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Abstract: Vitamin D has been implicated in the regulation of glucose metabolism and insulin
resistance. We designed this study to provide evidence that insulin resistance is dependent on the
concentration of vitamin D in the body. Forty observational studies of both type 2 diabetes mellitus
patients and healthy subjects were included in this meta-analysis. Related articles were searched
from Embase, PubMed, and Medline through January 2021. Filters for search were used to obtain
more focused results. We used Comprehensive Meta-Analysis Version 3 for the construction of forest
plots. RevMan software version 5.3 was used to build the risk of bias tables and summary plots.
The observational studies included in this systematic review and meta-analysis showed an inverse
relationship of insulin resistance with the status of vitamin D both in non-diabetic (r = −0.188; 95%
CI = −0.141 to −0.234; p = 0.000) and diabetic (r = −0.255; 95% CI = −0.392 to −0.107, p = 0.001)
populations. From the meta-analysis we concluded that hypovitaminosis D is related to increased
levels of insulin resistance in both type 2 diabetes patients and the healthy population all over
the world.

Keywords: hypovitaminosis D; insulin resistance; fasting plasma insulin; type 2 diabetes; body mass
index; vitamin D

1. Introduction

Insulin resistance and type 2 diabetes mellitus (T2D) are among the greatest challenges
of this time. Obesity is one of the major risk factors for the spread of these diseases [1].
Insulin, the glucose lowering hormone, has an important role in the adipose tissues, liver,
and skeletal muscles. After binding to its receptors in the cell membrane, the insulin
starts metabolic reactions, e.g., it stores glucose in the skeletal muscles and liver, initiates
glucose use in the skeletal muscles, and is involved in the regulation of genes related to
lipid synthesis and glucose transport. Insulin also functions to suppress lipolysis in the
liver, reducing the concentration of acetyl-CoA, thus decreasing pyruvate carboxylase
activity. A decrease in pyruvate carboxylase and glycerol production helps insulin reduce
gluconeogenesis [2,3]. A higher insulin level in the blood to maintain a normal status
of glucose defines insulin resistance. Insulin resistance is found to be the culprit for a
number of diseases such as pre-diabetes, non-alcoholic fatty liver (NAFL), and polycystic
ovaries [4–6]. Continuous high insulin requirement exhausts the beta cells of the islets
of Langerhans, resulting in the obvious progression of type 2 diabetes. Hypovitaminosis
D is considered to be related to the development of T2D, as evident from a number of
epidemiological studies [7–9]. Deficiency of vitamin D is also potentially linked with
non-alcoholic fatty liver disease, cardiovascular disease, and overall mortality risk [10–12].
Vitamin D is a fat-soluble prohormone steroid that has endocrine, paracrine, and autocrine
functions [13]. Studies showed that deficiency in vitamin D develops insulin resistance,
which in turn promotes obesity and type 2 diabetes [14]. The 1α-hydroxylase enzyme
required for the conversion of 25 (OH) vitamin D into its functionally active form 1,25
(OH)2 vitamin D and vitamin D receptor (VDR) are found in the beta cells, showing its
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role in the homeostasis of insulin production [15]. The progression of diabetes is slowed
with vitamin D supplementation in animal models of diabetes. Moreover, a high risk of
type 2 diabetes and an intensive hyperglycemia have been observed for carbohydrate
consumption under hypovitaminosis D conditions [16,17]. A strong link has been found
between vitamin D status and insulin response in tissues in non-diabetic subjects [18]. The
evidence of vitamin D correlation with insulin resistance is continuously increasing all over
the world, showing an inverse relationship between them, which is consistent with our
hypothesis [19,20].

The goal of this review was to reveal the relationship of vitamin D status and fasting
plasma insulin as a measure of insulin resistance in previous diabetic and non-diabetic ob-
servational studies. The prospective relationship of vitamin D levels and insulin resistance
was examined in this study using a forest plot. Vitamin D status is also affected by sun;
therefore, latitude can have an effect on this relationship. Other factors that can affect this
association are the method of vitamin D determination and BMI of the selected population.
To identify the influence of these parameters on the relationship between vitamin D and
insulin resistance, we performed meta-regression analysis.

2. Materials and Methods

Three databases (Embase, Medline, and PubMed) were searched for this review article
to find appropriate observational studies through to January 2021. The keywords used
were: “cholecalciferol”, “25 (OH) vitamin D”, “25 (OH) D”, “vitamin D3”, “vitamin D”, in
combination with “fasting plasma insulin”, “HBA1C”, “homeostasis model assessment of
insulin resistance”, “fasting plasma glucose”, “type 2 diabetes”, “T2D”, “adiposity”, and
“abdominal obesity”. The search for the keywords was performed both as free keywords
and in combination with EMTREE in Embase, and Medical Subject Heading (MeSH) in
PubMed. The studies selected showed the relationship between vitamin D (25-hydroxy
vitamin D) and fasting plasma insulin. The selection criteria included studies conducted on
human beings of more than 18 years of age, written in English. Editorials, commentaries,
and reports were not included in this study. The articles were also searched by other
sources in addition to systematic search for more references. If the articles lacked necessary
information on moderators or estimates, the authors were contacted.

Statistical Analysis and Outcome Measures

The aggregate effect measure was extracted and pooled for meta-analysis as a cor-
relation coefficient. We used the random effect model to compute the forest plot as the
summary measure for the outcome. Studies were collected from a range of populations
in different regions of the world with different ethnicities, cultures, and customs, since
the biological effect of vitamin D varies with location. The estimates of consistency and
reliability were tested by I2 and τ2, respectively, where I2 defines total heterogeneity as
percentage among included studies.

Grades of Recommendation Assessment Development and Evaluation (GRADE) was
used for quality assessment of the articles. The factors that determined the quality of
the study were: 1. indirectness (compromised generalizability of results); 2. inconsis-
tency (unexplained heterogeneity between studies); 3. publication bias (small number
of participants); 4. imprecision (confidence intervals too long). Comprehensive Meta-
Analysis Version 3 (Biostat, Inc., Englewood, NJ, USA) was used to perform meta-analysis.
Meta-regression was performed (Comprehensive Meta-Analysis Version 3, Biostat, Inc.,
Englewood, NJ, USA) to determine the sources of bias. The risk of bias (ROB) analysis was
performed using Review Manager 5.3.

3. Results

A total of 2023 studies were identified electronically (Pubmed, Embase, and Medline).
Nineteen references were recognized by other means. Endnote software was used to screen
the duplicate entries and 998 entries were discarded. A total of 749 studies were excluded



Nutrients 2021, 13, 1742 3 of 16

on the basis of title. The rest underwent abstract and full text evaluation. The abstract
evaluation discarded 200 articles and systematic assessment of full text rejected 55 articles.
Forty articles fulfilled the inclusion criteria and were finally selected as eligible to be used
in the meta-analysis (Figure 1).
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3.1. Excluded Studies on the Basis of Full Text Evaluation

Eleven articles were excluded as data were not compatible with our outcome measure
of correlation coefficient [14,21–30]. Twenty-one studies were selected for exclusion because
their study design did not match our study design [31–51]. Sixteen articles were rejected
because the outcome measure was calculated for a mixed population, i.e., for both diabetic
and non-diabetic subjects [52–67]. One study was excluded because the number of subjects
in each vitamin D quartile was not mentioned [68]. For seven references, full-length articles
were not accessible [69–75].

3.2. Included Studies
3.2.1. Meta-Analysis and Meta-Regression for Non-Diabetes Patient Studies

Thirty-five studies included in this meta-analysis were collected through to January
2021. The participants of all studies were at least 18 years old. Twelve studies determined
vitamin D concentration by radioimmunoassay (RIA), five by enzyme-linked immunosor-
bent assay, eight by chemiluminescence assay (CLIA), three by electrochemiluminescence
assay (ECLIA), four by liquid chromatography-mass spectrometry (LC-MS), one by high-
performance liquid chromatography (HPLC), and two studies did not mention the method of
determination. The articles selected were from all over the world and from different ethnicities.

Because of the large amount of variability due to the above-mentioned sources, we
used the random effect model for this meta-analysis. An inverse relationship (r = −0.188,
95% CI = −0.141 to −0.234, p = 0.000) was seen between fasting plasma insulin and vitamin
D concentrations in the blood for all thirty-five non-diabetic subject studies (Figure 2). The
correlation of all studies lies between r = −0.041 and r = −0.397. The meta-regression
analysis showed R2 to be zero for both latitude and method of determination of vitamin
D, meaning the relationship between vitamin D concentration and fasting plasma insulin
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is independent of these two variables (Figures 3 and 4). The summary of the GRADE
assessments is presented in Figures 5 and 6. The subgroup analysis for different quar-
tiles of BMI depicts an overall increasing strength of correlation between fasting plasma
insulin and vitamin D status from lower to higher BMI quartile. For example, the corre-
lation was r = −0.152, 95% = −0.206 to −0.097, p = 0.000 in the lowest quartile (BMI < 25)
(Figure 7); r = −0.153, 95% = −0.206 to −0.099, p = 0.000 in the medium quartile; and
r = −0.229, 95% = −0.322 to −0.131 (BMI = 25–30) (Figure 8), p = 0.000 in the highest quar-
tile (BMI > 25) (Figure 9). The correlation was almost the same in the first two quartiles;
however, it was significantly higher in the third quartile compared to the first two quartiles.
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3.2.2. Meta-Analysis and Meta-Regression for Diabetes Patient Studies

Seven studies fulfilled the criteria to be included in this meta-analysis for the relation-
ship of vitamin D with fasting plasma insulin in diabetic patients. In this meta-analysis, we
found an inverse association (r = −0.255, 95% CI = −0.392 to −0.107, p = 0.001) between
fasting plasma insulin and vitamin D levels (Figure 10). The range of correlation in all stud-
ies was −0.045 to −0.25, except for one study from Southern Spain [107], which showed
an increased correlation (r = −0.882). The effect of the moderator (latitude) on the correla-
tion of vitamin D status and fasting plasma insulin was determined by meta-regression
analysis. The results showed that the latitude (R2 = 0.000%, p = 0.000) did not contribute
to heterogeneity in this correlation (Figure 11). The summary of GRADE assessment is
presented in Figures 12 and 13.
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4. Discussion

It is evident from this meta-analysis that the levels of vitamin D in the body are
inversely related to insulin resistance both in diabetic and non-diabetic populations. How-
ever, the correlation is stronger in the diabetic population (r = −0.255, 95% CI = −0.392 to
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−0.107, p = 0.001) (Figure 2) compared with the non-diabetic population (r = −0.188, 95%
CI = −0.141 to −0.234, p = 0.000) (Figure 10).

The status of vitamin D is inversely related to insulin resistance independent of age
and sex. The active form of vitamin D (1,25-hydroxy vitamin D) has been detected in the
pancreas [110]; therefore, there is a possibility that vitamin D plays a role in the evolution-
ary development of metabolic systems such as beta cell function. Hypovitaminosis D is
associated with reduced calcium status in the blood circulation, which ultimately controls
insulin synthesis and insulin secretion by beta cells [111]. Vitamin D supplementation in-
creases plasma calcium levels, which in turn increase the synthesis and secretion of calcium
from the beta cells, ultimately improving glucose homeostasis [21,73]. Hypovitaminosis D
therefore plays a role in the development of insulin resistance by affecting insulin synthesis
and secretion from beta cells and by regulating circulating serum calcium.

The subgroup analysis on the basis of BMI showed an increasingly strong inverse
relationship between vitamin D status and insulin resistance with increasing BMI in non-
diabetic subject studies. The strength of correlation is stronger (r = −0.229, 95% = −0.322
to −0.131) in the highest BMI quartile, and almost the same in the first (r = −0.152,
95% = −0.206 to −0.097, p = 0.000) and second (r = −0.153, 95% = −0.206 to −0.099,
p = 0.000) BMI quartiles. According to previous studies, a synergy exists between hypovi-
taminosis D and obesity in developing insulin resistance [14,20,42]. The expression of
vitamin D receptors is more pronounced in obese compared with lean subjects, and vitamin
D deficiency has an independent inverse relationship with BMI [112]. The anti-insulin
resistance mechanism of vitamin D might act through its anti-inflammatory mechanism
in overweight subjects. A decrease in inflammatory cytokines after vitamin D treatment
has been observed in many previous studies and might have a role in promoting insulin
sensitivity [21]. The cycle works via insulin-stimulated fat synthesis and adipose tissue
initiating the synthesis of inflammatory markers, which then lead to augmented insulin
resistance. Vitamin D interrupts this cycle at the level of adipogenesis by hindering it and
at the level of inflammatory marker production by lowering their synthesis [113].

The underlying cause of obesity-related insulin resistance is inflammation induced
by obesity. Vitamin D is well-known for its anti-inflammatory functions as it lowers
the concentration of different inflammatory indicators (C-reactive protein (CRP), tumor
necrosis factor-a (TNF-alpha), and interleukin-6 (IL-6)) [114]. Numerous studies have
shown the effect of insulin resistance on the risk of cardiovascular disease, which is
doubled in insulin-resistant compared with normal populations. Considerable similarities
in the biochemical profile of insulin resistance and inflammation have been observed
in diabetic and cardiovascular patients recently. A recent study even showed a role for
insulin resistance in the development of ischemic heart disease under normal glucose
tolerance [115].

Vitamin D receptor (VDR) is required for the functioning of vitamin D in different
tissues. However, the requirements for the expression of VDR vary in different tissues,
e.g., in some tissues, it requires calcium and vitamin D for its expression, and in others, it
needs neither. It has been reported that vitamin D induces insulin secretion in the beta cells
of the pancreas and increases insulin sensitivity in target cells, i.e., muscle, adipose tissue,
and liver [116–118]. Hypovitaminosis D has been shown to be related to hyperglycemia
and insulin resistance earlier [29,119].

The epigenetic effect of vitamin D has been observed at the level of transcription
for many genes. Insulin receptor substrate (IRS-1) is a protein that plays an important
role in promoting insulin sensitivity. The expression of IRS protein was observed to be
increased by 2.4 times in high-fat-treated mouse muscle tissue after treatment with vitamin
D. The anti-insulin resistance mechanism of vitamin D appears to involve insulin-mediated
intracellular functions through IRS-1 [120]. The photosynthetic production of vitamin D in
the skin depends on the radiation (UV-B) from sunlight. Therefore, latitude can explain the
status of vitamin D geographically, but the meta-regression analysis presented in this study
does not show any variability in the correlation because of latitude (R2 = 0.000, p = 0.000).
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This might be because many factors in the modern world have reduced the impact of
these radiations on the production of vitamin D. For example, concrete buildings absorb
more radiation, and the gases emitted by industry and vehicles reduce the irradiance
of ultraviolet B radiation from the sun [121,122]. These and other factors, such as diet,
clothing styles, industrialization, reduced time for sun exposure, and skin pigmentation,
have confounded the effect of latitude on the strength of correlation between vitamin D
status and insulin resistance.

The meta-regression analysis for the effect of method of determination of vitamin
D also showed no heterogeneity of the correlation. However, we observed an overall
increased strength of inverse correlation between vitamin D status and insulin resistance
when the CLIA method was used for the determination of vitamin D; the most pronounced
example being the study of Calvo-Romero [107] from Southern Spain, which reported the
highest correlation of −0.82.

Vitamin D is directly related to the progression of the diabetic complications such as
diabetic neuropathy, diabetic nephropathy, and diabetic retinopathy. Vitamin D regulates
neurotrophin and calcium homeostasis related to nerve action, and the deficiency of
vitamin D exerts diverse effects on the complication of diabetic neuropathy [123]. It was
observed previously that vitamin D is inversely related to diabetic neuropathy, and this
relationship does not depend on the duration of diabetes disease. Chronic nephropathy
developed during type 2 diabetes was also linked to diabetic neuropathy [124]. The role of
vitamin D in the functioning of neurons has been established in the last couple of decades.
Many neuronal diseases have been proven to be associated with hypovitaminosis D. For
example, treating multiple sclerosis patients with vitamin D can slow the progression of
disability [125–127]. Nerve growth factor is important for the growth and development
of neurons, and myelination of Schwann cells in case of injury. Vitamin D increases the
production of nerve growth factor in glial cells after crossing the blood–brain barrier and
entering the glial cells [128–130]. There was progress in the treatment of diabetic foot
healing when the diabetic foot was topically treated with nerve growth factor [131].

Strengths and Weaknesses

The systematic search used for the mining of research articles is one of the major
strengths of this meta-analysis. The gold standard international methodology was applied,
and observational studies were evaluated by the Grading of Recommendations Assessment,
Development, and Evaluation (GRADE). The meta-analysis did not reveal very wide 95%
confidence intervals, which shows the dependence of insulin resistance on the status of
vitamin D. Although the total number of subjects was high in this meta-analysis, the studies
were observational; therefore, the chances for residual confounding cannot be ruled out,
which is a limitation. Potentially confounding factors include the age, ethnicity, and lifestyle
of the participants. The intake of vitamin D and sun exposure has not been mentioned
in all of the studies, which may be an additional source of confounding. Observational
studies have the drawback of not being blinded and randomized, which is a limitation
of this study. We consider this evidence to be moderate on the basis of the strengths and
weaknesses of the studies included.

5. Conclusions

Diabetic hypovitaminosis D is at the pandemic level worldwide. The present sys-
tematic review and meta-analysis suggest a role of vitamin D in the regulation of insulin
production and release from the beta cells of Langerhans. However, this association is not
purely independent, and strongly depends on BMI as observed in the subgroup-analysis.
The inverse correlation between vitamin D status and fasting insulin strengthens with
increasing BMI. The meta-regression analysis did not show any effect of latitude or the
method of determination of vitamin D on the overall relationship of vitamin D levels in the
body and fasting insulin in the blood. There is a significant need for high-quality, long-term,
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randomized controlled trials to be conducted using different doses of vitamin D to see its
effect on fasting plasma insulin levels.
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