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Abstract

Global climate change is driving the redistribution of marine species and thereby potentially

restructuring endemic communities. Understanding how localised conservation measures

such as protection from additional human pressures can confer resilience to ecosystems is

therefore an important area of research. Here, we examine the resilience of a no-take

marine reserve (NTR) to the establishment of urchin barrens habitat. The barrens habitat is

created through overgrazing of kelp by an invading urchin species that is expanding its

range within a hotspot of rapid climate change. In our study region, a multi-year monitoring

program provides a unique time-series of benthic imagery collected by an Autonomous

Underwater Vehicle (AUV) within an NTR and nearby reference areas. We use a Bayesian

hierarchical spatio-temporal modelling approach to estimate whether the NTR is associated

with reduced formation of urchin barrens, and thereby enhances local resilience. Our

approach controls for the important environmental covariates of depth and habitat complex-

ity (quantified as rugosity derived from multibeam sonar mapping), as well as spatial and

temporal dependence. We find evidence for the NTR conferring resilience with a strong

reserve effect that suggests improved resistance to the establishment of barrens. However,

we find a concerning and consistent trajectory of increasing barrens cover in both the refer-

ence areas and the NTR, with the odds of barrens increasing by approximately 32% per

year. Thus, whereas the reserve is demonstrating resilience to the initial establishment of

barrens, there is currently no evidence of recovery once barrens are established. We also

find that depth and rugosity covariates derived from multibeam mapping provide useful pre-

dictors for barrens occurrence. These results have important management implications as

they demonstrate: (i) the importance of monitoring programs to inform adaptive manage-

ment; (ii) that NTRs provide a potential local conservation management tool under climate

change impacts, and (iii) that technologies such as AUVs and multibeam mapping can be

harnessed to inform regional decision-making. Continuation of the current monitoring pro-

gram is required to assess whether the NTR can provide long term protection from a phase

shift that replaces kelp with urchin barrens.
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Introduction

Distributional changes of marine species associated with climate change are being documented

worldwide (e.g. [1, 2]). In cases where newly arriving species play a dominant ecological role, dra-

matic ecosystem changes or “phase shifts” may occur with major impacts on endemic communi-

ties. Understanding how conservation measures may confer resilience, that is, the ability to resist

and recover from disturbances [3, 4], is therefore a key conservation priority in the face of climate

change [5]. Conservation measures that may confer resilience, such as the protection of habitats

or species from additional human pressures [6], are typically legislated and managed on smaller

scales than those over which climate change impacts occur. Therefore, studies that examine the

efficacy of localised conservation measures in protecting habitats and biodiversity are required.

No-take reserves (NTRs) are areas where fishing pressure is reduced/removed. NTRs pro-

vide researchers with a means of examining the resilience of ecosystems that may have more

“intact” communities compared to fished areas. The greater abundance and size of predators

in some NTRs has been linked to increased community stability when compared to adjacent

fished areas (e.g. [7–10]) as well as possible dampening of marine pest outbreaks [11]. Ecologi-

cal theory developed from invasion ecology suggests that that the top-down control of higher

trophic level predators can aid in reducing the establishment and persistence of invasive or

range extending species (e.g., [11–14]). However, the number of empirical studies examining

the effect of NTRs on local ecosystem resilience to climate-driven invasive species impacts is

limited by the technical difficulties associated with acquiring high-quality time-series monitor-

ing data in the marine environment.

Here, autonomously acquired marine imagery is coupled with spatio-temporal statistical

analyses to assess how an NTR mediates local ecosystem resilience in a regional hotspot of

global climate warming. The marine region of south east Australia, and in particular the east

coast of Tasmania, has been identified as having warming above the global average [15, 16].

The strengthening of the East Australian Current (EAC) has resulted in increased ocean tem-

peratures and an extended poleward penetration of the current over the last 60 years. This

EAC extension has coincided with the arrival of many new species from sub-tropical latitudes

into this temperate mid-latitude region [17]. Perhaps the most ecologically important new

arrival is the long-spined sea urchin Centrostephanus rodgersii (Agassiz). The first records of

this species in northern Tasmania were recorded in the late 1970s, and sightings have been

increasingly moving poleward through time [18]. This urchin species is an ecosystem engineer,

capable of transforming productive kelp beds and invertebrate covered reefs into bare-rock

barrens with major impacts on biodiversity and flow-on effects for economically important

rock lobster and abalone fisheries [19].

Dive-based and towed video surveys of urchin densities and barrens habitat on the east

coast of Tasmania have highlighted concerning trends over the last 15 years, with an estimated

increase in C. rodgersii numbers of approximately 50% and an overall four-fold increase in bar-

rens habitat between 2001 and 2016 [18, 20]. However, Tasmanian NTRs may offer resilience

to barrens formation and expansion due to the higher density of predators able to control

urchin densities [7, 21, 22]. The main potential predator of C. rodgersii is the rock lobster Jasus
edwardsii, a species that is the target of commercial and recreational fisheries. Higher densities

of lobsters inside Tasmanian NTRs have been shown to result in three to seven times higher

predation rates, depending on habitat and potential refuge for urchins [21]. Monitoring the

impacts of C. rodgersii across its extended range is an important issue as effective conservation

and fisheries management requires an understanding of: (I) the spatial distribution of urchins

and barrens habitat, (ii) the extent and rate of expansion of barrens habitat through time, and

(iii), whether the spread of barrens may be mitigated by NTR establishment.
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Long term monitoring of urchin benthic habitat over large spatial extents is a challenging

problem. The use of imagery as a monitoring tool for the marine benthos has been increasing

over recent decades. Sampling platforms such as Autonomous Underwater Vehicles (AUVs),

towed and drop camera systems and Remotely Operated Vehicles (ROVs) have allowed collec-

tion of large amounts of data over greater areas and deeper depths than have been traditionally

surveyed using diver-based approaches [23, 24]. Imagery or video footage from these platforms

can typically be geolocated, allowing for spatial components to be incorporated into subse-

quent analyses; including the co-location of observations with mapping products such as mul-

tibeam sonar (e.g., [25]) and the analysis of spatial patterns in distributions of target species

(e.g., [26]). NTR monitoring programs utilising these platforms include Australia’s Integrated

Marine Observing System (IMOS) AUV program and California’s Marine Protected Area

ROV monitoring program. These programs now have data spanning over a decade in some

reserves. As these programs are located across regions experiencing climate change impacts,

an opportunity exists to utilise the available monitoring data to compare NTRs and adjacent

fished areas through time.

Here we use a Bayesian hierarchical modelling approach to analyse the presence of C. rod-
gersii barrens using a time series of marine imagery collected by an AUV from an east coast

Tasmanian NTR and nearby control sites. A survey of barrens inside and outside of the long-

established (> 25 year) Governor Island NTR using benthic imagery from an AUV revealed

that the NTR has a reduced presence of barrens compared to nearby fished areas [27]; how-

ever, analysis was based on a single set of survey data undertaken in 2010–11. Subsequent

AUV surveys have been conducted across the same sites, providing data to examine changes

through time. The analysis of this novel dataset of marine imagery examines: (i) the difference

in presence of urchin barrens inside the NTR compared to control sites (i.e., the “protection

effect”); (ii) whether the NTR mitigates the rate of barrens expansion through time; (iii)

whether depth and rugosity are important ecological predictors of the presence of barrens; and

(iv) whether including spatial and temporal correlation structures improves predictive

capability.

Materials and methods

Data collection

AUV imagery was collected by the AUV Sirius, operated by the University of Sydney’s Austra-

lian Centre for Field Robotics as part of the Australian government national IMOS monitoring

program. Survey planning and implementation was undertaken by the Institute of Marine and

Antarctic Studies (IMAS) at the University of Tasmania (UTas). IMAS operates under a joint-

venture between the Tasmanian Government and UTas as the de facto marine research

agency. Under this arrangement permits are not required to undertake non-intrusive research

(such as conducted here) in state waters, including marine reserves.

The AUV navigates pre-determined transects, with onboard sensors allowing the AUV to

maintain a relatively constant altitude of ~ 2m above the seafloor. This results in a predictably

stable image footprint of approximately 1.2 X 1.6 m, with imagery captured at a resolution of

~1 mm/pixel.

Repeated AUV transects were conducted across the study region between 2011 and 2016

(Fig 1). Here, “transect” refers to the complete grid pattern (black lines in Fig 1), with the same

pattern repeated each year. Transect locations were approximately centred on: Trap Reef

(41˚52’01.2"S, 148˚18’36.0"E), Governor Island NTR (41˚52’22.8"S, 148˚18’50.4"E), Cape Lodi

(41˚54’57.6"S, 148˚19’48.0"E) and Butlers Point (41˚57’43.2"S, 148˚19’01.2"E). All sites were

surveyed in 2011, 2013 and 2016. The Governor Island NTR was also surveyed in 2014.
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Rugosity from multibeam sonar bathymetric mapping

C. rodgersii density is known to be highly correlated with habitat complexity (e.g. [18, 28]). We

therefore expected a priori that rugosity, a measure of reef complexity, may be an important

covariate to control for when analysing the presence of barrens. Our study region was mapped

prior to this study in 2008/09 using multibeam acoustics as part of ongoing mapping by the

National Environment and Science Research Program Marine Biodiversity Hub [29]. In order

to generate a rugosity measure to use as a model covariate, a 1 metre resolution bathymetric

layer from the multibeam sonar was used with the vector rugosity measure (VRM) tool in the

Benthic Terrain Modeler 3.0 add-on in ArcGIS 10.6 software. This tool uses vector analysis to

calculate rugosity as the variation in the three-dimensional orientation of cells within a speci-

fied neighbourhood. We used a neighbourhood of three cells (i.e. three metres) as urchins are

likely to respond to complexity on smaller scales. As we expected rugosity to be an important

predictor, we excluded the small amount of survey area covered by the AUV transects that did

not have underlying multibeam mapping (see Fig 1).

Image scoring

Scoring followed the methods outlined in Perkins, Hill [27], where individual images were

classified as barrens when greater than 50% of the image was bare-rock barren and C. rodgersii
urchins were seen to be either present in the image or in an immediately preceding or succeed-

ing image that was also more than 50% bare-rock. The 50% cut-off was estimated visually by

the scorer. For subsequent analysis, an urchin barren was considered either ‘present’ or

‘absent’ at the image level based on this scoring. Urchins, and urchin barrens, are restricted to

rocky reef (e.g., [20]) and therefore we restricted our analysis to reef with all images that con-

tained greater than 50% sand excluded. Each scored transect was then subsetted to every fifth

image. The subsetting of images was necessary as AUV images overlap and it was determined

that every fifth image allowed minimal or no overlap of images for further analysis. This subset

of imagery resulted in a total of 20 602 images in the final time-series of data for analysis.

The models

Statistical analysis of imagery collected along temporally repeated transects at monitoring sites

needs to account for the possibility of spatial and temporal correlation in the ecological

response data. Failure to account for spatial and/or temporal correlation can lead to biases in

model coefficients and confound subsequent statistical inference, often leading to underesti-

mation of residual variance and erroneous conclusions regarding the importance of covariates

[30, 31]. To test for the importance of spatio-temporal dependence, three models were fit: 1)

model M1 with neither spatial nor temporal dependence, 2) model M2 with only spatial depen-

dence, and 3) model M3 with both spatial and temporal dependence. All models included the

same covariates (depth and rugosity) and were nested within the most complex model, M3,

which is described as a Bernoulli separable space-time model:

yðsi; tÞ � Bernoulliðpðsi; tÞÞ ð1Þ

Fig 1. Location of sites used in the study. (A) Governor Island NTR and Trap Reef with inset showing study region;

(B) Cape Lodi; and (C) Butlers Point. Underlying bathymetric mapping layer shown in colour. Black lines show

locations of repeated AUV transects. All sites were surveyed by AUV in 2011, 2013 and 2016; the Governor Island

NTR was also surveyed in 2014. Underlying base data (land and NTR boundary) is from theLIST © State of Tasmania,

and supplied under Creative Commons Attribution 3.0 Australia (CC BY 3.0 AU).

https://doi.org/10.1371/journal.pone.0237257.g001

PLOS ONE Monitoring resilience using benthic imagery

PLOS ONE | https://doi.org/10.1371/journal.pone.0237257 August 12, 2020 5 / 16

https://doi.org/10.1371/journal.pone.0237257.g001
https://doi.org/10.1371/journal.pone.0237257


log
pðsi; tÞ

1 � pðsi; tÞ

� �

¼ X si; tð Þbþ z si; tð Þ ð2Þ

zðsi; tÞ � �zðsi; t � 1Þ þ oðsi; tÞ; t ¼ 2; 3; . . . ð3Þ

oðs; tÞ � Nð0;
P
ðs; r; s2ÞÞ ð4Þ

zðs; 1Þ � Nð0;
P
ðs; r;s2Þ=ð1 � �

2
ÞÞ ð5Þ

logr � Nðar; b
2

r
Þ ð6Þ

log
e� þ 1

e� � 1
� N a�; b

2

�

� �
ð7Þ

logs � Nðas; b
2

s
Þ ð8Þ

b � Nð0; sÞ ð9Þ

with y(si,t) the categorisation of barren presence for an image located at si in year t, space and

time-varying covariate matrix X(si,t) and separable spatio-temporal random effects z(s,t). The

temporal covariance function is a stationary autoregressive process, such that −1<ϕ<1, where

z(s,t) = ϕz(s,t−1)+ω(s,t) with z(s,1) drawn from the stationary distribution.

The spatial random effects in year t have a stationary spatial covariance function with spa-

tial correlation function H(s−s0,ρ) for a site s and s0. We used the Integrated Nested Laplace

Approximation approach (INLA; see [32]) for Bayesian spatial and spatio-temporal modelling.

The spatial range for INLA is defined by Lindgren, Rue [33] as the distance at which the spatial

correlation drops to close to 0.1. The internal parameterisation of the range ρ and spatial vari-

ance σ2 used by INLA is given in S1 File. Details of the Bayesian prior specification used in the

analysis are given in S2 File. All statistical analyses were conducted within the R statistical com-

puting package [34].

The model covariates for which β coefficients were estimated included fixed effects for the

NTR (binary, whether an image was located inside the NTR or not), year, an interaction term

between NTR and year, depth, depth-squared (to capture expected non-linear effects in deep

and shallow images), and rugosity (see above). The model thus allowed for a linear temporal

trend in urchin barrens presence over the six-year study duration including a possible interac-

tion with the NTR. Lagged temporal effects and spatial heterogeneity may introduce spatial

and temporal dependence on top of the linear trend. The potential impact of spatial and tem-

poral dependence was assessed by comparing model M3 against the simpler models M1 and

M2 that dropped these dependence components, as described below. Depth was included as it

has been previously found to be an important predictor of barrens presence [20, 27].

Model M2 is obtained from M3 by omitting the temporal dependence component (i.e., set-

ting the temporal dependence parameter to zero). Model M1 is then obtained from model M2

by also omitting the spatial dependence component (i.e., setting the spatial variance parameter

to zero). The hypothesised models are considered equally likely a priori and compared on the

basis of the marginal likelihoods given the observed data. The marginal likelihood (or evi-

dence) of each model is proportional to the posterior model probabilities given the a priori

equal model weights.
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As the values of rugosity were right-skewed (i.e. mostly small values, with a few larger val-

ues), to avoid leverage issues a logit transformation was applied to the raw rugosity values. All

physical model covariates (i.e. depth, depth-squared and logit-transformed rugosity) were cen-

tred by their mean and scaled by their standard deviation to ease comparison of estimated

coefficients.

We examined both the percentage change in odds ratios and predicted changes in the prob-

ability of urchin barren presence to interpret the relationships with respect to model covari-

ates. For the percentage change in odds ratios given by an increase of one unit in the ith

covariate, we used the formula (exp(βi)−1)�100. We examined the conditional influence of

covariate effects by predicting the posterior probability of barrens presence over the range of

values for that covariate in our sample space while holding all other covariates constant and

excluding random effects (i.e., conditioning on z(s0,t0) = 0 for predictions to a site s’ and year

t’). The changing probability of barrens presence through time in sites (images) inside and out-

side the NTR conditioned on the mean values for rugosity and depth inside and outside the

NTR respectively. The conditional relationships for depth and rugosity were conditioned on

the year 2016 (i.e., the last year surveyed) inside the NTR and were conditioned on the mean

values of the alternative covariate inside the NTR. This was accomplished by taking 5000 joint

posterior draws of the unknown β coefficients from the fitted model.

Code used to fit each model, take posterior samples and explore covariate importance, and

the accompanying data is available at: https://metadata.imas.utas.edu.au/geonetwork/srv/en/

metadata.show?uuid=d29fa59e-203f-42a8-b0a7-cf77fde7b88a.

Results

Data description

The percent of images classified as barrens showed a general increase through time for all sites

(Fig 2). There were distinct differences in the percent barrens at each site, with these differ-

ences being maintained through time. The Governor Island reserve (all transects within the

NTR pooled within each year surveyed) always had a lower observed percentage of barrens

when compared to any of the reference sites, with less than one percent of images being classi-

fied as barrens habitat in any year. For the reference sites, Cape Lodi consistently had the high-

est percent barrens through time, followed by Trap Reef and Butlers Point.

Model results

Of the three model specifications fitted, the full spatio-temporal model provided the best fit as

determined by the model marginal log-likelihoods (S1 Table) and hence also the posterior

model probabilities. The INLA posterior model summary for the spatio-temporal model is

presented in Table 1. Posterior density plots for all model parameters are provided in S1 Fig.

In the full spatial and temporal model (M3), we found a strong effect of the NTR on the

presence of urchin barrens, with the odds of barrens presence being doubled outside of the

NTR compared to within the NTR. For an NTR effect, the median coefficient estimate of

-3.107 (Table 1, 0.5 quantile) on the logit scale is equivalent to a multiplicative effect on the

odds-ratio scale of 0.045 (i.e., exp(-3.107) = 0.045). Therefore, if other model factors are held

fixed, the percentage change in the odds of an image being classified as a barren is (exp(-3.107)

- 1)x100 = -96% when moving from a site outside of the NTR to within the NTR.

Over the five-year time period, there was a substantial overall increase in the presence of

barrens across all the sites (positive year effect in Table 1 and Fig 3). The median (0.5 quantile)

posterior estimate of the coefficient for the year effect was 0.277 (Table 1), which equates to a

change in the odds-ratio of barrens presence of 1.319. This means that, when holding all other
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model factors fixed, the overall percentage increase in the odds of the presence of barrens each

year is increasing by 31.9%. However, the rate of change inside the NTR was not found to be

substantially different to the reference sites (95% central CI for the NTR × year interaction

spans zero in Table 1 and Fig 3). Therefore, there was a rapid and substantial rate of increase

in barrens across the region of coastline in this study, but the rate of change inside the NTR

was not statistically distinguishable from that of the reference sites (Fig 3).

Fig 2. Percent barrens at each of the sites through time. Percent barrens were calculated as the precent of total images scored that were classified as barrens. Note that

the control sites were not surveyed in 2014. Error bars are standard errors. Question marks indicate that no data was collected in 2014 for the control sites.

https://doi.org/10.1371/journal.pone.0237257.g002

Table 1. INLA model posterior summary for fixed and random effects for the full spatio-temporal model (M3).

mean sd 0.025 quantile 0.5 quantile 0.975 quantile

Fixed effects

intercept -7.478 0.353 -8.180 -7.475 -6.793

NTR -3.150 0.971 -5.180 -3.107 -1.363

year 0.277 0.072 0.137 0.277 0.420

rugosity 0.557 0.105 0.351 0.557 0.765

depth -0.278 0.242 -0.747 -0.280 0.204

depth-squared -0.985 0.236 -1.477 -0.975 -0.551

NTR:year 0.070 0.195 -0.300 0.065 0.468

Random effects

Range (m) 17.055 2.093 13.293 16.938 21.501

Spatial standard deviation 3.413 0.241 2.972 3.401 3.921

Temporal correlation 0.734 0.053 0.621 0.737 0.827

https://doi.org/10.1371/journal.pone.0237257.t001
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After accounting for spatial and temporal dependence, decisive effects were found for the

environmental covariates of depth-squared and rugosity (Table 1 and Fig 4). The empirical

distribution of barrens across depth in the survey region showed barrens ranged between 15

and 37 m (S2 Fig). The strong effect of depth-squared (Table 1) indicates a concave relation-

ship between urchin barrens presence and depth. For a hypothetical site within the NTR in the

year 2016 with mean rugosity, the conditional relationship between depth and the probability

of barrens presence is plotted in Fig 4A. The peak probability for urchin barrens presence is

approximately 20 m, with low probability beyond 40 m. Thus, there is a quadratic effect of

depth, with an overall lower presence of barrens in the shallower and deeper images collected

(Fig 4A).

For a hypothetical site within the NTR in the year 2016, but now at a constant mean depth

with rugosity varying, the conditional relationship between and the presence of barrens was

positive (Fig 4B). Rugosity values in the raw data ranged from near zero to 0.544, with a mean

of 0.015 ± 0.030 inside the NTR and a mean of 0.011 ± 0.018 at the reference sites. Rugosity

values of unsampled bathymetric cells in the region ranged up to 0.758.

Fig 3. Conditional relationships for probability of barrens presence over the survey period for sites inside and outside the No-Take Reserve (NTR). Probabilities

were calculated by taking 5000 posterior draws from the fitted spatio-temporal model (model M3) and conditioned on the mean values for depth and rugosity from

inside and outside the NTR. Predictions were conditioned on spatio-temporal random effects set equal to zero. Lines are posterior means and shaded areas 95% credible

intervals. Note logarithmic y-axis.

https://doi.org/10.1371/journal.pone.0237257.g003
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Model comparisons showed that both spatial and temporal correlation were important in

explaining the presence of urchin barrens overall (S1 Table). Results for the spatial random

effects showed that spatial correlation occurred over a mean range of approximately 17 m

(Table 1 and S1 Fig) with mean spatial standard deviation of 3.413 (Table 1 and S1 Fig). The

posterior distribution of the AR1 temporal correlation parameter was found to have a mean of

0.734 ± 0.053, implying a strong temporal correlation effect for the presence of barrens with

barrens status likely to persist throughout the time period.

Discussion

Here we utilize marine imagery collected from an AUV to demonstrate that an NTR has a sub-

stantial localised effect on the formation of barrens by a range extending urchin species in a

region that is experiencing rapid climate change. We find a doubling in the odds of the pres-

ence of barrens in reference sites outside the NTR; however, although the NTR had consis-

tently lower presence of barrens through time, we also find that the data collected to date does

not indicate that the rate of increase in barrens inside the NTR is different to that outside.

Therefore, our results imply that the NTR may have conferred resilience in terms of the resis-

tence to the initial establishment of barrens, but that there is currently no evidence of recovery

inside the NTR once barrens are established. Preventing the phase-shift from healthy rocky

reef ecosystems to large areas of urchin barrens that have occurred elsewhere on the east coast

of Tasmania is likely to require the ongoing maintenance of low densities of urchins [22].

Therefore, continued monitoring of this study region is necessary to establish whether the

NTR maintains a lower prevalence of barrens or a differing rate of barrens expansion. Moni-

toring data could also be used to set trigger points for management responses such as the spa-

tial targeting of an emerging urchin fishery (see [35]).

Our results regarding the rate of increase in barrens through time are in concurrence with

other recent findings that demonstrate an alarming expansion of C. rodgersii barrens in this

section of coastline [18]. Ling and Keane [18] found that barrens were not detected in SCUBA

and towed video surveys in this region in 2001/2, but were approximately 2% of surveyed habi-

tat in 2016/17. We found that over our survey period the median probability of any given

image being classified as an urchin barren was increasing by 31.9% per year. While the propor-

tion of barrens habitat was still lower than 10% for any of our sites in 2016, the rapid increase

in barrens over the 5 year period provides a concerning trajectory. Robust monitoring pro-

grams such as the current AUV program are necessary to inform the effective adaptive man-

agement of nearshore habitats and economically important fisheries that depend upon them.

We demonstrate that a rugosity measure derived from multibeam data and a quadratic

depth term are both strongly correlated with urchin barren presence and therefore may aid in

the fine-scale prediction of areas likely to see ongoing increases in the presence of barrens hab-

itat. This information could be used in the spatial planning of target areas for conservation

efforts and monitoring [36]. Our research demonstrates that imagery collected by AUVs pro-

vides a benthic monitoring platform capable of tracking important ecological changes thereby

providing important and timely information for the management of the marine environment.

Fig 4. Conditional relationships for probability of barrens presence with respect to (A) depth and (B) rugosity. Probabilities were calculated by taking

5000 posterior draws from the fitted spatio-temporal model (model M3) and holding all other fixed effects constant while exploring a range of values for

the relevant covariate in the absence of random effects. Predictions were conditioned on spatio-temporal random effects set equal to zero. Lines are

posterior means and shaded areas 95% credible intervals. We chose the no-take reserve (NTR) in 2016 to calculate the predicted probability. The mean

value in the NTR for rugosity was used when exploring depth, and the mean value for depth and depth-squared in the NTR was used when exploring

different rugosity values.

https://doi.org/10.1371/journal.pone.0237257.g004
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Resilience and protection effects

Resilience can be framed in terms of a systems ability to both resist and recover from distur-

bance (see [4]), with disturbances pushing systems towards alternative stable states. Urchin

barrens represent an alternative stable state in our study system, with high densities of urchins

capable of overgrazing kelp, eventually pushing the system to an alternate state of widespread

barrens. C. rodgersii urchin barrens are known to demonstrate a hysteresis, whereby the level

of urchin density required to return reefs to productive kelp beds is much lower than that

required to result in the phase shift to barrens [22]. In areas of the east coast of Tasmania

where urchins settled earlier, widespread barrens are now common [18]. Therefore, under-

standing whether conservation measures such as NTRs can affect the ability of communities to

both resist and recover from the establishment of C. rodgersii urchins is important.

Our results clearly demonstrate the resistance to the establishment of C. rodgersii urchin

barrens of a Tasmanian NTR when compared to nearby reference areas where fishing is per-

mitted. While our study is limited to a single NTR, the findings are supported by a study exam-

ining a time series of SCUBA monitoring of NTR and reference sites across Tasmania that

found that areas protected from fishing activities resisted the colonisation by C. rodgersii and

facilitated greater cover of macroalgae [7]. This suggests that NTRs offer a spatial management

tool to aid in limiting the expansion of barrens habitat on the east coast of Tasmania. While

our study does not test the causal relationship for the lower presence, the higher density of the

rock lobster J. edwardsii (and especially large lobsters) inside Tasmanian NTRs [37–39] and

the higher predation rates of urchins in those reserves by lobsters [21] suggests that urchin

densities are likely to be kept lower in the NTR through higher predation rates. The Governor

Island NTR, established in 1991, was likely to have had a much higher density and larger size

structure of lobsters than adjacent coastal waters when C. rodgersii urchins began arriving in

this area in significant numbers during the 1990’s [20, 37]. As J. edwardsii also shows high site

fidelity [40], higher localised predation rates within the reserve are likely to have maintained

lower levels of barrens.

Although our analysis demonstrates a strong protection effect in terms of resistance to the

establishment of barrens, the data collected to date does not demonstrate that recovery is

occurring inside the NTR. In fact, current rates of increase in barrens were not distinguishable

between the NTR and reference sites, suggesting that habitat suitable for barrens formation in

both are being pushed towards alternative stable states. The high temporal correlation in the

presence of barrens is in agreeance with other studies that show that, once C. rodgersii urchins
are established, recovery of kelp habitat is problematic [22]. Whether the proportion of barrens

habitat can be restricted to a level which prevents catastrophic phase shifts to an alternative sta-

ble state [22], or perhaps even promotes a recovery, requires ongoing monitoring and adaptive

management. Monitoring approaches such as the AUV-based program reported here provide

a useful platform for ongoing work and to test ideas around the resilience of NTRs to the

effects of climate change.

The importance of rugosity and depth for the presence of barrens

Habitat complexity is an important factor in the distribution of many species and if quantified

adequately over large areas may provide a means to better predict species distributions. For C.

rodgersii urchins, the importance of habitat complexity that provides refuge for urchins has

been demonstrated in diver-based studies (e.g., [18, 20]). Our results demonstrate that a mea-

sure of habitat complexity derived from bathymetric mapping provides an important covariate

for barrens presence and thus could be a useful predictor over large areas. Further exploration

of the use of multibeam mapping derived complexity measures and the optimal scale at which
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to quantify complexity for C. rodgersii would help identify areas that should receive targeted

efforts to control the expansion of urchin barrens habitat. For example, predictive maps that

incorporate habitat complexity could be used to better understand the likely future extent and

spatial distribution of barren formation, and inform adaptive management responses, such as

a subsidised urchin fishery (see [35]).

Our findings regarding the depth distribution of urchin barrens in Tasmania agrees with

previous research that shows that while barrens do extend into deeper areas of reef (> 40

metres), the majority of barrens are expected to form in 10–30 metres [18, 20, 27]. The strong

negative coefficient for depth-squared indicates a negative quadratic relationship of barrens

presence with depth. Therefore, our results are in agreeance with ecological expectations of the

distribution of barrens across our study sites, with lower presence in both deep and shallow

images.

The modelling approach

The Bayesian hierarchical approach used here provides a means of modelling the time-series

of benthic imagery that captures inherent spatial and temporal structures in the data. We

found that including both spatial and spatio-temporal dependence improved model fits to the

data. Spatial dependence was found to occur over relatively short distances (mean of approxi-

mately 17 m), with relatively high spatial variance. This reflects the patchy nature of barrens in

the early stages, where smaller “incipient” barrens form as early arrivals settle in areas where

complex habitat allows the establishment of discrete barrens patches.

Previous research using the same sites but just a single timepoint, and aggregating data into

transects found a suggestive but non-significant effect of the NTR on the presence of barrens

[27]. Here, rather than aggregating the data, we use images as the basis of the analysis. Increas-

ing the sample size to a large number of images rather than a few transects increases the proba-

bility of detecting a temporal change in urchin barren presence. Our analysis showed that

spatio-temporal dependence is an important feature of the imagery data that should be

accounted for by statistical modelling. We therefore advocate for the use of similar approaches

in future analysis of marine imagery datasets generated by ecological monitoring programs.

Conclusions

We demonstrate that a time-series of imagery from an AUV was able to detect a strong and

consistent protection effect on the presence of urchin barrens in a study region on the east

coast of Tasmania. Although the NTR has lower rates of barrens presence we also found the

odds of barrens presence increasing at approximately 31.9% per year in both NTR and refer-

ence sites. The spatio-temporal dependence revealed by the modelling further suggests that

urchin barrens, once established, persist through time. Therefore, there is currently strong evi-

dence for the resistance of the NTR to barrens formation, but importantly there is also no evi-

dence of recovery. While barrens cover is currently relatively low inside the NTR, a slowing of

the rate of increase or a recovery of kelp habitat may be necessary to prevent a widespread shift

to persistent barrens. With ongoing climate change related warming and incursion of urchins

into new areas, monitoring the increase in barrens is critical to informing adaptive manage-

ment and developing innovative solutions. To support these efforts, we also report that mea-

sures of reef complexity and depth from multibeam sonar mapping provide important

predictors for the occurrence of barrens. Therefore, detailed seabed mapping and spatial analy-

sis may help in spatial management when targeting efforts to reduce urchin numbers via

mechanisms such as spatially targeted fishing incentives for urchin divers. Finally, we advocate

the use of spatio-temporal models such as those presented here when assessing time-series of
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benthic imagery due to their flexible nature and ability to incorporate spatial and temporal

correlation inherent in imagery data.
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