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A B S T R A C T   

Chronic obstructive pulmonary disease (COPD) is characterized by dyspnea caused by airflow 
limitation. Further development may lead to decreased lung function and other lung diseases. 
Pyroptosis is a type of programmed cell death that involves multiple pathways. For example, the 
pathway induced by the NLR family pyrin domain containing 3 (NLRP3) inflammasome is closely 
associated with COPD exacerbation. Therefore, in this study, various machine learning algorithms 
were applied to screen for diagnostically relevant pyroptosis-related genes from the GEO dataset, 
and the results were verified using external datasets. The results showed that deep neural net-
works and logistic regression algorithms had the highest AUC of 0.91 and 0.74 in the internal and 
external test sets, respectively. Here, we explored the immune landscape of COPD using diagnosis- 
related genes. We found that the infiltrating abundance of dendritic cells significantly differed 
between the COPD and control groups. Finally, the communication patterns of each cell type were 
explored based on scRNA-seq data. The critical role of significant pathways involved in 
communication between DCS and other cell populations in the occurrence and progression of 
COPD was identified.   

1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by reversible airway obstruction and 
decreased lung function [1,2]. The pathogenesis of COPD is complex and may involve genetic factors, smoking, and airway inflam-
mation [3,4]. Further development will lead to a higher risk of lung cancer than in normal individuals. Early diagnosis and treatment of 
COPD can effectively improve patient prognosis [5]. Therefore, there is an urgent need to develop biomarkers related to COPD 
diagnosis and treatment. 

Pyroptosis is an important form of programmed cell death. Morphologically, pyroptosis is characterized by cell swelling, membrane 
rupture, and exudation of cell contents, leading to cell death [6,7]. Therefore, pyroptosis clears pathogens. Many studies have 
confirmed the critical role of pyroptosis in tumors [8,9]. The role of pyroptosis-related nucleotide-binding domain-like receptor 
protein 3 (NLRP3) in COPD has been previously confirmed. Wang et al. showed that TREM-1 promotes lung injury and inflammation in 
COPD mice by activating NLRP3 inflammasome-mediated pyroptosis [10]. Zhang et al. found that phototherapy can improve lung 

* Corresponding author. Department of Health Management Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 
Hangzhou, Zhejiang, China. 

E-mail address: 1195037@zju.edu.cn (T. Sun).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e27808 
Received 30 September 2023; Received in revised form 23 February 2024; Accepted 6 March 2024   

mailto:1195037@zju.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e27808
https://doi.org/10.1016/j.heliyon.2024.e27808
https://doi.org/10.1016/j.heliyon.2024.e27808
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e27808

2

function by inhibiting signaling pathways such as NLRP3 to reduce inflammation and pyroptosis in COPD rats [11]. The NLRP3 
inflammasome is involved in cigarette smoke extract-induced human bronchial epithelial cell damage and pyroptosis, which provides 
new insights into COPD [12]. 

To explore the critical role of pyroptosis-related genes in the occurrence and development of COPD, we mined COPD diagnosis- 
related genes (DRGs) based on a series of bioinformatics methods. Specifically, we gained access to the GEO database (https:// 
www.ncbi.nlm.nih.gov/geo/). Differentially expressed genes (DEGs) were identified by differential analysis and intercrossed with 
pyroptosis-related genes (PRGs) reported in the literature to obtain pyroptosis-related differentially expressed genes (PDEGs). Next, we 
determined the DRGs associated with COPD using different machine-learning algorithms. Subsequently, a diagnostic model for COPD 
was constructed and validated using an external dataset. We explored the immune landscape of DRGs and their susceptibility to 
various drugs. As the abundance of infiltrating dendritic cells (DC) differed significantly between the disease and control groups, we 
identified significant communication pathways between the DC population and other cell populations based on scRNA-seq data. 

2. Method 

2.1. Data collection and download 

In this study, transcriptome data of COPD and control samples were downloaded from the GEO database. We used GSE76925 (40 
control and 111 COPD samples) as the training set and GSE47460 (91 control and 145 COPD samples) as the test set. scRNA-seq data 
for COPD were obtained from the GSE227691 dataset. These included four control, four mild COPD, and four moderate COPD samples. 

2.2. Screening of DEGs 

For consolidated data, the limma algorithm [13] was used to analyze differentially expressed data, |logFC|>0, and p < 0.05. 

2.3. Analysis of enrichment 

KEGG enrichment analysis and Metascape analysis were performed for DEGs, respectively. Specifically, the KEGG enrichment 
analysis of the R package “clusterProfiler” [14] obtained significant pathways involved in multiple DEGs (p < 0.05). In addition, we 
used the online Metascape website (https://metascape.org/gp/index.html) to analyze DEGs further. 

2.4. Screening of diagnosis-related genes by machine learning algorithm 

The scikit-learn package [15] was used to implement the machine-learning models. First, the random forest (RF) algorithm was 
used to obtain the weights of the intersecting genes. The intersecting genes were ranked by weight. For the ranked genes, logistic 
regression (LR), support vector machine (SVM), RF, and deep neural network (DNN) were used to select the top-ranked genes indi-
vidually to construct a model, and the AUC corresponding to the number of different features was recorded. 

For the parameter Settings that RF assigns weights to genes: ‘n_estimators’ set values ranging from 500 to 1000 with a step size of 
100. The ‘criterion’ was chosen between ‘gini’ and ‘entropy.’ For the LR algorithm: ‘C’ values ranged from 0.1 to 2 with a step size of 
0.5. For the SVM algorithm, ‘kernel’ was selected in the ‘linear,’ ‘poly,’ ‘rbf’ and ‘sigmoid.’ The value of ‘degree’ ranged from 1 to 2 
with a step size of 1. For the DNN algorithm: ‘solver’ was selected in ‘lbfgs,’ ‘Adam,’ and ‘SGD.’ 

2.5. Construction of the nomogram model 

For DRGs, we used a nomogram to predict COPD. Specifically, the R package “rms” was used to construct a nomogram for DRGs, 
and calibration curves were used to evaluate the performance of the nomogram model. In addition, the clinical usefulness of the 
nomogram was assessed using curve analysis (DCA). 

2.6. The immune landscape of DRGs 

To determine the relationship between DRGs and immune cells, we applied the CIBERSORT algorithm [16] to evaluate the 
abundance of 22 immune cell infiltrates in the COPD samples. Additionally, we explored the correlation between DRGs and immune 
cells using the Spearman correlation analysis. 

2.7. Analysis of DRGs and drug interactions 

The drug-gene interaction database DGIdb (https://www.dgidb.org) was used to identify potential therapeutic drugs for COPD. 
Specifically, we uploaded DRGs to the DGIdb database and identified potential drugs and molecular compounds that may be related to 
DRGs. 
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2.8. Processing and analysis of scRNA-seq data 

In this study, raw scRNA-seq data quality control was performed based on the R package “Seurat” [17]. Specifically, in this study, in 
addition to the mitochondrial content greater than 20%, red blood cell-related genes (HBA1, HBA2, HBB, HBD, HBE1, HBG1, HBG2, 
HBM, HBQ1, and HBZ) greater than 5%, the nFeature_RNA selection is less than or greater than 200 to 7500, and nFeature_RNA greater 
than 1 to 100,000 cells. Finally, cells that met the quality control conditions were retained. After normalization, principal component 
analysis (PCA) was performed on the top 2000 highly variable genes. Clusters were identified at a resolution of 0.8 based on the first 20 
principal components. Cluster-specific tags were identified using the R package " SingleR " [18]. The FindAllMarkers function based on 
the “Seurat” package identified DEGs for different types of cell populations. Metascape and GO enrichment analyses were performed 
on the DEGs in the dendritic cell population. Metascape analysis results were obtained from the Metascape database (https:// 
metascape.org/gp/index.html#/main/step1). Communication between various cell populations was inferred using the R package 
‘CellChat’ [19]. The software package calculates the communication network (number and strength) between different cell pop-
ulations by counting the links and collecting the communication probabilities. 

3. Results 

3.1. Acquisition and enrichment analysis of DEGs related to pyroptosis 

An overall flowchart of this study is shown in Fig. 1. First, we performed differential expression analysis of transcriptome data from 
the GSE76925 dataset. Fig. 2A and B presents the heat and volcano maps obtained during the differential expression analysis. The 
heatmap shows that the expression of DEGs in the diseased and control groups was significantly different. Finally, 8219 DEGs were 
identified. We obtained 110 PRGs from the literature and then intersected them with the DEGs. Finally, 35 intersecting genes were 
identified (Fig. 2C). As shown in Fig. 2D, the expression of 35 genes differed significantly between the two groups. Finally, we present 
the results of KEGG enrichment analysis and Metascape enrichment analysis for the intersecting genes in Fig. 3A and B, respectively. In 
Section IV, we discuss the vital role of these pathways in the development and progression of COPD in detail. 

3.2. Construction and validation of diagnostic models 

To screen genes related to COPD diagnosis, this study first assigned weights to intersecting genes based on RF, with higher weights 
representing higher diagnostic importance of genes. The mean weight of 0.0344 g was calculated for these genes—fourteen genes with 
weights greater than the mean were retained. The corresponding weighted bar plots for these genes are shown in Fig. 4A. The ROC 
curves of the diagnostic models constructed using all algorithms in the internal and external datasets are shown in Tables 1 and 2, 

Fig. 1. Overall flow chart of the paper.  
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respectively. The diagnostic model constructed using the LR algorithm had a higher AUC than the other algorithms for the external 
dataset. Fig. 4B and C presents the ROC curves of the diagnostic model constructed based on these genes using the LR algorithm in the 
internal and external datasets. Fig. 5A and B and 5C-D respectively predicted the diagnostic performance of 14 genes in internal and 
external data sets. 

3.3. Nomogram model construction and DCA analysis 

In this study, 11 DRGs were used to construct a nomogram model and perform DCA. Fig. 6A and B shows the nomogram model and 
its calibration curve constructed in this study using 14DRGs. Analysis of the clinical impact curves showed that the nomogram model 
had relatively high diagnostic power (Fig. 6C). Finally, we verified the expression of DRGs in the two groups of the validation set and 
identified genes with significant differences (Fig. 6D–F). As can be seen from the figure, the expression levels of five genes (CASP5、 
CTSG, and MEFV) were significantly different between the two groups. 

3.4. The immune landscape of DRGs 

To explore the immune landscape of COPD, the CIBERSORT algorithm was used to calculate the infiltration abundance of 22 
immune cells in all samples. Fig. 7A shows the proportion of immune cell infiltration richness of 22 immune cells in the COPD and 
control groups. After removing immune cells with zero abundance in 50% of the samples, Fig. 7B presents an abundance heatmap of 
the remaining 15 immune cells between the two groups. Fig. 7C shows a heat map of the correlation between immune cells, in which 
most cells showed a negative correlation. The results shown in Fig. 7D demonstrate a difference in the infiltration of 22 immune cells 
between the two groups. In both groups, there was a higher abundance of immune infiltration by T cells, resting CD4 memory cells, 
monocytes, M2 macrophages, and resting mast cells. The infiltration abundances of naïve B cells, CD8 + T cells, follicular helper T 
cells, gamma delta, M0 macrophages, resting dendritic cells, and activated dendritic cells significantly differed between the two groups 
(p < 0.05). 

Fig. 2. Results of differential expression analysis and the intersection of PRGs and DEGs. A and B are volcano and heatmaps obtained from dif-
ferential expression analysis. C is a Venn diagram where the intersection of PRGs and DEG is taken. D is the boxplot of the expression of intersection 
genes in the COPD and control groups. 
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Finally, we analyzed the correlation between DRGs and immune cells (Fig. 8A-N). All DRGs significantly correlated with at least 
two types of immune cell infiltration. In addition, we analyzed the DRGs and drug interaction network (Fig. S1 in the Supplementary 
Material), among which TUBB6, BCL2, and EGFR interacted with various compounds and are promising targets for related drugs. 

3.5. Results of scRNA-seq data analysis 

Here, we present a detailed analysis of the relevant subtypes of dendritic cell populations based on scRNA-seq data from COPD. 
Quality control, normalization, dimensionality reduction, clustering, and cell annotation were performed sequentially on raw scRNA- 
seq data. Final clustering yielded 24 cell populations (Fig. 9A). These cell populations were annotated as eight cell types (Fig. 9B and 
C), including NK cells, epithelial cells, T cells, monocytes, dendritic ceDC, B cells, smooth muscle cells, and macrophages. In this study, 
DEGs were identified in different cell populations. Fig. 9D presents a heat map of the expression of the top-ranked genes in different cell 
clusters for different cell populations. Fig. 7B shows that the abundance of infiltrating DCs differed significantly between the control 
and diseased groups. Therefore, GO and Metascape enrichment analyses were performed for the DEGs in the DC population (Fig. 9E 
and F). Most of the pathways involving the DEGs were confirmed to be related to the occurrence and development of COPD. The 
biological significance of these pathways is explored in detail in the Discussion section. 

The results of the communication analysis of different cell types showed that macrophages, monocytes, and DC had numerous and 
strong interactions with other cell populations (Fig. 10A and B). Heat maps of the contributions of all signals to the efferent or afferent 
responses in different cell populations were also generated (Fig. 10C and D). The figure shows that the GALECTIN and GAS signaling 
pathways contributed more to afferent and efferent DCs. Therefore, we analyzed the expression of genes involved in both signaling 

Fig. 3. Enrichment analysis of intersection genes. A and B are the results of KEGG enrichment analysis and metascape enrichment analysis of 
intersection genes, respectively. 
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pathways in different cell types (Fig. 10E and F). PTPRC and CD44 are highly expressed in most cell populations via the GALECTIN 
pathway. LGAL59 and HAVCR2 were expressed at low levels in most cell populations. GAS6 and AXL are highly expressed in a few cell 
populations in the GAS pathway. MERTK and TYRO3 were expressed at low levels in all cell populations. We also showed network 
diagrams of the interactions between different cell populations under GALECTIN and GAS signaling (Fig. 10G and H). 

Fig. 4. The construction of diagnostic models. A is a bar graph of 14 genes with weights greater than the mean obtained using the RF algorithm and 
their corresponding weights. B and C are the ROC curves of the diagnostic model based on the LR algorithm using 14 genes in the internal and 
external datasets, respectively. 

Table 1 
The ROC curve information of the diagnostic models constructed by different machine learning algorithms in the 
internal dataset.  

Algorithm AUC Sensitivity Specificity 

LR 0.82 0.87 0.68 
RF 0.80 0.76 0.65 
SVM 0.80 1 0.847 
DNN 0.91 0.94 0.675  

Table 2 
ROC curve information of diagnostic models constructed by different machine learning algorithms in external 
datasets.  

Algorithm AUC Sensitivity Specificity 

LR 0.74 0.73 0.74 
RF 0.48 0.74 0.22 
SVM 0.53 0.72 0.35 
DNN 0.51 0.56 0.47  
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Fig. 5. Validation of diagnostic performance of 14 genes in internal and external datasets. A is the ROC curve of the top seven genes in the internal 
dataset. B is the ROC curve of the latter seven genes in the internal dataset. C is the ROC curve of the top seven genes in the external dataset. D is the 
ROC curve of the latter seven genes in the external dataset. 
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Fig. 6. Correlation analysis of diagnostic genes. A is the nomogram model for the diagnostic gene. B is the calibration curve of nomogram model. C. 
The clinical impact curve showed that the nomogram model had a high diagnostic ability. D-F is a boxplot of three genes (CASP5, CTSG, and MEFV) 
with significant differences in expression between the disease and control groups. 

Fig. 7. The immune landscape of COPD. A is the proportion of immune cells obtained from CIBERSORT analysis of COPD and control groups. B is a 
heatmap of the abundance of immune infiltrates in the COPD and control groups. C is the immune cell correlation heatmap. D is the boxplot of the 
difference in the abundance of immune cell infiltration between COPD and control groups. 
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4. Discussion 

The primary objective of this study was to elucidate the role of apoptosis-related genes in diagnosing COPD using various machine- 
learning methods. Notably, deep neural networks and logistic regression methods demonstrated outstanding classification accuracy in 
internal and external test sets, underscoring their potential clinical relevance. Our initial step involved rigorous preprocessing, 
encompassing batch effect removal and dataset integration to enhance the robustness of our analysis. Identifying apoptosis-related 
Differentially Expressed Genes (PDEGs) further elucidates the molecular landscape associated with COPD. Enrichment analyses 
using KEGG and Metascape highlighted the pathways closely linked to the development of COPD. Lu et al. showed that necroptotic 
signaling promotes inflammation in COPD [20]. Previous studies have shown that the innate immune response of the lungs to lipo-
polysaccharides (LPS) is closely associated with cellular inflammation. Bozinovski et al. showed that LPS inhibits the NF-kappa B 
signaling pathway [21]. In addition, Wang et al. found that aerobic exercise alleviates apoptosis in mice with COPD [22]. A retro-
spective study by Racanelli et al. showed that autophagy-related pathways play essential roles in the development of COPD [23]. Miller 
et al. showed that clonal hematopoiesis is significantly correlated with COPD [24]. Lodge et al. found that hypoxia increases the 
possibility of neutrophil-mediated endothelial damage in COPD [25]. 

To explore the diagnostic significance of PDEGs in COPD, we utilized the RF algorithm to assess the importance of each PDEG in the 
diagnosis and ranked them based on their importance. Specifically, 14 genes (ANO6, CAPN1, CASP5, CTSG, DDX3X, GJA1, HMGB1, 
IL18, MALT1, MEFV, NR1H2, P2RX7, SQSTM1, and STK4) with weights greater than the mean were retained to construct the diag-
nostic model. Receiver operating characteristic (ROC) curves were plotted for each gene. Several genes are associated with the 
occurrence and development of COPD. The pathogenesis of COPD is complex and mainly related to oxidative stress, overexpression, or 
activation of inflammatory factors and signaling pathways. In patients with COPD, macrophages and neutrophils enter the airway and 

Fig. 8. Lollipop plot obtained from correlation analysis of 14 DRGs and immune cells. A-N are lollipop plots of the associations of ANO6, CAPN1, 
CASP5, CTSG, DDX3X, GJA1, HMGB1, IL18, MALT1, MEFV, NR1H2, P2RX7, SQSTM1 and STK4 with immune cells, respectively. 
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upregulate chemokines, releasing large amounts of inflammatory factors that contribute to disease development [26]. CTSG (cathepsin 
G) may mediate tissue damage at sites of neutrophil-dominated inflammation [27]. Lung tissue destruction by proteinase 3 and 
cathepsin G-mediated elastin degradation is also elevated in COPD [28]. HMGB1 can promote extracellular DNA-induced activation of 
AIM2 inflammatory vesicles via AGER/RAGE [29]. HMGB1 also appears to regulate the adhesion and migration of neutrophils, similar 
to AGER/RAGE and ITGAM. Studies have confirmed that HMGB1 is involved in airway inflammatory processes and that its aberrant 
expression is associated with inflammation in COPD [30]. NLRP3 is associated with neutrophil migration and promotes interleukin-18 
(IL-18) production. Guo et al. showed that NLRP3 is a potential therapeutic target for COPD [31]. MEFV is an autophagy receptor that 
degrades several inflammatory vesicle components (CASP1, NLRP1, and NLRP3) and prevents excessive IL1B and IL18-mediated 
inflammation [32–34]. The hepatic X receptors LXRA and LXRB (NR1H2) form a subfamily of the nuclear receptor superfamily and 
are key regulators of macrophage function, controlling the transcriptional programs involved in lipid homeostasis and inflammation. 
Dai et al. demonstrated that genetic polymorphisms in P2RX7 are significantly associated with altered COPD risk [35]. The literature 
above confirms the biological relevance of the proposed model. These findings contribute to a better understanding of the complex 
molecular mechanisms underlying COPD pathogenesis. 

Exploring the differences in the abundance of immune cell infiltration between COPD and control groups is helpful for evaluating 
the therapeutic effects of COPD and related drug development. As shown in Fig. 7D, the infiltrating abundance of various immune cells 
significantly differed between the COPD and control groups. Polverino et al. reviewed the adaptive immune response in COPD and 
summarized the protective activity of B cells during acute exacerbations of COPD by promoting the adaptive immune response [36]. 
Qin et al. systematically reviewed the function and role of CD4 + helper T lymphocytes in chronic obstructive pulmonary disease, 
providing a new approach to guide the treatment of COPD [37]. CD8 (+) T cells are overrepresented in the lungs of COPD patients and 
are inversely correlated with lung function. Kemeny et al. showed that CD8 (+) T cells were overrepresented in the lungs of COPD 
patients and negatively associated with lung function [38]. The results of a miRNA-mRNA network analysis for COPD showed that the 
characteristics of the miRNA-mRNA network play an essential role in macrophage polarization [39]. Naessens et al. showed that 
conventional lung dendritic cells could coordinate lymphomagenesis in patients with COPD [40]. We analyzed the network of 
diagnosis-related genes associated with multiple compounds (Fig. S1). For example, epigallocatechin gallate has antioxidant and 
anti-inflammatory properties and can be used as a therapeutic agent for COPD [41]. Vollenweider et al. found that antibiotics (an-
tibiotics) exacerbated COPD [42]. Nebulized fentanyl can be used to treat refractory dyspnea in patients with COPD with major 
complications and comorbidities [43]. This study further substantiated the significant differences in the cellular infiltration abundance 
between the two groups, emphasizing the biological significance of these cells. 

To explore the expression of the identified diagnostic genes in different cell populations from a single-cell perspective, we analyzed 
scRNA-seq data from COPD patients. Specifically, a comprehensive analysis identified eight distinct cell populations, with particular 
emphasis on dendritic cells (DC), showing significant differences in infiltration abundance between the two groups. Further explo-
ration of the pathways associated with the DEGs in DC provided additional evidence for their relevance to the progression of COPD. 
Marques et al. found that increased circulating platelets and mononuclear leukocytes expressing CXCR6 in patients with COPD may be 
markers of systemic inflammation [44]. Delayed rectifier K channels are likely overexpressed or overactivated in T lymphocytes 
isolated from patients with COPD, which would contribute to the development or progression of COPD [45]. Pulmonary macrophages 
are critical immune effector cells involved in COPD [46]. The activity of the ubiquitin-proteasome system has been linked to cellular 
events occurring in respiration and peripheral muscles of patients with COPD [47]. 

Finally, cell communication analysis revealed a close association of the galactolectin and GAS signaling pathways with DC, 
highlighting their potential as key players in the pathogenesis of COPD. We further explored the gene expression in both pathways in 
different cell populations. Some genes (LGALS9, PTPRC, HAVCR2, CD44A, GAS6, and AXL) were highly expressed in the DC. 
Maghsoudloo identified LGALS9 as a biomarker of COPD using a co-expression network and drug-target interaction analysis [48]. In 
addition, GAS6 and AXL are associated with the development of COPD [49,50]. 

We used a variety of bioinformatic analyses and machine learning methods to reveal the intricate interplay between genes asso-
ciated with pyrodeath in COPD diagnosis. The identified diagnostic models and key pathways provide valuable insights for future 
research and potential clinical applications for COPD management. 

5. Conclusion 

Our study delved into the intricate landscape of apoptosis-related genes in COPD, revealing potential diagnostic biomarkers and 
elucidating their underlying mechanisms. Using machine learning algorithms, we identified 14 diagnostic genes with significant 
predictive accuracy through logistic regression. These genes, including ANO6, CAPN1, and CASP5, have been linked to COPD path-
ogenesis, affirming the biological relevance of our diagnostic model. Furthermore, our exploration of immune cell infiltration revealed 
substantial differences in abundance between the COPD and control groups, highlighting the complex interplay between various 
immune cells in the disease. Notably, dendritic cells have emerged as key participants, with single-cell RNA sequencing data indicating 
their unique roles in communication patterns and potential involvement in COPD progression. 

Fig. 9. Cell clustering and annotation results. A is the visualization of cell clustering results based on tsne. B is a heatmap based on the singleR 
package performing a score on the possible cell types to which the cell population belongs. C is the visualization of cell annotation results based on 
tsne. D is the expression heatmap of DEGs between different types of cell populations. E-F is the bubble plot and bar plot of GO and Metascape 
enrichment analyses performed on DEGs of the DC cell population, respectively. 
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Future research should focus on subtype analysis of COPD, dissecting the subtle differences in diagnosis, immunity, and drug 
sensitivity among different subgroups. The communication patterns of dendritic cells revealed multifaceted pathways associated with 
COPD, offering intriguing avenues for further exploration and targeted therapies. Our study contributes to a nuanced understanding of 
COPD and lays the foundation for future research and potential clinical applications. 
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