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Abstract

In the 1930s, Otto Warburg reported that anaerobic metabolism of glucose is a fundamental property of all tumours,
even in the presence of an adequate oxygen supply. He also demonstrated a relationship between the degree of
anaerobic metabolism and tumour growth rate. Today, this phenomenon forms the basis of tumour imaging with
fluorodeoxyglucose positron emission tomography (FDG-PET). More recently, Folkman has demonstrated that
malignant growth and survival are also dependent on tumour vascularity which is increasingly evaluated in vivo
using techniques such as contrast enhanced computed tomography or magnetic resonance imaging (MRI).
Although it is reasonable to hypothesise that the metabolic requirements of tumours are mirrored by alterations in
tumour haemodynamics, the relationship between tumour blood flow and metabolism is in fact complex. A well-
developed tumour vascular supply is required to ensure a sufficient delivery of glucose and oxygen to support the
metabolism essential for tumour growth. However, an inadequate vascularisation of tumour will result in hypoxia, a
factor that is known to stimulate anaerobic metabolism of glucose. Thus, the balance between tumour blood flow
and metabolism will be an important indicator of the biological status of a tumour and hence the tumour�s likely
progression and response to treatment. This article reviews the molecular biology of tumour vascularisation and
metabolism, relating these processes to currently available imaging techniques while summarising the imaging studies
that have compared tumour blood flow and metabolism. The potential for vascular metabolic imaging to assess
tumour aggression and sub-classify treatment response is highlighted.
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Introduction

The phenomena known as the �Warburg Effect� was
described by Otto Warburg (1883�1970) during his life-
time of work into cellular metabolism and respiration, for
which he was awarded the Nobel Prize in 1931[1,2]. He
recognised that glucose can be metabolised either by
combination with oxygen, i.e. respiration, or by glycolysis
to produce lactate. He also observed that a change from
oxidative phosphorylation to the less energy efficient gly-
colysis, even in the presence of an adequate supply of
oxygen, is a fundamental property of the metabolism of
cancer cells and that the rate of glycolysis correlated with
tumour growth. Today, Warburg�s findings underpin the
principles of tumour imaging with fluorodeoxyglucose
positron emission tomography (FDG-PET).

The Warburg Effect and oxygen delivery

The later identification of hypoxia inducible factor
1 (HIF-1) by Gregg Semenza in 1991 has provided
further understanding of the mechanism by which
cancer cells exhibit the increased aerobic glycolysis
described by Warburg[1]. HIF-1 is a transcription factor
which up-regulates a large number of cellular processes
that confer a survival advantage to cancer cells. In
particularly, HIF-1 increases expression of Glut-1 glucose
transporters and hexokinase which are the major
determinates of glucose uptake and metabolism.
Another important effect of increased HIF-1 activity is
increased production of vascular growth factors that
stimulate new vessel formation and increased blood
flow. Folkman has demonstrated that such new vessel
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formation (angiogenesis) also promotes tumour growth
and survival[3].
HIF-1 is frequently expressed constitutively by tumours

as a consequence of oncogene mutations including the
p53 and Von Hippel Lindau (VHL) genes. Mutations in
p53 are commonly found in a variety of tumour types;
VHL mutations are particularly associated with renal
cancer. The linkage between oncogene mutation,
increased expression of HIF and accumulation of FDG
has been demonstrated recently by microPET studies
showing a two-fold increase in glucose metabolism in
VHL knockdown tumour xenografts[4]. Clinical PET
studies show that approximately 50�70% of renal cancers
demonstrate FDG uptake, consistent with the expected
frequency of VHL oncogene mutations in this tumour
type[4].
On the basis of constitutive expression of HIF-1 by

tumours, it would be reasonable to expect tumour
blood flow and metabolism to increase in parallel.
Indeed, high levels of angiogenesis and elevated glucose
metabolism are both associated with increased metastatic
potential and poor patient survival for a range of
cancers[5�12]. However, tumour HIF-1 activity can be
increased further by tissue hypoxia, which occurs when
a tumour outgrows its blood supply. This additional
HIF-1 activity ensures adaptation of the tumour to the
hypoxic environment by producing an even greater
increase in glucose metabolism beyond that secondary
to oncogene effects alone, along with other metabolic
changes which further increase tumour aggression and
resistance to treatment[13].
Therefore, the balance between tumour vascularity and

metabolic status offers important information concerning
the tumour microenvironment. High glucose metabolism
with increased vascularity represents a different biologi-
cal status within the tumour than high metabolism
with poor vascularity, the latter indicating adaptation to
hypoxia. Low glucose metabolism with poor vascularity
suggests a failure of the adaptive response to hypoxia
and/or reduced oncogene effects.

Techniques for imaging tumour blood
flow and metabolism

FDG-PET has become an established technique for ima-
ging tumour metabolism in clinical practice and research.
Although tumour perfusion imaging is used less fre-
quently in clinical practice, a range of techniques is avail-
able including positron emission tomography (PET) with
15O-labelled water, dynamic contrast enhanced magnetic
resonance imaging (MRI), contrast-enhanced perfusion
computed tomography (CT) and ultrasound. However,
there is a growing interest in the use of intravenous
contrast media during PET-CT[14]. Extending these
applications for contrast media to include perfusion CT
would enable anatomical information about tumours to
be co-registered with not only metabolic information but

also perfusion data in a single examination, without the
need for an on-site cyclotron (Fig. 1). The use of CT to
assess perfusion as opposed to administration of a
second PET tracer such as 15O-labelled water circum-
vents the need for an on-site cyclotron. Furthermore,
because CT depicts perfusion data with higher
spatial resolution, some of the limitations of PET
perfusion studies can be avoided, including the underes-
timation of perfusion values in small tumours due to the
partial volume effect and the spillover of counts
from adjacent structures with high blood flow
(e.g. heart, aorta, liver)[15]. CT measurements of
perfusion in tumours have also been shown to correlate

Figure 1 Conventional CT (A) and images of tumour
blood flow (B) and glucose metabolism (C) acquired
using perfusion CT and FDG-PET, respectively, from a
patient with non-small cell lung cancer.
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with polarographic probe measurements of tumour
oxygenation[16].

Imaging studies of tumour blood
flow and metabolism

Imaging studies using a range of techniques have shown
the relationship between tumour blood flow and glucose
metabolism to be highly variable[17�28] (Table 1). Factors
influencing this relationship include tumour type, grade
and size. Moderate correlations between tumour vascu-
larity and metabolism have been observed in cerebral
glioma and breast cancer[17�19]. In non-small cell lung
cancer (NSCLC) and cancers of the head and neck,
the relationship between tumour circulation and metabo-
lism appears to be dependent on tumour size. Blood flow
and metabolism correlate in NSCLCs smaller than
2.5�3.0 cm in diameter, whereas larger tumours exhibit
glucose metabolism in excess of blood flow[20�23]. In
head and neck cancer, Hirasawa et al.[28] observed no
correlation between perfusion and metabolism for
tumours smaller than 8 cm2, whereas an inverse correla-
tion was found for larger tumours. Uncoupling of flow
and metabolism has also been observed in pulmonary
metastases[24]. Studies of liver tumours have shown a
negative correlation between blood flow and metabolism,
with the ratio of metabolism to blood flow increasing as
tumours grow larger[25�27].
An association between mismatched tumour blood

flow and metabolism and adverse tumour biology
has been illustrated by many of these studies.
Aronen et al.[17] found that uncoupling of vascularity
and metabolism was a feature of high-grade gliomas;

Mankoff et al.[18] showed that breast cancers with a
high ratio of glucose metabolism to perfusion were less
likely to respond favourably to treatment. Miles et al.[23]

found a high metabolic flow difference to be more likely
in advanced NSCLC. This adverse impact of high glu-
cose metabolism with low vascularity is also illustrated by
separate imaging studies of head and neck cancer that
show low perfusion and high FDG uptake to be indepen-
dent predictors for poor local control following
treatment[29,30].
Imaging can also demonstrate regional areas of uncou-

pling of vascularity and metabolism within tumours
(Fig. 2). In their study of locally advanced breast
cancer, Mankoff et al.[18] illustrated a case in which
high metabolism but low blood flow were observed at
the centre of the tumour. Following chemotherapy,
there was a substantial reduction in tumour size but the
patient was left with a core of residual viable tumour,
suggesting that regional areas of mismatch may have
prognostic implications. Imaging may also depict areas
of flow�metabolic mismatch adjacent to a region of frank
necrosis (Fig. 2). This finding is in accordance with the
results of autoradiographic studies of tumour allografts in
which the greatest FDG uptake was found adjacent
to areas of necrosis, correlating with local increases in
the expression of Glut-1 and hexokinase[31]. Galie
et al.[32] demonstrated that the epithelial and mesenchy-
mal compartments of syngeneic tumour models exhibit
reciprocal patterns of vascularity and metabolism. High
vascularity relative to metabolism was found in the stro-
mal capsule and intra-tumoural connectival septa,
whereas tumour parenchyma exhibited lower vascularity
but greater metabolism.

Table 1 Summary of imaging studies comparing tumour vascularity and metabolism

Study Tumour type Techniques Findings

Aronen et al.[17] Glioma DC-MRI, FDG-PET Maximum CBV correlates with maximum FDG (r¼ 0.573, p¼ 0.023)
Mankoff et al.[18] Breast H2

15O-PET, FDG-PET Perfusion and metabolism weekly correlated. High metabolism-flow ratio
predicts poor treatment response

Semple et al.[19] Breast DC-MRI, FDG-PET Moderate correlation between vascularity and metabolism
Hunter et al.[20] NSCLC DC-MRI, FDG-PET Correlation between vascular physiology and glucose metabolism in Stage

IIIA (r¼ 0.76, p50.01)
Tateishi et al.[21] NSCLC Perf CT, FDG-PET Vascularity and metabolism correlate in surgically resectable tumours
Hoekstra et al.[22] NSCLC H2

15O-PET, FDG-PET No correlation between perfusion and metabolism in stage IIIA-N2
Miles et al.[23] NSCLC Perf CT, FDG-PET Correlation between vascularity and metabolism in small tumours only

(r¼ 0.85, p¼ 0.03)
Veronesi et al.[24] Lung metastases Perf CT, FDG-PET FDG uptake and angiogenesis independent
Fukuda et al.[25] HCC, CCC and

colorectal liver
metastases

H2
15O-PET, FDG-PET Negative correlation (r¼�0.713, p¼ 0.006)

Stewart et al.[26] Liver tumours
(animal model)

Perf CT, FDG-PET Glucose metabolism increases and blood flow decreases as tumours grow

Williams et al.[27] Colorectal liver
metastases

Perf CT, FDG-PET Ratio of metabolism to blood flow increases with tumour size

Hirasawa et al.[28] Head and neck
cancer

Perf CT, FDG-PET Negative correlation between perfusion and metabolism for tumours
48 cm2

DC-MRI, dynamic contrast-enhanced magnetic resonance imaging; CBV, cerebral blood volume; H2
15O, oxygen-15 labelled water; HCC,

hepatocellular carcinoma; CCC, cholangiocarcinoma; Perf CT, perfusion CT.
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Changes in tumour blood flow and
metabolism following therapy

The application of FDG-PET and tumour perfusion ima-
ging as markers of tumour response is increasing in
research and clinical settings as the limitations of current
structural imaging approaches are realised. Generally,
these functional imaging techniques have been used in
isolation. However, there have been a few studies in
which both perfusion and FDG uptake have been mea-
sured before and after treatment. The findings show that
perfusion and glucose metabolism may not change in
parallel in response to therapy[33�36] (Fig. 3). Tumour
type, drug type and dose, and time since therapy are all
factors that may affect the relative magnitude of change
in each parameter.
A study of rectal cancer by Willett et al.[33] using per-

fusion CT and FDG-PET reported significant falls in
perfusion but no change in glucose metabolism when
the vascular endothelial growth factor (VEGF) antibody,
bevacizumab, was given alone. A reduction in glucose
metabolism was only seen when bevacizumab was given
in combination with radiotherapy. A study of locally
advanced breast cancer by Mankoff et al.[34] found that
following neoadjuvant chemotherapy, glucose metabo-
lism tended to fall irrespective of the final pathological
response, whereas perfusion increased in tumours failing
to respond to treatment but decreased in tumours that
subsequently proceeded to partial or complete response.
On the other hand, a study of patients with androgen
independent prostate cancer treated using thalidomide
found that prostate-specific antigen (PSA) response cor-
related positively with change in glucose metabolism but
negatively with change in perfusion[35]. The effect of drug
dose is seen in a study by Herbst et al.[36] in which the
anti-vascular agent endostatin, when given in high doses,
resulted in decreased tumour perfusion but increased
glucose metabolism. These studies suggest that uncou-
pling of flow and metabolism appears to be particularly
likely following anti-angiogenic therapy, probably reflect-
ing drug-induced hypoxia and secondary stimulation of
glucose metabolism.
Based on the results of these studies, it is possible to

propose a sub-classification of therapeutic responses into
those that are (a) balanced (i.e. a significant reduction in
both glucose metabolism and tumour vascularity), (b)
predominantly vascular, and (c) predominantly meta-
bolic (Table 2)[37]. A balanced response seems most
likely to be associated with a good outcome. It is likely
that the predominantly vascular and predominantly met-
abolic responses will carry different clinical significance.
The possibility of modulating tumour responses by adapt-
ing therapy for individual patients on the basis of their
imaging findings can be envisaged. For example, it may
be appropriate to add an anti-vascular drug to a treatment
regime producing a predominantly metabolic response.
On the other hand, addition of a hypoxia agent may be

Figure 2 Conventional contrast-enhanced CT (A), perfu-
sion CT (B) and FDG-PET (C) images of a large hepatic
metastasis from colorectal cancer demonstrating regional
areas of mismatch between vascularity and metabolism.
The orange polygon outlines an area of tumour necrosis
with markedly reduced vascularity and metabolism.
Regions of reduced vascularity but increased FDG
uptake can be seen adjacent to the necrotic zone and in
the left lobe of the liver (arrow).
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appropriate if the response is predominantly vascular.
The ultimate goal would be to tailor an individual
patient�s therapy to the vascular�metabolic response
exhibited by their tumour.

Summary

Knowledge of tumour biochemistry and molecular biol-
ogy dating back to Warburg is fundamental to under-
standing the application of the techniques currently
available for imaging tumour blood flow and metabolism.
Tumours exhibit anaerobic metabolism of glucose even in
the presence of adequate oxygen. However, glucose
metabolism can be further stimulated in the presence
of hypoxia associated with poor blood flow.
Uncoupling of blood flow and metabolism implying
hypoxic stimulation of glucose metabolism is frequently
encountered in cancer, particularly in large aggressive
tumours and following therapy. Imaging tumour blood
flow and metabolism has potential applications for non-
invasive characterisation of tumour aggression and may

allow novel sub-classification of response with opportu-
nities for personalised cancer care.
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