis

In vitro immunochemicaltechniques Diagnosis of infection with Salmonella 
typhimurium and Salmonella enteritidis

Esmailnejad et 
al[26], 2019

Antigenic extracts of Strongyloides 
venezuelensis infectious filariform larvae and 
parthenogenetic females

ELISA Diagnosis of human strongyloidiasis deFaria et al
[33], 2019

Antigens present in total saline extract of 
Ascaris suum adult life forms

Tissue indirect immunofluorescence 
assay & ELISA

Diagnosis of human ascariasis Lopes et al[31], 
2019

Free prostate specific antigen ELISA Diagnosis of human prostate cancer Łupicka-Słowic 
et al[137], 2019

Antigens (capsid proteins VP2 & VP3) 
present in beta-propiolactone-inactivated 
enterovirus 71 

Fluorescence sensor assay Diagnosis of hand-foot-and-mouth disease 
caused by enterovirus 71 infection

Nie et al[138], 
2019

Fusarium verticillioides 97K exoantigen ELISA Detection of Fusarium verticillioides (and 
prediction of fumonisin contamination) in 
poultry feed

Omori et al
[139], 2019

Recombinant purified catalytic domain of 
Karilysin 

ELISA Evaluation of karilysin (i.e. an enzyme 
secreted by the periontopathogen Tannerella 
forsythia) as a biomarker for the diagnosis of 
periodontitis

Skottrup et al
[34], 2019

Fumonisin B1 Lateral flow immunoassay Detection of fumonisin B1 and fumonisin B2 in 
maize

Tran et al[140], 
2019

Synthetic extracellular peptide of matrix-2 
protein of influenza A virus, conserved in 
all strains

Latex agglutination assay Diagnosis of infection with Influenza A virus Budama-Kilinc 
et al[141], 2018

Sulfamethazine (SMZ) ELISA, FPIA Detection of veterinary drug residues (SMZ) in 
milk

Liang et al[142], 
2018

Native calf adenosine deaminase (ADA) ELISA Evaluation of ADA as a cancer biomarker Łupicka-Słowic 
et al[143], 2018

Nucleoprotein of influenza A virus Immunocytochemistry, 
Immunohistochemistry 

Diagnosis of infection with influenza A virus da Silva et al
[144], 2018

ADA: Adenosine deaminase; COVID-19: Coronavirus disease-2019; ELISA: Enzyme-linked immunosorbent assay; FPIA: Fluorescence polarization 
immunoassay; PCR: Polymerase chain reaction; SAG1: Surface antigen 1 of Toxoplasma gondii; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 
2; SMZ: Sulfamethazine.

RELEVANT APPROACHES AND FUTURE PROSPECTS 
Monoclonal IgYs 
Since the late 1980s many efforts have been directed toward development and use of 
avian monoclonal antibodies (mAbs) for research, diagnostic, and therapeutic 
purposes, because avian mAbs may combine the advantages of avian immuno-
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globulins with those of monoclonality, i.e. precise characterization and continuous 
production. Initially, several technical difficulties have emerged; even after technical 
problems have been addressed and avian mAbs have been produced by hybridomas
[81,82], the hybridoma technology has not gained wide application, because it is 
considered a complex, time-consuming and low-yield process by many researchers. By 
contrast, antibody-engineering methods proved to be the most frequently techniques 
used for the production of chicken mAbs. Actually, chicken provides an ideal basis for 
generating large immune antibody fragment libraries as compared to most 
mammalian species. In chickens, the large and diverse antibody repertoire is generated 
by gene conversion, in which segments from non-functional V pseudogenes located 
upstream are inserted into the rearranged gene, and somatic hypermutation. Since 
gene conversion has not been observed at the 5’- and 3’-ends of the rearranged gene, it 
is possible to perform real-time reverse transcription polymerase chain reaction (PCR) 
of the V-region repertoire with a single pair of primers[20,72]. Of the various 
recombinant antibody fragments, the full-length single-chain variable fragment (scFv) 
is the most commonly used. For construction of the scFv antibody library, total RNA is 
isolated from the spleen cells of immunized or non-immunized chicken and reverse-
transcribed into cDNA. Then the variable heavy and light chain domain genes of 
immunoglobulin antibody cDNA are amplified by PCR and properly assembled to 
form the full-length scFv fragments, which resemble a functional Fv region. Then the 
scFv genes are cloned into suitable vectors to construct an antibody-expressing library
[83]. Currently, phage display systems are the most often applied recombinant 
methods for generation and isolation of chicken mAbs[83,84]. In phage display 
methods, genetically-engineered phages that are capable of displaying recombinant 
fragments of antibodies on their coat surface can undergo several rounds of 
biopanning and re-propagation in Escherichia coli to enrich for clones exhibiting 
specific binding. Many IgY-scFv were produced with the phage display method 
combined with in vitro selection technologies, either by research groups[84-87] or 
companies that provide custom services for the development of monoclonal antibodies 
Y[88,89]. Among recent technologies reported for producing and isolating monoclonal 
IgYs is the gel encapsulated microenvironment assay, which is capable of “cross-
examining” the entire population of splenic B cells from immunized chickens[90]. In 
an effort to produce mAbs suitable for in vivo administration in immunotherapy, the 
highly immunogenic constant region of chicken IgYs has been replaced with that of 
human to generate chicken-human chimeric antibodies[91]. Moreover, humanization 
of chicken scFvs has been successfully performed using the complementarity-
determining region (CDR)-grafting strategy, which replaces human CDRs with 
chicken CDRs while retaining the human framework region residues, and followed by 
further optimization when necessary[92,93]. On the other hand, chimeric chicken-
mouse or mouse-chicken recombinant mAbs have been produced and their character-
istics have been studied[94,95].

Antibodies produced by genetically modified chickens (transgenic chickens) 
Over the last decades, significant progress was made in generating recombinant 
proteins, including mAbs for therapeutic applications, in genetically modified 
chickens[21,96]. Difficulties in generating modified chickens are mainly attributed to 
the complex structure of the chicken zygote and the different organization of the chick 
embryo in comparison to mammals. To successfully generate genetically modified 
chickens, different methods have been used to achieve stable genomic integration of 
transgenes and the highest efficiency of germline transmission[97], including direct 
DNA microinjection into the chicken zygote[98] and use of viral vectors for gene 
transfer, which is the first applied and considered one of the most successful methods. 
Thus, the first genetically modified chicken was generated by the insertion of 
retroviral foreign DNA delivered by avian leukosis virus successfully integrated to the 
germline[99]. Since then, various viral vectors have been used to generate transgenic 
chickens for the production of recombinant proteins[100-102] including mAbs[103]. 
Among these, lentiviral vectors have been reported to offer specific advantages, 
including ability to transduce dividing and non-dividing cells, a relatively large 
transgene capacity and the apparent resistance of transduced cells to gene silencing
[104]. Lentiviral vectors have been used to introduce transgene constructs comprising 
suitable sequences from the ovalbumin gene to direct synthesis of associated proteins 
to oviduct[105]. Despite the fact that the use of viral vectors improves germline 
transmission, the size limitation of the transgene and the lack of possibility of precise 
edits remain as drawbacks. One of the most effective approaches to produce 
transgenic chickens is the in vitro transfection of avian cell lines, such as primordial 
germ cells (PGCs) and embryonic stem cells (ES), the clonal selection and reinsertion 
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into the embryo leading to fully transgenic progeny in the next generation[106-108]. 
Following this approach, production of human mAbs in the egg white of chimeric 
transgenic chickens with the use of genetically modified ES cells carrying ovalbumin 
expression vectors was successfully performed for the first time; however, although a 
high amount of functional mAb was produced in the egg white, no transgenic 
offspring were initially obtained[107]. Heritable transgenic chickens capable of 
producing mAbs in their egg whites were generated using transfected PGCs with a 
gene construct designed to express the mAb in chicken oviduct magnum[108]. Specific 
gene editing of PGCs could be improved using genome-editing tools, such as 
transcriptional activator-like effector nucleases[109] and the clustered regularly 
interspaced short palindromic repeats–associated protein 9 system (CRISPR/Cas9 
system)[110,111]. CRISPR/Cas9 has been used to generate transgenic chickens for the 
production of recombinant proteins in the white egg[111], including mAbs[112], or 
exhibiting resistance to pathogens[113]. Another recent promising approach is the 
replacement of the chicken immunoglobulin variable regions by human V regions and 
use of synthetic pseudogene arrays in order to produce affinity matured antibodies in 
transgenic chickens, called OmniChickens; OmniChicken can thus generate antibodies 
of basically human sequence, which retain the epitope repertoire of chicken immuno-
globulins[114].

DISCUSSION 
IgY technology has produced a great number of valuable immunochemical tools for 
biotechnology and medicine since 1990’s. Various parameters that are associated with 
and can affect the results of the IgY technology have been reported in the literature, 
such as the immunization procedure. One of the most important parameters is the 
extraction/purification protocol used for isolating the IgYs from the egg yolk. Several 
methods of isolation and purification of IgYs from “immune” egg yolks have been 
reported, as already mentioned; the choice of a specific method depends on several 
criteria, such as desired yield, purity and final application of the IgYs along with cost 
and scale of extraction. The most popular isolation strategy consists in a de-lipidation 
step, in which IgY is extracted in the supernatant after treating the egg yolk with 10 
volumes of acidic water, and a subsequent precipitation step, in which IgY precipitates 
with ammonium sulfate or with PEG, at suitable concentrations[30].

Our team have used the acidified water dilution method followed by precipitation 
with 19% sodium sulfate[39] or with 8.5% and 12% PEG 6000[27] for the isolation of 
IgYs from immune egg yolks. SDS-PAGE and western blot analysis of IgYs isolated 
with sodium sulfate precipitation has revealed a protein impurity with MW of ~35 
kDa, which underwent liquid chromatography tandem mass spectrometry analysis 
and was proposed to be identical with the C-terminal fragment of vitellogenin II 
precursor protein[39]. The same impurity was also observed by other researchers, who 
had followed a different isolation protocol involving precipitation with PEG 6000[22]. 
As later shown[115,116], IgY from hen egg yolk occurs as a complex with peptides, 
named yolkin, which exhibit immunoregulatory and other biological activity. Yolkin 
contains several peptides with an apparent molecular weight ranging between 1 and 
35 kDa. As reported, purified yolkin constituents are homologous with some 
fragments of the C-terminal region of vitellogenin II; more specifically, yolkin fractions 
of MW > 16 kDa are glycoproteins corresponding to the amino acid sequence of 
vitellogenin II starting at position 1572 aa[12,117]. In our hands, presence of the above 
impurity did not seem to interfere with the efficiency of IgYs as specific in vitro 
immune reagents.

As already mentioned, egg yolk IgYs have been thought to be superior to 
mammalian IgGs for in vitro applications. The in vitro efficiency of IgYs may be 
questioned only under rare conditions, e.g., due to the putative presence of anti-hen 
antibodies in biological samples of specific individuals who have been sensitized to 
hen egg yolk[72]; however, to what extent IgY-specific antibodies may occur in human 
individuals remains to be clarified. Exempt from the aforementioned few concerns, 
IgYs are considered ideal and are being continuously developed and used as 
invaluable in vitro laboratory tools up to now (Table 1).

One of the great advantages of the IgY technology is the enhanced probability of 
generating specific IgYs against conserved mammalian proteins, since hens may 
exhibit a different antibody repertoire than that of mammalian organisms. With this in 
mind, our team has immunized hens against the poorly immunogenic, highly 
conserved polypeptide prothymosin alpha (ProTα, MW: approximately 12 kDa, 
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isolated from bovine thymus). The anti-ProTα antibodies Y were isolated from the egg 
yolk and evaluated through dot-blot and ELISA experiments in parallel with 
antibodies G isolated from the antiserum of rabbits immunized against the same 
immunogen. As revealed, not only antibodies G, but also antibodies Y showed hardly 
detectable titer/affinity for ProTα[39]. The above negative result may be attributed to 
the fact that ProTα is thought to be highly conserved during evolution and ProTα-
homologues have been reported in non-mammalian organisms as well[76,118]. 
Similarly, hens were immunized against the highly conserved polypeptide thymosin 
beta4 (Tβ4, MW: ~5 kDa, synthetic), either conjugated to KLH (Tβ4/KLH) or non-
conjugated, leading to IgYs of either relatively high titer or, on the contrary, not-
detectable titer, respectively[41]. Interestingly, antibodies Y that we developed against 
a KLH-conjugate of ProTα (anti-ProTα/KLH IgYs) showed high titer and practically 
no cross-reactivity with a series of ProTα-fragments, including the N-terminal 
fragment ProTα[1-28] (also known as Tα1), being therefore highly specific for whole-
length ProTα, while the corresponding anti-ProTα/KLH rabbit IgGs did cross-react 
with Tα1[76]. Moreover, when various synthetic fragments of ProTα or Tβ4 were 
conjugated to KLH and used for immunizing hens and rabbits, the results revealed 
that specific antibodies Y of hardly detectable titer were obtained; on the contrary, 
rabbit immunization with the same immunogens led to high-titer antibodies G, 
specific for ProTα or Tβ4, respectively[39,41]. The above results support the 
assumption that novel antibody specificities may emerge via the avian immune system 
and can be obtained through the IgY technology.

Although IgYs for research applications are mainly produced in hens, other birds 
have also served this purpose, as already mentioned, including duck[23,119], goose
[24], quail[26] and ostrich[25], following immunization and isolation protocols similar 
to those used for hens[18]. Quail, ostrich and other avian species may provide further 
advantages in the field of IgY technology, such as convenient housing and breeding 
conditions (quail[26]) or exceptionally high amounts of IgYs obtained (ostrich[25]). 
Previously, our team has isolated immunoglobulins Y from the egg yolk of several 
avian species, including ostrich (Struthio camelus) and quail (Coturnix japonica); the 
isolation protocol has been developed in-house and based on the acidified water 
dilution and the PEG precipitation method. Ostrich and quail immunoglobulins Y 
were characterized in terms of their molecular weight (SDS-PAGE and western-
blotting) and their ability to recognize and bind to a commercially available 
horseradish peroxidase (HRP)-labeled rabbit anti-hen IgY antibody in an ELISA 
system[120]. As revealed, the ostrich IgYs could be hardly recognized by the HRP-
labeled anti-hen antibody we used, though other researchers reported successful use 
of commercially available secondary anti-hen antibodies to assess the immuno-
chemical efficiency of specific ostrich IgYs[121]. On the other hand, HRP-labeled 
secondary anti-ostrich-IgY antibodies have been specially developed and used to 
evaluate ostrich IgYs with ELISA[25]. According to experimental results of ours[120] 
and others’[26,122], the quail IgYs could be recognized by the HRP-labeled secondary 
anti-hen antibody, which indicates that quail and hen IgYs may share at least some 
homology in immunochemically important structural features[123,124]. Wide 
availability of secondary antibodies for IgYs originated from avian species other than 
hens will support further expansion of the IgY technology.

In addition to their unequivocal usefulness as in vitro immunodetection reagents, 
IgYs have been proposed as promising in vivo therapeutics, e.g., as an alternative to 
antibiotics treatment against multi-drug resistant or difficult-to-treat pathogens, since 
they exhibit in vivo pathogen-neutralizing activity, especially in mouth, throat, the 
respiratory tract and lungs[73]. Moreover, since IgYs are not absorbed by the gastro-
intestinal tube, they have been proposed as perorally administered immunothera-
peutics against various viral, bacterial, and fungal infections of the gastro-intestinal 
tract, especially in veterinary medicine and fish-cultivation[3]; a limitation in wide 
therapeutic application of perorally administered IgYs is their reduced stability at low 
pH[72] and several efforts have been made to address this shortcoming. IgYs have 
been also proposed as locally administered immunotherapeutics for treating skin and 
other local infections[3]. Lately, specific IgYs have been developed and used for 
treatment of the pandemic COVID-19[35,64,66,125]. Overall, despite the new 
promising technologies emerged, literature on the IgY technology continues to 
expand, encompassing various applications ranging from in vitro immunodetection of 
biomolecules and in vitro immunodiagnostics to in vivo immunotherapeutics[18,126].

Though development of monoclonal IgYs cannot be considered as a part of the 
original “IgY technology”, it seems very attractive and will probably be the next big 
step in the area, since it combines the advantages of mAbs with those of avian IgYs. At 
the initial phase, production of chicken mAbs had to overcome several technical 
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Figure 1  Schematic representation of the main parts comprising the original immunoglobulin Y technology (central axis); promising 
relevant approaches are also shown (periphery, left and right).

difficulties, including lack of appropriate fusion partners and loss of antibody 
secreting ability by the hybridoma cells over time[81]; this has been successfully 
addressed when monoclonal IgYs were generated through combinatorial antibody 
libraries via the phage display methodology[127]. Thus, over the past years, avian 
libraries have been constructed and several reports on the isolation of avian-derived 
antibody fragments have been published[20]. The different spectrum of epitopes 
recognized by the avian immune system may facilitate the development of novel 
diagnostics, e.g., through targeting highly conserved mammalian proteins, while 
monoclonality may especially facilitate the development of novel therapeutics for 
human use, provided that the technology of chimeric avian/human fusions could be 
fully exploited. One should also keep in mind that recombinant technologies can lead 
to the generation of monoclonal IgY or IgY-like antibodies circumventing the need for 
animal immunization[72,83], which is desirable from an ethical point of view 
concerning the animal welfare.
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It is important to remind that the IgY technology was introduced in 1990’s as an 
alternative that could at least partly fulfil the ethics requirements set by the 3Rs 
principle[1,3]. Recently, the European Union Reference Laboratory for Alternatives to 
Animal Testing (EURL ECVAM) has recommended that “animals should not be used 
for the development and production of antibodies for research, regulatory, diagnostic 
and therapeutic applications any longer”, taking into account the Opinion of the EURL 
ECVAM Scientific Advisory Committee (ESAC) on the scientific validity of 
replacements for animal-derived antibodies[128]. As referred to by the ESAC, the 2018 
Nobel Prize in Chemistry was awarded “for the phage display of peptides and 
antibodies”[129,130], which, according to the Committee, proves maturity and 
supports wide application and full exploitation of the phage display technology in the 
area of antibody production. The EURL ECVAM recommendation may accelerate 
transformation/switch of the original IgY technology toward development of 
monoclonal IgYs through phage display techniques that totally avoid the animal 
immunization step. Total avoidance of animal immunization will further minimize the 
risk of zoonotic diseases, which is very low but still present when antibodies are 
produced in chickens, both wild and transgenic.

HIGHLIGHTS
The avian polyclonal antibodies/IgYs have unique and highly desirable functional 
features.

The term “IgY technology” describes the procedure involving immunization of 
avian species, consequent isolation of the polyclonal IgYs from the “immune” egg yolk 
(thus avoiding bleeding and animal stress) and application of the IgYs to various areas 
of medicine and biotechnology.

During the last decades the IgY technology has been widely used, especially as a 
means for the efficient in vitro immunodetection of biomolecules in many fields of 
research and disease diagnosis.

Despite the very promising relevant new approaches, there is still space for further 
exploiting the original IgY technology, due to specific functional, practical and ethical 
reasons and/or advantages.

CONCLUSION
Until now, development of polyclonal IgYs through the IgY technology has been 
widely used as a low cost and highly efficient tool, offering a lot of advantages and 
thus gaining wide application mainly in the in vitro immunodetection of biomolecules 
in biological specimens. Since polyclonal antibodies exhibit some unique functional 
qualities[131], there is still space for performing research to improve different aspects 
of the IgY technology. On the other hand, the original IgY technology may “merge” 
with relevant highly promising approaches, eventually leading, e.g., to worldwide 
application of non-animal-derived recombinant IgYs or IgY-like immunoglobulins, 
which, among other benefits, will fulfil strict ethical requirements concerning animal 
welfare (Figure 1). However, until the practical problems associated with the above-
mentioned approaches, e.g., high-cost and/or limited availability of necessary reagents 
and protocols, have been fully addressed, the original IgY technology still remains a 
feasible, well-established procedure, in particular for low- and middle-income 
countries and research laboratories and especially in the field of in vitro immunode-
tection of biomolecules.
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