
REVIEW ARTICLE OPEN

Exploiting the Ref-1-APE1 node in cancer signaling and other
diseases: from bench to clinic
Fenil Shah1, Derek Logsdon1,2, Richard A. Messmann3, Jill C. Fehrenbacher2, Melissa L. Fishel1,2 and Mark R. Kelley1,2

Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox
regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1
enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth,
migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is
activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased
aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox
signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when
paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox
signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy.
In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as
potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the
first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases
bringing bench discoveries to the clinic.
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OVERVIEW OF REF-1/APE1 AND ITS ROLE AS A CELLULAR
SIGNALING NODE
Reduction-oxidation (redox) factor 1- apurinic/apyrimidinic endo-
nuclease (Ref-1/APE1) was originally identified as an endonuclease
that plays a key role in the base excision repair (BER) pathway’s
repair of oxidative and alkylating damage.1–3 Later Ref-1/APE1 was
recognized as a redox signaling protein that modulates the
activity of certain transcription factors.4, 5 Since then, additional
functions of Ref-1/APE1 have been uncovered.6–10 Ref-1/APE1’s
duality and pivotal positions in repair and redox activities make it
a unique target for therapeutic modulation.
Ref-1/APE1 endonuclease activity is vital to the DNA damage

response in all cells, making Ref-1/APE1 a crucial factor in cellular
function and survival.2, 3, 11 The repair function has been
conserved from Escherichia coli to humans; however, the redox
signaling function is observed only in mammals.12

Ref-1/APE1 redox signaling affects numerous transcription factors
including STAT3, HIF-1α, nuclear factor kappa B (NF-κB), AP-1, p53,
and a few others.13–19 Ref-1/APE1 redox signaling is a highly
regulated process that reduces oxidized cysteine residues in specific
transcription factors as part of their transactivation4, 5, 13–24 (Fig. 1,
Table 1). Ref-1/APE1 expression is increased in many tumor types,
and that change is associated with increased growth, migration,
and drug resistance in tumor cells as well as decreased patient
survival.2, 3, 14, 21, 25, 26

Because of the pathways it affects, Ref-1/APE1 is seen as a critical
node in tumor signaling (Fig. 2) and thus is a prime target for

anticancer therapy.2, 3, 19, 21 However, teasing apart Ref-1/APE1’s
activities to create a specific inhibitor that targets only its
endonuclease or redox function is challenging. This has been
accomplished with the compound APX3330 (formerly called E3330),
which is a specific Ref-1/APE1 redox inhibitor. APX3330 has been
extensively characterized as a direct, highly selective inhibitor of Ref-
1/APE1 redox activity that does not affect the protein’s endonu-
clease activity in tumors (Section IV; Fig. 6).13, 17, 21, 22, 27–29

Treatment with APX3330 slows tumor growth and progression, with
limited toxicity, in both in vitro and in vivo models.13, 18, 30, 31

APX3330 is entering clinical trials in mid-2017 and is discussed in
Section V of this review.
A number of compounds isolated from natural sources have

been proposed as Ref-1/APE1 redox signaling inhibitors, but none
have been shown to directly or specifically inhibit Ref-1/APE1
redox signaling.2, 32–35 An example of these natural compounds,
resveratrol, is typical of the other compounds; its in vivo efficacy is
sporadic at best due to widely varying bioavailability and low
molecular specificity.36–41 Another presumed natural Ref-1/APE1
redox inhibitor, curcumin, has been established as a promiscuous
compound, interacting with a variety of molecules to give false
positive results in numerous biological assays.41–43 These are not
specific or viable Ref-1/APE1 redox inhibitors.
Years of research for specific inhibitors of Ref-1/APE1 endonu-

clease activity similarly have yielded very limited results. An
indirect, non-specific inhibitor, methoxyamine, a compound used
as a reagent in preparation of 0-methyl oximes, also binds to
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abasic sites as well as free aldehydes in cells. However, its success
in clinical trials has been weak, at best. Direct Ref-1/APE1
endonuclease inhibitors are still in early preclinical stages of
development, so their clinical utility is yet to be determined
[reviewed in refs. 2, 3]. No direct, Ref-1/APE1-specific endonu-
clease DNA repair activity inhibitors have moved beyond the hit-
to-lead stage.2, 3, 34

Targets of Ref-1/APE1 redox signaling and control
To understand Ref-1/APE1’s therapeutic potential, this section
reviews its transcriptional targets, their normal and cancer-
induced functions, any inhibitors in development, and Ref-1/
APE1’s activities on each protein.

STAT3
Normal and cancer-induced functions. Signal transducer and
activator of transcription-3 (STAT3) drives the transcription of cell
growth and survival genes in a variety of cell types. In response to
cytokines and growth factors, Janus Kinase (JAK) phosphorylates
STAT3, causing STAT3 to dimerize and translocate.44–46 Ref-1/
APE1’s redox function directly regulates STAT3 DNA binding and
transcriptional activity,13, 44–46 modulating STAT3’s action as a
transcription activator.
STAT3 signaling promotes inflammation. Along with other

molecules that drive inflammation and tumor growth/spread,
STAT3 contributes to tumor progression by upregulating cytokines,
growth factors, and matrix metalloproteases.44, 47–50 In fact, STAT3
activation is common in tumor tissue, leading to increased growth
and invasiveness via transcription of genes involved in mitosis,
cell motility, epithelial–mesenchymal transition, extracellular
matrix remodeling, and other activities.48, 51–56 Hence, both
STAT3 signaling and various molecules under STAT3 transcrip-
tional control have been explored as therapeutic targets in
cancer.57–60

Inhibitors in development. Attempts to develop specific, direct
STAT3 inhibitors for clinical purposes have thus far fallen
short.61–63 The newest lead compound for STAT3 Src homology
2 (SH2) domain inhibition is PG-S3-001, which has apparent
selectivity (per a KINOMEscan) and efficacy in both in vitro and
in vivo models.64 Other compounds that can inhibit STAT3’s SH2
domain or DNA binding domain have poor specificity for a variety
of reasons (reviewed in62).
However, other approaches to STAT signaling inhibition

continue to be pursued. The JAK inhibitor ruxolitinib blocks JAK
signaling, which in turn inhibits STAT3 phosphorylation and
activation. Ruxolitinib has been used successfully to treat
myelofibrosis and polycythemia,65–68 but its efficacy in solid
tumors has been minimal at best.69, 70

Anti-IL-6 therapy has the potential to treat tumors by
blocking JAK/STAT signaling.50 Although the clinical results
thus far have been mixed, this approach continues to be studied
in a variety of tumor types.71–73 Meanwhile, the compounds
OPB-31121 and OPB-51602 are being studied as STAT3 inhibi-
tors,74, 75 but with some reservations. OPB-31121 downregulates
JAK2 and the IL-6 receptor gp130, thereby decreasing STAT3
activation via upstream modulators.76 OPB-51602 has a long half-
life, and the accumulation of its active metabolite discourages
daily dosing. Results on various tumor types have been
mixed.77–80

Napabucasin (BBI-608) is being explored as a cancer stem cell
inhibitor due to its effects on STAT3 activation as well as on the β-
Catenin and Nanog pathways.81–83 Still, the search continues for
STAT3 inhibitors that are suitable for clinical use.

Ref-1/APE1 activity on STAT3. STAT3 binding to DNA is sensitive
to Ref-1/APE1 redox regulation.13, 23, 84–86 Thus, Ref-1/APE1
inhibition would inhibit STAT3 transcriptional activity and its
downstream targets. That is seen in pancreatic cancer cells, where
simultaneous targeting of Ref-1/APE1 and STAT3 signaling, using

Fig. 1 Dual functions of Ref-1/APE1. Ref-1/APE1 is a multifunctional protein involved in redox signaling and DNA repair. The redox signaling
function is responsible for reduction of oxidized cysteine residues in certain transcription factors (TF’s), leading to increased transcriptional
activity and upregulation of genes involved in cell growth, inflammation, angiogenesis, and other cellular functions. The DNA repair function
is responsible for the endonuclease activity in base excision repair, cutting the phosphodiester backbone of DNA at abasic sites created by
glycosylases. These cuts allow the abasic sites to be replaced with appropriate nucleotide bases, completing the DNA base excision repair
process
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an upstream JAK2 inhibitor Ruxolitinib, synergistically inhibits
proliferation and migration13 and slows growth in 3D pancreatic
cancer spheroids (Fig. 3). Additionally, inhibition of Ref-1/APE1
redox signaling decreases expression of the STAT3 target
survivin,13 an anti-apoptotic molecule that is a potential target
for cancer therapy in its own right.59, 87, 88

Interestingly, data from a reverse phase protein lysate microarray
suggest that JAK2 expression decreases following Ref-1/APE1
knockdown (data not shown). Further experiments are needed to
validate these findings and determine whether this is caused
directly by loss of Ref-1/APE1 redox signaling for transcription or a
compensatory mechanism that occurs in response to loss of Ref-1/
APE1 DNA repair and/or redox activity. Notably, STAT3 often acts as
a cofactor with other transcription factors that are also under Ref-1/
APE1 redox signaling control, including HIF-1 and NF-κB.47, 89–96

Hence, inhibiting Ref-1/APE1 redox signaling alone or in combina-
tion with a STAT3 signaling inhibitor could potentially provide a
novel approach to cancer therapeutics.

HIF-1
Normal and cancer-induced functions. Hypoxic conditions in all
human cells are counteracted by hypoxia inducible factor-1 alpha
(HIF-1α) stabilization and subsequent transcription of genes that
upregulate cell growth, migration/invasion, and survival.97–101

Through HIF activity, cancer cells acquire many malignant
properties, including metabolic adaptation and runaway prolifera-
tion.101 Because Ref-1/APE1 redox signaling promotes HIF-1
transactivation,14, 18 the interplay between HIF-1 and Ref-1/APE1
presents vast opportunity for therapeutic manipulation.
In normoxic conditions, HIF-1α is rapidly degraded following

proline hydroxylation and von Hippel–Lindau protein-mediated
ubiquitination. But, as oxygen levels decrease, stable HIF-1α levels
increase, forming dimers with constitutively expressed HIF-1β
(also called aryl hydrocarbon receptor nuclear translocator, ARNT)
and binding to hypoxia-response elements in DNA.100, 102–104

Inhibitors in development. A drug that inhibits HIF-2α dimerization
with ARNT (without affecting HIF-1α) is currently in development.105

But direct, HIF-1-specific inhibition is not possible yet, despite active
interest in targeting HIF-1 signaling in cancer.103, 106, 107

Several indirect methods for targeting HIF-1α signaling exist,
including mTOR inhibition to prevent HIF-1α synthesis, histone
deacetylase inhibition to decrease HIF-driven transcription, and
unfolded protein response inhibition to decrease transcription that
is dependent on HIF cofactors such as XBP1.103, 108–112

Notably, FTY720 (fingolimod) has been shown to prevent
the stabilization of both HIF-1α isoforms via sphingosine 1-
phosphate pathway inhibition. In cell studies and a xenograft
model, this led to improved tumor cell killing and vascular
remodeling when used in combination with other therapies such
as gemcitabine and rapamycin.113, 114 Similarly, the compound YC-1
downregulated HIF-1α in a MAPK-signaling-dependent manner115

and inhibited HIF-driven transcription via stimulation of factor
inhibiting HIF.116

Ref-1/APE1 activity on HIF-1. HIF-1 transcriptional activity is under
Ref-1/APE1 redox control. Under hypoxic conditions, Ref-1/APE1
inhibition decreases the expression of HIF-1-induced genes and
decreases cell viability.14, 18, 24 Interestingly, HIF-1 cooperates with
STAT3 to promote transcription of tumor-promoting factors,89–91

so Ref-1/APE1 redox signaling inhibition has the potential to block
two transcriptional drivers at once.
Targeting hypoxic cells to inhibit tumor-promoting pathways

affected by HIF-mediated transcription is already well established.
For instance, VEGF inhibitors such as bevacizumab are used to
block tumor-associated angiogenic remodeling; however,
acquired resistance is common with those drugs.117–120

A major subset of the research into HIF-1 transcriptional
targets focuses on pH regulatory systems in hypoxic tumor
cells.121–124 Carbonic anhydrase IX (CA9) is a transmembrane
protein that responds to hypoxia by regulating intracellular
pH. CA9 promotes cell survival and invasiveness by acidifying
the tumor microenvironment (TME).124–127 Because CA9
expression is dependent on HIF-1 activity, it is generally not
detectable in normal tissue. In contrast, elevated CA9 expression
in cancer tissue is thought to indicate locally advanced
tumors with hypoxic regions and a poor chance of treatment
response. This positions CA9 as a potential therapeutic target
in a variety of tumors.121, 122, 125, 126, 128, 129 A number of CA9
inhibitors are under development; SLC-0111 is currently in clinical
trials.129–131

Similarly, bicarbonate transporter inhibition was recently shown
to kill hypoxic tumor cells via intracellular acidification; this effect
is enhanced with CA9 knockdown.132 Importantly, hypoxia-
induced CA9 expression decreases with Ref-1/APE1 inhibition.
Thus, inhibition of Ref-1/APE1 potentiates the cytotoxic effects of
CA9 inhibition in pancreatic cancer cells under hypoxic conditions
by acidifying the intracellular environment.14

Further work is needed to explore the effects of Ref-1/APE1
redox signaling inhibition on hypoxia signaling, both alone and in
combination with inhibitors of HIF, its cofactors (including STAT3),
and/or the enzymes upregulated by HIF-mediated transcription.

Nuclear factor kappa B
Normal and cancer-induced functions. NF-κB is a transcription
factor involved in cellular responses to extracellular signals.133–140

NF-κB is constitutively inhibited by NF-κB Inhibitor α (IκBα),
which is targeted for degradation following phosphorylation by
IκB kinase (IKK). That action frees NF-κB to promote the
transcription of genes involved in cell proliferation, migration,
invasion, and survival.133, 140–144 NF-κB signaling contributes to
inflammatory responses, which are a major aspect of cancer
progression.49, 133, 135, 145–147

Inhibitors in development. Although specific inhibitors of NF-κB
signaling previously were a hot topic in cancer research, little
activity has occurred in this field recently.148–150 Its ubiquitous
nature has far-reaching, unintended effects on healthy cells when
direct inhibition is attempted.147, 148 In clinical settings, NF-κB

Table 1. Redox-sensitive cysteine residues in transcription factors

Transcription Factor Redox-sensitive cysteine Domain Reference

STAT3 C418, C426, C468 DNA binding 23

HIF1α C824 C-terminal transactivation 24

p50 (NFκB) C62 DNA binding 15

Jun (AP-1) C269 DNA binding 4

Fos (AP-1) C154 DNA binding 4

p53 C275, C277 DNA binding 16
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signaling is inhibited indirectly by blocking the degradation of
IκBα with a proteasome inhibitor such as bortezomib.149–151

Ref-1/APE1 activity on NF-κB. NF-κB DNA binding requires Ref-1/
APE1 redox activity, and inhibition of Ref-1/APE1 redox signaling
decreases NF-κB-mediated transcription. This indicates that NF-κB
signaling is yet another cancer-associated pathway that relies on
Ref-1/APE1.15, 18 Moreover, crosstalk between the STAT3 and NF-
κB signaling pathways is well established, involving both feed-
forward transcription of activating factors and STAT3/NF-κB
complexes mediating co-transcription of tumor-promoting
genes.47, 92–96 This provides further support for Ref-1/APE1 being
a master regulator of both enzymes, a pivotal signaling node, and
a worthy therapeutic target.

Other transcription factors. AP-1 is an as-yet undruggable
transcription factor. Comprising Fos and Jun, AP-1’s dimerization
drives transcription of proto-oncogenes, making AP-1 an “early
response” transcription factor for carcinogenesis.152–154 AP-1-
mediated transcription depends on Ref-1/APE1-mediated reduc-
tion of cysteine residues in the DNA-binding regions of both Fos
and Jun.4, 5, 155

Ref-1/APE1 regulates both the transcriptional activity and DNA
repair signaling activity of the tumor suppressor p53.16, 156, 157

Additionally, Ref-1/APE1’s redox function negatively regulates
transcription factor nuclear factor erythroid-related factor 2
(NRF2).17 NRF2’s cytoprotective functions include regulation of
oxidative stress; however, NRF2 also upregulates HMOX-1, a pro-
tumorigenic gene responsible for treatment resistance.158 Com-
bined inhibition of HMOX-1 and Ref-1/APE1’s redox activity has
been shown to synergistically kill pancreatic cancer cells.17

Other tumor-promoting transcription factors are also under Ref-
1/APE1’s redox control, including ATF/CREB, Myb, and Pax-5/8
(reviewed in ref. 19), indicating that Ref-1/APE1 redox signaling

inhibition has the potential to block several tumorigenic pathways
at once.

REF-1/APE1’S ROLE IN MULTIPLE DISEASES
Cancers
The multi-functional nature of Ref-1/APE1 alludes to its expansive
roles in disease, particularly cancers. Ref-1/APE1 is upregulated in
many cancers (Table 2, Fig. 4). This increase is frequently associated
with tumorigenesis, cancer aggressiveness, increased angiogenesis,
radiotherapeutic and chemotherapeutic resistance, and overall poor
prognosis.21, 159–163 This makes Ref-1/APE1 and the transcription
factors it regulates prime targets for anticancer therapies.

Prostate cancer. One of the most widely studied cancers that
exhibits Ref-1/APE1 overexpression is prostate cancer. Over-
expression is seen immunohistologically as a higher percentage
of cells staining positive for Ref-1/APE1 in the cytoplasm and an
increased intensity of Ref-1/APE1 nuclear staining.164

One of the main targets of Ref-1/APE1 redox signaling in
prostate cancer is STAT3, which is constitutively active in prostate
cancer. STAT3 inhibition suppresses prostate cancer cell
growth.165–167 Conversely, STAT3 activation negatively affects
overall survival rates168 and shortens relapse-free survival (RFS).169

Ninety five percent of metastatic samples taken from patients who
died of castration-resistant prostate cancer were positive for
pSTAT3, with the highest expression seen in bone metastases
samples.170 Collectively, this supports the crucial role of pSTAT3 in
prostate cancer aggressiveness and progression.
A downstream target of STAT3 is survivin; its increased

expression is also associated with prostate cancer aggressive-
ness.171 mRNA expression levels of survivin in prostate biopsy
tissues show significantly higher survivin expression in cancerous
tissue, which correlates with higher-grade cancer and aggressive

Fig. 2 Potential inhibitors of the Ref-1/APE1 signaling node and related pathways in tumor cells. Ref-1/APE1 redox signaling promotes the
transactivation of transcription factors such as STAT3, HIF-1α, and NF-κB. Inhibiting Ref-1/APE1 with APX3330 decreases the expression of
downstream genes, leading to tumor cell growth arrest and/or death. Additionally, other methods for inhibiting the signaling pathways
affected by Ref-1/APE1, as well as the enzymes that are upregulated by these pathways, have been shown to enhance the cytotoxic and
cytostatic effects of Ref-1/APE1 inhibition
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phenotypes.172 siRNA knockdown of survivin in prostate cancer
cell lines reduces cell proliferation172 and increases chemosensi-
tivity to the apoptosis-inducing agent cisplatin.173 The effects of
decreased survivin expression extend in vivo. Mice injected
subcutaneously with siRNA survivin knockdown cells exhibit
significantly smaller tumors compared with controls.173

Interestingly, Ref-1/APE1 redox-specific inhibitors APX3330 and
APX2009 decreased survivin mRNA and protein levels in prostate
cancer cells by affecting NF-κB activity. These inhibitors also
reduced cell proliferation. In vivo, APX2009 reduced survivin
protein levels and cell proliferation.174

Based on the evidence, both STAT3 and survivin present as
prime targets for anti-prostate cancer therapies. However, to date
they have been only moderately successful as single-agent
therapies. Therefore, the potential combination of inhibiting both
Ref-1/APE1 redox function and STAT3/survivin provides an avenue
of targeting both the overarching regulator and downstream
effector of an anti-apoptotic pathway integral to prostate cancer.

Colon cancer. Colon cancer, the second leading cause of cancer
related death in the U.S.,175 exhibits increased levels of
cytoplasmic Ref-1/APE1.176 In liver tumor tissue of metastasized
colorectal cancer, increased Ref-1/APE1 expression corresponds to
poor patient outcome.177 In colony-forming assays, siRNA Ref-1/
APE1 knockdown significantly increases the sensitivity of colon
cancer cells to ionizing radiation (IR). Furthermore, in vivo
subcutaneous xenografts also show reduced tumor growth
and radiosensitization following intratumoral Ref-1/APE1 siRNA
treatment.178

The importance of Ref-1/APE1 redox signaling in colon cancer is
highlighted by the effects that the Ref-1/APE1 redox inhibitor
APX3330 has on colon cancer stem cells (CCSCs).
APX3330 significantly reduces CCSC growth in vitro and enhances
the cytotoxicity of 5-fluorouracil (5-FU), an anti-metabolite
chemotherapeutic. In xenograft mice injected subcutaneously
with CCSCs, intratumoral administration of APX3330 increases
tumor response to 5-FU delivered intraperitoneally.179 This
indicates that APX3330 could potentiate other colon cancer
treatments by inhibiting Ref-1/APE1’s crucial redox activity.

Pancreatic cancer. One of the most lethal cancers, pancreatic
ductal adenocarcinoma (PDAC) has a 5-year mortality rate of
~92% and is characterized by a complex TME, heterogeneity
within the tumor, extreme hypoxia, and an inherent ability to
metastasize.180–183 The regulation of HIF-1α, STAT3, AP-1, and NF-
κB by Ref-1/APE1 indicates that inhibition of Ref-1/APE1 redox
signaling has potential clinical utility in PDAC.
Ref-1/APE1 levels are elevated in human pancreatic cancer

tissue and peri-pancreatic metastasis, and decreasing the expres-
sion of Ref-1/APE1 via siRNA in pancreatic cancer cells results in
apoptosis, cell cycle arrest, and a decrease in proliferative
capacity.25 Inhibition of Ref-1/APE1 via APX3330 inhibits the
proliferation and adhesion of pancreatic cancer cell lines, arrests
cell cycle progression, and decreases the transcriptional activation
of major transcription factors known to be important in pancreatic
cancer progression, survival, metastasis, and response to hypoxia
(HIF-1α, NF-κB, STAT3 & AP-1), in addition to blocking tumor
growth in vivo in patient-derived models.13, 18

Within the TME, there are several cell types that contribute to
the growth and spread of pancreatic cancer: endothelial cells,
pericytes, tumor-associated macrophages, lymphocytes, activated
pancreatic stellate cells, and other cancer-associated fibroblasts
(CAFs).182 The role of Ref-1/APE1 in the TME is still under
investigation, but there is published evidence184 that Ref-1/APE1
can block endothelial cell function and suppress tumor-associated
macrophages. Preclinical studies show that the Ref-1/APE1
inhibitor APX3330 inhibits growth of pancreatic cancer-
associated endothelial and endothelial progenitor cells.185 Addi-
tional studies demonstrate that APX3330 can reduce tumor
endothelial VEGF secretion, blocking a potentially critical angio-
genic ligand-receptor interaction in the TME.185 Based on these
data and the regulation of key transcription factors implicated in
PDAC, PDAC is one of the indications for APX3330 in clinical trials.

Ovarian cancer. Ref-1/APE1 expression in ovarian cancer has
been studied widely. Ref-1/APE1 expression is increased in
malignant patient tissue samples, but studies vary as to the
location of this increase.
Some studies show increased expression primarily in the

cytoplasm.186, 187 In those studies, cytoplasmic localization of
Ref-1/APE1 correlates with ovarian tumor progression. Addition-
ally, patients with advanced (stage III/IV) cancer have significantly
higher Ref-1/APE1 expression and lower overall survival rates than
stage I/II patients.188 Patients with increased cytoplasmic Ref-1/
APE1 are also more resistant to platinating chemotherapeutics.189

A different study observed increased Ref-1/APE1 nuclear expres-
sion, again with greater increases in stage III/IV compared to stage
I/II patients.190 In other studies, both nuclear and cytoplasmic Ref-
1/APE1 expression were increased189, 191—but no correlation was
observed between Ref-1/APE1 expression and the cancer stage.191

Collectively, these studies highlight that, while Ref-1/APE1
expression clearly plays a role in ovarian cancer, the heterogeneity
of tissue samples makes it hard to discern the roles of Ref-1/APE1
nuclear vs. cytoplasmic localization.
However, reduced expression of Ref-1/APE1 has a clear effect

on ovarian cancer cells. Ref-1/APE1 knockdown in A2780 (nuclear
Ref-1/APE1) and CP70 (cytoplasmic Ref-1/APE1) cells sensitizes

Fig. 3 Dual-targeting of Ref-1/APE1 and Jak/STAT signaling inhibits
PDAC tumor growth in a 3D co-culture model. a Low passage
patient-derived tumor cells, Pa03C were grown in 3D cultures in the
presence and absence of CAFs. Spheroids were treated with
Ruxolitinib alone (blue curve) and in combination with APX3330
(40 μM, red curve), and the area of tumor (red) and CAF19#1 (green)
were quantified following 12 days in culture, n= 4; fold change
refers to comparison of drug-treated vs. media only in the tumor
alone spheroids. b Confirmation of inhibition of STAT3 activation
was done via immunoblotting for pSTAT3 Y705 residue after 4 h of
Ruxolitinib treatment (12.5 μM) in the 3D assay 8–10 days post
plating. Total STAT3 protein is provided as a loading control and
reference for the levels of STAT3 in both cell types. Representative
western blot is shown from an n of 3
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both to cisplatin.189 In SKOV3 and A2780 cells, Ref-1/APE1 siRNA
significantly reduces cell proliferation, colony formation, migration
and invasion.187, 192 Similarly, Ref-1/APE1 siRNA treatment of
SKOV-3x ovarian cells significantly reduces their growth; the same
occurs with APX3330 redox inhibition.11, 29 Ref-1/APE1 siRNA cells
implanted subcutaneously in mice show markedly reduced
growth compared to control tumors: a 3.2-fold increase in
tumor-doubling time (from 5 to more than 15 days). The tumors
also exhibit reduced glucose metabolism.11 Taken together, a
strong case can be made for targeting Ref-1/APE1 in ovarian
cancer as a means to inhibit growth as well as enhance activity of
other anticancer drugs.

Non-small cell lung carcinoma. Ref-1/APE1 has long been
considered a prognostic marker in non-small-cell lung carcinoma
(NSCLC), as Ref-1/APE1 protein levels are upregulated in patient
tumor samples.193–195 Nuclear Ref-1/APE1 expression in tissue
samples presents better survival chances for patients.196 Cyto-
plasmic Ref-1/APE1 and mRNA expression correlate strongly with
poor patient survival and shorter RFS.197–199 Both immunohisto-
chemistry and immunoblotting show increased cytoplasmic and
reduced nuclear Ref-1/APE1 expression in patients with a
recurrence of stage I NSCLC.199, 200 Post-treatment serum Ref-1/
APE1 levels are inversely associated with overall survival.81, 201

Ref-1/APE1 affects platinum-based drugs commonly used in
NSCLC. An increase in Ref-1/APE1 expression in NSCLC confers
resistance to cisplatin treatment, while Ref-1/APE1 siRNA knock-
down in A549 cancer cells significantly enhances cisplatin
cytotoxicity.202 Patients with tumors not expressing Ref-1/APE1
respond better to platinum-paclitaxel therapy203 and cisplatin-
docetaxel-gemcitabine treatment,81 with longer time to progres-
sion and overall survival.
Evidence exists that reducing Ref-1/APE1 increases the efficacy

of other anticancer treatments in NSCLC. Decreasing Ref-1/APE1
levels in A549 cells in vitro and in vivo increases the effectiveness
of photodynamic therapy.204 Ref-1/APE1 knockdown with shRNA
enhances the anti-tumor activity of oxymatrine, an alkaloid

compound that inhibits proliferation of A549 cells.205

Collectively, this demonstrates that Ref-1/APE1 plays a vital role
in NSCLC progression, and targeting it might lead to better patient
outcomes when combined with various chemotherapeutic
treatments.

Malignant peripheral nerve sheath tumors (MPNST). MPNST is an
uncommon neural-origin cancer that can be deadly. Despite much
research to date, existing chemotherapeutic agents have not been
successful in MPNST treatment.206 Recent research implicates Ref-
1/APE1 redox targets HIF-1α and particularly STAT3 in driving
MPNST.
Phosphorylated STAT3 expression may indicate aggressive

disease at disease onset. A tissue microarray showed STAT3
expression in primary MPNST was associated with worse disease-
specific overall survival and event-free survival.207 In a mouse
model of EGFR overexpression, both a JAK/STAT3 inhibitor and
STAT3 knockdown by shRNA prevented tumor formation.208

In another study, inhibition of STAT3 activation in four MPNST
lines resulted in decreased wound healing, cell migration,
invasion, and tumor formation. It also reduced HIF-1α expression.
Independent shRNA-mediated HIF-1α knockdown also decreased
wound healing, cell migration, invasion, and tumor formation,
showing that the STAT3/HIF-1 α signaling pathway is responsible
for tumorigenesis in MPNST.90

Furthermore, STAT3’s downstream target survivin is amplified in
MPNSTs.209 Survivin is highly expressed in MPNST tissue samples.
Survivin knockdown via siRNA decreases cell growth, inhibits cell
cycle progression and increases apoptosis. Additionally, survivin
inhibitor YM155 represses MPNST xenograft growth and metas-
tasis in vivo.210

The role of the STAT3-HIF-1α pathway in MPNST supports the
notion of STAT3 and/or HIF-1α inhibition as a potential way to
treat MPNST. Downstream markers like survivin also present as
potential targets. Ref-1/APE1 regulates STAT3 as well as HIF-1α;
therefore, targeting Ref-1/APE1 would inhibit multiple targets,
providing hope for a viable treatment for MPNST. Additionally, the
possibility of dual targeting Ref-1/APE1 and either STAT3 or HIF-1α
alludes to the potential of completely eliminating a pathway that
is integral to MPNST progression.

Leukemia. Few studies have focused on the role of Ref-1/APE1 in
leukemias. To date the only published studies have concentrated
on the role of Ref-1/APE1 in acute promyelocytic leukemia (APL)
and its relationship to all-trans retinoic acid (ATRA, or RA) and
retinoic acid receptor (RAR) transcription factors. RAR alpha binds to
its DNA binding site retinoic acid response element (RARE) in a
redox-dependent fashion. Studies by Fishel et al27 demonstrate that
RAR–RARE binding is blocked through Ref-1/APE1 redox inhibition
using APX3330. Additionally, the addition of APX3330 to ATRA
increases apoptosis and cellular differentiation of APL cells by three-
fold. These results indicate the potential of using APX3330 in
combination treatment with ATRA. This could accomplish two
things; first, a new treatment combination for leukemias where
ATRA is used, and second, a reduction in the ATRA dose while
maintaining similar or increased therapeutic effect. This latter point
is important, as one should be able to avoid the toxicity of RA
differentiation syndrome by being able to increase RA-induced
promyeloblast differentiation, but with lower amounts of RA.
Reducing the dose of RA has important clinical implications and
could help to eliminate some of the undesirable side effects of this
therapy.211, 212 RA administration can cause differentiation syn-
drome in 25% of patients.213, 214

Recent studies show Ref-1/APE1 is highly expressed in T-cell
acute lymphoblastic leukemia (T-ALL). Blockade of Ref-1/APE1 by
the redox-specific inhibitor APX3330 potently inhibits viability of
leukemia T-cells, including primary cells, relapsed and
chemotherapy-resistant cells, and cells from a mouse model of T-

Table 2. Tumor tissues/cells with increased Ref-1 expression

Cancer with increased Ref-1 expression Reference

Prostate 164

Pancreatic 25

Cervical 279

Ovarian 186, 191

Osteosarcoma 280

Germ cell tumor 281

Colon/colorectal 176, 179

Bladder 282

Head and neck 163

Gastric/gastro-esophageal 159, 191

Neuroectodermal tumors 162

Rhabdomyosarcomas 283

Pancreaticobiliary 191

Adult gliomas 284

Non-small cell lung 193

Hepatocellular 160

Multiple myeloma 285

Esophageal 286

Breast 287

Pediatric ependymoma 288

Melanoma 35
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ALL (Ding et al, manuscript submitted). Ref-1/APE1 redox inhibition
promotes leukemia cell apoptosis, which is associated with
downregulation of pro-survival genes. These data demonstrate a
role for Ref-1/APE1 in the regulation of multiple transcriptional
programs in T-cell ALL, and suggest that disruption of Ref-1/APE1
redox function represents an efficient strategy to target leukemia T-
cells, including high-risk, relapsed leukemias.
Finally, investigators studying conversion of pre-leukemic acute

myeloid leukemia (AML) cells with TET2 mutations to full-blown AML
have identified a significant role of Ref-1/APE1 in this process. Tet2-
deficient stem cells demonstrate resistance to inflammatory
challenge as revealed by a higher repopulating and engraftment
potential in both primary and secondary recipients compared to
wildtype controls, which, when stressed, show a remarkable decline
in overall engraftment (Cai et al, manuscript submitted). This process
invokes the NF-κB pathway, which Ref-1/APE1 regulates. APX3330
blocks NF-κB function, which decreases inflammation and reverses
the progression from pre-AML to frank AML in mice bearing AML-
associated epigenetic mutations often observed in healthy indivi-
duals with clonal hematopoiesis (Cai et al, manuscript submitted).
These data suggest that APX3330 treatment could clinically benefit
normal individuals carrying TET2mutations that show signs of clonal
hematopoiesis, as well as patients with TET2 mutations who have
AML, myeloproliferative disease and myelodysplastic syndrome.
In summary, while studies on Ref-1/APE1 in leukemia trail behind

research performed on solid tumors, recent investigations are
uncovering a critical role of Ref-1/APE1 redox signaling and
effectiveness of APX3330 in those leukemias investigated. Further
work is ongoing in this area.

Retinal diseases
Increased levels of Ref-1/APE1 are not limited to cancers (Fig. 4).
Elevated Ref-1/APE1 has been implicated in age-related cataracts.

Ref-1/APE1 levels are higher in the lens epithelium cells of patients
vs. controls, and Ref-1/APE1 levels decrease as the opaque degree
worsens.215

Ref-1/APE1 is highly expressed in developing murine retinas, as
well as retinal pigment epithelium (RPE) cells, retinal pericytes,
choroid endothelial cells (CECs) and RVECs.216–218 Using the Ref-1/
APE1 inhibitor APX3330 shows that Ref-1/APE1 redox activity is
required for RVEC proliferation, migration and angiogenesis
in vitro.29, 217 Similarly, APX3330 treatment reduced proliferation,
migration and angiogenesis in CECs in primate cells in vitro and
had an additive effect when combined with bevacizumab.219 RPEs
stressed using oxidized low-density lipoproteins were rescued
from proliferation decline and senescence by APX3330.218

In adult human RPE cell lines, APX3330 reduced the transcrip-
tional activity of NF-κB, a key factor associated with inflammation
in angiogenesis.218, 219 It also blocked activation of HIF-1α and
reduced the expression of its downstream target VEGF.219 VEGF
expression via NF-κB and HIF-1α is primarily responsible for
choroidal neovascularization (CNV), a characteristic of neovascular
age-related macular degeneration (AMD), also known as wet AMD.
When very low density lipoprotein receptor knockout mice are

treated with a single intravitreal injection of APX3330, CNV is
reduced.217 APX3330 also shows anti-angiogenic effects in mice
with laser-induced CNV.219

Angiogenesis is also a prime component of other retinal
diseases, including retinopathy of prematurity (ROP) and diabetic
retinopathy (DR). Ref-1/APE1’s redox ability to modulate angio-
genesis makes it worth investigating in those diseases. Interest-
ingly, both HIF-1α and VEGF are increased in ROP and DR. Retinal
neovascularization, a marker of ROP and DR, is markedly reduced
in mice with ischemic retinopathy when treated with siRNA
targeting HIF-1α or VEGF.220

However, the difficulties in creating druggable targets for HIF-
1α have already been discussed. Additionally, ocular anti-VEGF
therapies are not always effective and may lead to unwanted side
effects.221 Inhibiting the redox activity of Ref-1/APE1 may prove to
be a more efficacious standalone or adjunctive treatment that can
modulate HIF-1α and VEGF in retinal diseases like wet AMD, ROP
and DR.

Other diseases
Ref-1/APE1 has also been shown to play a role in several other
diseases. Ref-1/APE1’s involvement in cardiovascular disease and
regulation of blood pressure is illustrated by aortic coarctation-
induced hypersensitive rat models showing increased Ref-1/APE1
expression levels.222 Furthermore, heterozygous Ref-1/APE1+/−

mice exhibit hypertension and diminished endothelium-
dependent vasorelaxation.223 Ref-1/APE1 is part of the SET
complex of proteins that are involved in HIV pathogenesis by
inhibiting suicidal autointegration. Consequently, knocking down
Ref-1/APE1 inhibits HIV infection.224

Ref-1/APE1 is also implicated in gastric cellular response to
Helicobacter pylori (H. pylori) infection. Ref-1/APE1 expression
levels were elevated following H. pylori infection in human gastric
epithelial cells.225 H. pylori induced ROS and downstream activated
genes were higher in Ref-1/APE1 deficient cells compared to
control, with Ref-1/APE1 overexpression reversing these effects.226

Additionally, Ref-1/APE1 siRNA knockdown inhibited H. pylori and
TNF-α-induced AP-1 and NF-κB DNA binding, as well as IL-8 mRNA
expression and protein secretion in gastric epithelial cells.
Collectively, that implicates Ref-1/APE1 in gastric inflammatory
disorders.227, 228

Another area of particular interest is neurodegenerative disease
(ND). NDs such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS) and cerebral ischemia are
all affected by Ref-1/APE1 dysfunction.

Fig. 4 Ref-1/APE1 in human diseases. Due to its multi-functional
nature, Ref-1/APE1 impacts a wide range of human diseases. Altered
expression of Ref-1/APE1 affects its regulation of multiple transcrip-
tional factors, leading to various cancers, retinal, cardiovascular,
gastric and neurodegenerative diseases. Similarly, modified Ref-1/
APE1 DNA repair function affects progression of different cancers
and neurodegenerative diseases.277
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Ref-1/APE1 protein levels are elevated in nuclear extracts from
the midfrontal cortex229 and cerebral cortex230 of AD patients
compared to controls, with Ref-1/APE1 redox activity seen as a
compensatory mechanism for increased oxidative stress. However,
reduced Ref-1/APE1 endonuclease activity is seen in peripheral
blood mononuclear cells of AD patients, suggesting impaired
BER.231 This highlights the different roles that Ref-1/APE1 can have
within a particular disease. Similarly, Ref-1/APE1 levels are
elevated in the central nervous system of patients with ALS, a
disease exhibiting elevated oxidative stress and DNA damage.232

In PD, loss of Ref-1/APE1 function via gene variants suggests it is a
risk factor, contributing to increased oxidative stress that leads to
loss of dorsal root ganglion (DRG) neurons.233 Ref-1/APE1 is
upregulated in cells treated with rotenone234 and MPP+ (1-
methyl-4-phenylpyridinium),235 both of which are used to
simulate a PD model. Ref-1/APE1 upregulation protects against
neuronal death in these cells.235

After cerebral ischemia, upregulation of Ref-1/APE1 protects
hippocampal neurons from cell loss and DNA fragmentation.
Conversely, transgenic rats with DNA repair-compromised Ref-1/
APE1 are not protected from ischemic injury.236 Ref-1/APE1
conditional knockout mice exhibit larger infract volume and
diminished recovery of spatial and cognitive function following
cerebral ischemia.237

These findings highlight the wide range of diseases affected by
Ref-1/APE1, indicating that it is a promising target for treating and
managing numerous diseases.

IDENTIFICATION OF ADDITIONAL PATHWAYS FOR
COMBINATORIAL DRUG APPROACH
A proposed factor in the limited success of molecular therapies
has been the heterogeneity found in tumor samples, especially
aggressive ones such as pancreatic tumors or glioblastomas.
This underscores the need for strategies that target nodal
proteins capable of affecting multiple pathways, such as
Ref-1/APE1.180, 181, 238 The evaluation of novel targets including
Ref-1/APE1 and rationally designed combination therapy, includ-
ing correlative biomarker research, is critical in cancer because
therapeutic options for some cancer patients remain limited.
To elucidate synthetic lethal pairs of chemotherapeutic agents,

two general approaches are utilized. They include rational,
hypothesis-driven combinations based on the mechanism of
action of the compounds as well as application of “big data” that
reveal specific gene expression profiles or proteomic signatures
that would render cancer cells vulnerable when used in
combination. To that end, this section focuses on combination
therapy that involves Ref-1/APE1 modulation that results in even
greater enhancement than either agent alone; synergistic effects.
Many studies have investigated the potentiation of DNA-

damaging agents in combination with Ref-1/APE1 inhibition239–241).
Presumably the predominant mechanism of potentiation in these
studies was due to blockade of Ref-1/APE1’s DNA repair function,
which led to cellular inability to respond to the DNA damage
caused by the chemotherapeutic agent. In this review, we focus
on published studies of inhibition of Ref-1/APE1 redox function or
treatment with Ref-1/APE1 siRNA (Table 3).

Pairing therapeutic agents with Ref-1/APE1 based on its known
functions in cancer cells
First, a hypothesis-driven approach is used to test chemother-
apeutic agents in combination with Ref-1/APE1 inhibitors to
screen for synthetic lethality. This approach involves simulta-
neously impinging upon Ref-1/APE1 signaling in conjunction with
another key pathway that interacts with or depends upon Ref-1/
APE1 function for tumor cell survival. The combination of the two

should create a synthetic lethality, dramatically enhancing cell
death compared to their effect when administered alone.
Using this approach, our group discovered that impinging upon

STAT3 signaling in combination with Ref-1/APE1 signaling drama-
tically affects the viability and migratory ability of pancreatic
cancer cell lines (Fig. 3 and ref. 13).
Several studies of different cancers support the notion that

combination therapy involving inhibition of Ref-1/APE1 in tumor-
promoting processes such as hypoxia or angiogenesis is
efficacious. In an osteosarcoma model characterized by hypoxia
and angiogenesis, inhibition of Ref-1/APE1 in combination with
endostatin demonstrates in vivo efficacy with decreases in VEGF
expression and microvessel density.242

Another synthetic lethal pair involving Ref-1/APE1 and hypoxia
is the combination of Ref-1/APE1 inhibition with inhibition of the
HIF-1α target CA9.14 Using pancreatic 3D co-culture models, tumor
spheroid area is reduced after dual targeting with Ref-1/APE1 and
CA9 (Fig. 2). The mechanism of enhancement is believed to be
due to an increase in pH and blockade of the tumor’s ability to
adapt to hypoxic conditions perpetuated through simultaneous
CA9 and Ref-1/APE1 blockade.
Finally, studies comparing doxorubicin-sensitive vs.

doxorubicin-resistant colon cancer cells demonstrate that hypoxia
enhances the expression of Pgp (P-glycoprotein) and BCRP (breast
cancer resistance protein)—and that the addition of APX3330 to
doxorubicin under hypoxic conditions can attenuate HIF activity
significantly, blocking the upregulation of Pgp and BCRP. This
decrease in Pgp and BCRP expression may play a role in the
observed increase in doxorubicin accumulation, especially in the
parental cells.243 The results suggest that, when blockade of Ref-1/
APE1’s redox function blockades HIF signaling, colon cancer cells’
response to doxorubicin may be enhanced. A caveat to these
studies is that hypoxia was chemically induced using cobalt
chloride rather than lowering oxygen levels in the cells, and only
Pgp seemed to be regulated at the transcriptional level by hypoxia
and doxorubicin treatment. This would suggest that additional
mechanisms of drug resistance are at play.
A recent study by Ren et al.244 sought to sensitize NSCLC cell

lines to cisplatin by sequential use of AT-101 (gossypol) with
cisplatin. AT-101 exerts its anti-tumor effects in many ways: it is a
BH3-mimetic and also has been shown to inhibit Ref-1/APE1’s
DNA repair and redox activities. Blockade of the anti-apoptotic
proteins Bcl-2 and Bcl-XL through Ref-1/APE1’s redox inhibition of
STAT3 activity contributes to the enhanced cell killing and tumor
growth seen in this combination.244 Furthermore, in NSCLC cell
line A549, siRNA inhibition of Ref-1/APE1 expression significantly
sensitizes A549 cells to cisplatin and increased cell apoptosis.202

Both of these studies point to Ref-1/APE1 function as critical in the
cells’ response to cisplatin, especially in apoptosis signaling
through STAT3.
In contrast, a recent study in breast cancer cell lines that were

exposed to cisplatin in combination with inhibitors of either Ref-1/
APE1 repair or Ref-1/APE1 redox activity, cisplatin resistance
increased.245 The authors conjecture that a concurrent down-
regulation of mismatch repair proteins (MSH2, MSH6, MLH1, and
ERCC1) may explain why those results differ from the other studies
that demonstrate a greater response to cisplatin when Ref-1/APE1
is inhibited concurrently. In the pursuit of personalized medicine,
these preclinical studies demonstrate the importance of elucidat-
ing cell-specific signaling following chemotherapy as well as the
crosstalk between DNA repair pathways that occurs following DNA
damaging agents. These factors will need to be considered as new
treatment combinations are proposed, such as considering the
addition of a Ref-1/APE1 inhibitor to a cisplatin regimen.
Finally, both Ref-1/APE1 inhibition via APX3330 and siRNA

knockdown of Ref-1/APE1 upregulates β-catenin in pancreatic
cancer cells. When the WNT/β-catenin inhibitor IWR-1 was paired
with APX3330, enhanced cytotoxicity occurred.246
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These examples show how seemingly “separate tracks” of
cancer survival pathways can intersect, how those intersections
involve Ref-1/APE1, and the exciting therapeutic possibilities that
arise from those intersections.

Mining big data to predict combination therapy involving Ref-1/
APE1
A second option for uncovering new treatment options is to mine
publicly available data sets such as TCGA (The Cancer Genome
Atlas) and Cancer Cell Line Encyclopedia to elucidate [in silico]
effective combination treatments to utilize in cancer treatment
settings.247, 248 The goal is to accelerate the selection of likely
synthetic lethal targets, particularly for aggressive cancers that
have few treatment options.
For example, historically in pancreatic cancer, new targeted

agents would be paired with the standard-of-care agent,
gemcitabine. But adding selective inhibitors of multiple cancer-
related pathways to gemcitabine either did not extend survival
significantly or although statistically significant did not extend the
5-year survival rate.249 In today’s age of omics, “big data” can be
used to predict synthetic lethality and effective drug combinations
rather than a shotgun approach.247

A study combining transcriptional and proteomic profiling
following Ref-1/APE1 knockdown in HeLa cells reveals several
pathways that are differentially expressed following Ref-1/APE1
modulation. These pathways include DNA damage, mitochondrial
function, and microtubule stabilization.250 The downregulation of
DNA repair proteins following Ref-1/APE1 knockdown is another
confirmation that the addition of a Ref-1/APE1 inhibitor to a DNA-
damaging agent is deleterious to cancer cells.
The aforementioned study also demonstrates a downregulation

in mitochondrial function. Mitochondria are emerging as impor-
tant indicators of cellular disease or health following Ref-1/APE1
modulation, therefore drugs that target anti-apoptotic mechan-
isms may be efficacious when combined with Ref-1/APE1
inhibition. Such drugs might include Bcl-2 inhibitors or YM-155
(a survivin inhibitor). Finally, the proteomic study indicates
another area in which Ref-1/APE1 inhibition may be useful as a
synthetic lethality. Lack of Ref-1/APE1 expression affects micro-
tubule stabilization proteins such as actin; impeding proper
organization of the fibers. Several commonly used chemother-
apeutic agents disrupt microtubule dynamics, including docetaxel,
paclitaxel, and vinblastine. Therefore, those agents show promise
for being able to be paired with Ref-1/APE1 inhibition.

Much is yet to be learned regarding which clinical agents will
pair most effectively with Ref-1/APE1 redox or repair inhibitors;
however, studies are ongoing to determine whether this approach
will yield drug combinations that are synthetically lethal to cancer
cells.

REF-1/APE1 DNA REPAIR AND CIPN; INDIRECT IMPACT
LINKING THROUGH ALTERING REDOX FUNCTION
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the
most prevalent dose-limiting toxicities of anticancer therapy. Up
to 90% of cancer patients experience CIPN at some point during or
after anticancer treatment.251 Indeed, anticancer drugs used for
the six most common malignancies pose a substantial risk for
CIPN. These drugs include, but are not limited to platinum agents,
taxanes, vinca alkaloids, proteasome inhibitors, immunomodula-
tors and even new, targeted therapeutic agents. There are
currently no approved treatments to prevent or treat CIPN, thus
the neurotoxicity can be dose-limiting for some patients.252

Platinum drugs, particularly cisplatin and oxaliplatin, are an
important component of numerous standard-of-care treatment
regimens for pediatric and adult cancers; for example, oxaliplatin
is a part of the FOLFIRINOX and FOLFOX protocols.
CIPN can persist after treatment is completed. Up to 40% of

cancer patients continue to struggle with CIPN five years after
treatment ends252—and 10% remain symptomatic after more
than 20 years. Thus, CIPN directly affects cancer survivorship,
quality of life, and may limit future treatment options if cancer
recurs.252

In previous studies using an experimental model of cultured
sensory neurons, we established a causal relationship between
CIPN and DNA damage and repair.31, 106, 253, 254 We demonstrated
that reducing the activity of the DNA BER pathway by reducing
expression of Ref-1/APE1 increased the neurotoxicity produced by
anticancer treatment, whereas, augmenting the expression of Ref-
1/APE1 lessened the neurotoxicity.31, 255–257 Additionally, we
demonstrated that Ref-1/APE1’s DNA repair function—not the
redox signaling function—is crucial for sensory neuron survival
and function.31 We also demonstrated that the small-molecule
redox inhibitor APX3330 protects sensory neurons from oxidative
DNA damage caused by IR,31 cisplatin,254 and oxaliplatin (Fig. 5).
This raises the question: how does a Ref-1/APE1 redox-specific

inhibitor affect DNA repair activity? Although APX3330 is a
targeted inhibitor of Ref-1/APE1’s redox function, it appears that,
in the setting of sensory neurons, it can also enhance the protein’s

Table 3. Combination treatment involving Ref-1 modulation

Molecular target/therapeutic agent paired with Ref-
1

Pathways affected Model system Reference

Doxorubicin Hypoxia/ABC transporter expression Colon Cancer 243

STAT3 Viability/Migration PDAC 13

Avastin Angiogenesis Retinopathy

DNA damage (cisplatin) / Bcl-2 inhibitor Proliferation/Migration/Apoptosis NSCLC 202, 244

Platinating agents (cisplatin/oxaliplatin/
carboplatin)

Attenuation of vasodilatation of sensory
neurons

Chemotherapy-induced
neuropathy

254

CA9 Hypoxia PDAC 14

WNT/β-catenin ROS/Proliferation PDAC 246

Endostatin Angiogenesis Osteosarcoma 242

5-FU Proliferation/Tumor growth Colon Cancer 179

Retinoic acid Differentiation Promyelocytic leukemia 27

Photodynamic therapy (PDT) Proliferation/TFAM (transcription factor A,
mitochondria) binding

NSCLC 289
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DNA repair (AP endonuclease) activity (Fig. 6). Although this seems
counterintuitive, on closer inspection it is not so unexpected.
APX3330 causes the protein to unfold over time.21, 22, 28 This
unfolding primarily alters the amino end of Ref-1/APE1, affecting
its interactions with downstream transcription factor targets by
perturbing the equilibrium of the protein’s folded/unfolded states
and facilitating repair activity.21, 28, 258 This disengagement of Ref-
1/APE1 from its Ref-1/APE1 redox activity could enhance Ref-1/
APE1 repair endonuclease activity. When isolated sensory neurons
are exposed to APX3330, a concentration-dependent increase in
Ref-1/APE1 endonuclease activity occurs254—which is not
observed in tumor cells.29, 258, 259 As discussed in previous
paragraphs, we found that APX3330 protected sensory neurons
from DNA damage and reactive oxygen species (ROS) production
induced by agents such as IR, cisplatin and oxaliplatin.31, 254

A critical property of any putative therapeutic for neurotoxicity is
that it will not compromise the anticancer function of the treatment
(s) administered. Importantly, the enhancement of DNA repair
activity by APX3330 was not observed in mitotic cells.22, 258, 260

We have shown that APX3330 negatively affects the growth and/
or survival of tumor cell lines, patient-derived cell lines, and
tumors in animal models.13, 17, 18, 25, 27, 29 Therefore, it is possible
that APX3330 could protect postmitotic cells without altering the
effects of anticancer drugs on tumor cells (Fig. 6). Additionally,

APX3330 does not affect cisplatin or oxaliplatin’s tumor-killing
efficacy in vivo, yet it protects DRG neurons from oxidative
DNA damage (data unpublished). If further translational
research further bears out these findings, APX3330 could be
offered as a neuroprotective mechanism in humans, facilitating
BER repair of oxidative DNA damage and protecting sensory
neurons. In healthy cells, it appears that the DNA repair function—
not the redox function of Ref-1/APE1—is necessary for sensory
neuronal survival/function. That is opposite from tumor cells.
Collectively, these data support the notion that APX3330 can be
neuroprotective against cancer therapy without compromising
treatment.

PRECISION ONCOLOGY- BIOMARKERS
Biomarkers are at the frontier of precision oncology. Ideally, they
provide diagnostic, prognostic, or pharmacologic information to
inform patient care.261 Biomarkers may be genetic variants
(polymorphisms), abnormal protein production/expression, or
protein dysfunction unique to cancers.261, 262 The premise of
pursuing Ref-1/APE1 as a potential biomarker is based on its
contributions to both disease suppression and therapeutic agent
resistance.261 Variants in DNA repair pathways are common;
however, they may not alter protein synthesis.261 For example,

Fig. 5 Chemotherapy-induced peripheral neuropathy (CIPN) produces significant DNA damage acted upon by Ref-1/APE1. Agents inducing
oxidative DNA damage, such as cisplatin, oxaliplatin, ionizing radiation as well as other drugs are acted upon by the DNA BER pathway and
specifically Ref-1/APE1. ROS reactive oxygen species, RNS reactive nitrogen species. DNA damage can occur on both nuclear and
mitochondrial DNA in the dorsal root ganglion (DRG). Additional sites of action for some of the chemo-agents occurs in the axons.
Inflammation has also been attributed to inducing oxidative DNA damage in DRGs. Patients report side effects, such as severe burning in
fingertips, like putting fingers on hot stove, fingernails on a chalkboard, pain like needle stuck in toes, walking on hot coals, sandpaper at the
bottom of feet, something crawling, blob of numbness, and feet are asleep. Parts of this figure are used by permission from previous figures
after revision (see refs. 252, 278)
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Ref-1/APE1’s most frequently found variant, T1349G (a change in
the 148 residue), does not seem to affect APE1 functionality.
Further work with this variant in regards as to predictive
biomarker use is ongoing.262, 263 Additionally, simulation analyses
have predicted other SNPs, such as I64T or I64V (rs61730854;
rs2307486) and P311S (rs1803120), in Ref-1/APE1 that could affect
protein function and be potential biomarkers for treatment
classification.264 Additional SNPs such as G39E (rs34632023) and
Q51H (rs1048945) also have a predicted negative impact on Ref-1/
APE1 DNA repair function.264

In searching for cancer-specific Ref-1/APE1 alterations posses-
sing potential utility as a biomarker or a marker for patient
selection criteria, two promising possibilities exist: overexpression
and abnormal subcellular localization. Both are present in many
cancers. In general, both overexpression and abnormal
cytoplasmic-vs.-nuclear distribution of Ref-1/APE1 are associated
with resistance to DNA-damaging agents, tumor aggressiveness,
and poor prognosis.3, 239, 261, 265, 266

Ref-1/APE1 overexpression has been postulated to play a role in
the increased ability of tumor cells to grow and metastasize as a
result of increased gene expression of genes that are directed by
numerous critical transcription factors regulated by Ref-1/APE1.20

As discussed in Section II, numerous cancers have altered levels of
Ref-1/APE1 expression (also see Table 2, Fig. 4). Tumorigenesis,
cancer aggressiveness, increased angiogenesis, radiotherapeutic
and chemotherapeutic resistance, and overall poor prognosis are
all associated with increased Ref-1/APE1 levels.21, 159–163 These
cancers include prostate, colon, pancreatic, ovarian, non-small cell
lung carcinoma, leukemias, MPNST, brain tumors, osteosarcoma,
rhabdomyosarcoma, endothelial cell tumor, breast cancer (includ-
ing triple-negative), hepatocellular carcinoma (HCC), head and
neck, bladder, multiple myeloma, pediatric epdndymoma and
retinoblastoma (Table 2).3, 239, 261, 265, 267 Additionally, low levels of
Ref-1/APE1 appear to predict sensitivity to platinating agents for
several cancers, especially NSCLC.81, 263, 268 Furthermore, a drop in
serum Ref-1/APE1 levels pre- vs. post-treatment can indicate

Fig. 6 Differential role of Ref-1/APE1 redox inhibition in sensory neurons vs. tumor cells. a In tumor cells, Ref-1/APE1 redox inhibition as
multiple downstream effects on tumor growth, survival, migration and tumor inflammation.31, 106, 253, 254, 257 b In sensory neuron cells such as
DRG neurons, the addition of APX3330 does not have a negative effect on the cells, and promotes survival and functional protection through
enhancement of Ref-1/APE1 DNA repair activity against oxidative DNA damaging agents (e.g., cisplatin, oxaliplatin) that invoked the DNA BER
pathway. In the lower right panel, APX3330 attenuates neurotoxicity induced by systemic administration of cisplatin to tumor-bearing mice. c
Treatment paradigm for investigation of the effects of cisplatin and APX3330 on DNA damage within DRG. Neuroblastoma cells were
implanted subcutaneously into the right flanks of 6-week-old male NSG mice and allowed to proliferate until tumor volumes ≥150mm3. Mice
were then randomized for treatment with cisplatin ± APX3330 treatment. Cisplatin and APX3330 were administered concurrently for 3 weeks
(Day 0–Day 17) and endpoints of neuronal toxicity were assessed within the DRG of mice at several time points following the last dose of
cisplatin. d Representative blots demonstrating pH2A.X immunoreactivity at D24 and D31. e Quantification of pH2A.X immunoreactivity. An
asterisk indicates statistical significance between D18 and D24 (e) as determined by a one-way ANOVA with Tukey’s post test with p< 0.05. A
cross indicates statistical significance between Veh/Veh group and the Veh/Cis group (e) as determined by a two-way ANOVA with Bonferroni’s
posttest with p< 0.05
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better overall survival or longer progression-free survival in some
cancers, particularly NSCLC.81 Low Ref-1/APE1 levels confer
radiosensitivity in pancreatic, colorectal, and cervical cancer cell
lines.178, 194, 269, 270 Human HCC has elevated Ref-1/APE1 levels
suggesting that over-expression in HCC correlates with cancer
aggressiveness and indicates Ref-1/APE1 to be a promising
marker.160 Additionally, increased Ref-1/APE1 cytoplasmic expres-
sion is a predictor of survival for HCC.271

Ref-1/APE1 normally localizes to the nucleus, with a much
smaller but relevant localization to the mitochondria. A shift to
greater cytoplasmic localization is present in some cancers; mounting
evidence indicates that may be prognostic.160, 191, 197, 271, 272 The
reason for this abnormal subcellular trafficking is yet unknown;
perhaps post-translational modifications drive the protein’s
redistribution or a general increase in Ref-1/APE1 levels result in
a net cytoplasmic increase. APE1’s distribution pattern varies by
cancer type and stage, the tumor’s genetic composition and
microenvironment, and further work needs to be done in this area.
Currently the most promising work with Ref-1/APE1 as a

biomarker is with regard to bladder cancer. This includes the
development of an ELISA based Ref-1/APE1 assay. A 2016 study by
Choi showed that an increase in Ref-1/APE1 expression at a cutoff
of 0.376 ng/100μl was 82% sensitive and 80% specific for
detecting bladder cancer in urine.273 A smaller study from
2015 showed higher sensitivity (90%) but lower specificity (59%)
for utilizing Ref-1/APE1 in serum to detect bladder cancer.274

Quantitative, noninvasive measurement of Ref-1/APE1 expression
in urine or serum may 1 day become a diagnostic biomarker for
bladder cancer as well as other cancers with additional studies in
this area.

BENCH TO CLINIC
The effect of Ref-1/APE1 inhibition has not been tested in cancer
clinical studies, however, Apexian Pharmaceuticals has recently
received IND approval to conduct a clinical study of its Ref-1/APE1
inhibitor, APX3330. APX3330 is a novel, oral anticancer agent and
the first drug to target Ref-1 for cancer. APX3330 was originally
developed by Eisai (called E3330 by Eisai) as a Ref-1-NFkB
signaling inhibitor for the treatment of inflammatory liver disease.
Eisai evaluated APX3330 through comprehensive phase IIB
development program in 422 patients, achieving positive efficacy
results. The drug has not been approved in Japan nor the US
which necessitates new oncology phase 1 trials. APX3330 is
extremely well-tolerated at dose levels consistent with develop-
ment as a cancer agent. It has IND and IRB approval. Eisai
preclinical and clinical data demonstrates a safety profile that
supports development of APX3330 for the treatment of various
cancers. This includes (taken from the filed IND): (a) 13 week dog
and rat studies with unremarkable safety findings, (b) Phase 1 (75
Japanese subjects) with single or multiple doses and Phase 2
(>350 Japanese subjects with hepatitis B or C; acute severe
hepatitis or alcoholic hepatitis) with unremarkable safety findings,
(c) No acute toxicity seen on neurologic, cardiovascular or
pulmonary function, (d) Linear pharmacokinetics of APX3330 with
little accumulation, (e) Absorption, distribution, metabolism and
excretion of APX3330 understood, and (f) In Phase 2 trials,
APX3330 was detected in serum at concentrations up to 147 μM;
levels well above that required for anti-tumor effect in our models
of pancreatic cancer. Eisai also concluded there were improve-
ments in transaminase levels in patients with hepatitis B and C.
APX3330 is well absorbed orally with a bioavailability of ≥60%. All
of this data greatly de-risks the drug and due to its lack of toxicity
profile, it will likely be easy to combine with other agents.
The phase 1, multicenter, open-label, dose-escalation oncology

study will commence in 2017, with the goal of identifying a
recommended phase 2 study dose to be used for subsequent
development of the agent. The study population will include

patients with recurrent or advanced cancer (i.e., solid tumors) for
whom standard therapy offers no curative potential. APX3330 will
be supplied as orally administered tablets and patients will receive
a fixed dose of APX3330 twice daily (i.e., bid) each day of a 21-day
cycle.
Additional study endpoints include pharmacokinetic and

pharmacodynamic (PD) characterization of APX3330, the latter
involving analysis of blood and tissue obtained from participants,
including the following:

● Level of Ref-1/APE1 protein in whole blood using an ELISA
assay

● RNA-sequencing to determine the effect of APX3330 on
downstream transcription factors and their regulated genes
involved in Ref-1/APE1 signaling, including, but not limited to
HIF-1α, NFκB, STAT3, AP-1 and NRF2

● Analysis of CDA polymorphisms such as CXCL12 and CXCR4
● Effect of APX3330 treatment on cytokines and chemokines

found in the blood
● Evidence of effect on (circulating tumor cells) CTCs after

exposure to APX3330

Phase 1 study results of single-agent APX3330 will inform the
subsequent development of the agent, and pre-clinical data
suggest a variety of potential pathways for clinical development of
APX3330 whether alone or in combination with other anti-cancer
agents. Figure 7 outlines these potential development pathways,
each supported by existing preclinical data.

PIPELINE
Development of additional Ref-1/APE1 redox inhibitors based on
APX3330 and related families of compounds is underway.253 A
number of novel analogs have been synthesized based on
structure–activity relationship. Changes include alterations of the
dimethoxybenzoquinone with a napthoquinone ring, modification
of the carboxylic acid, carbon chain on the double bond
shortened, and substitution of the methyl group on the ring
structure with hydrogen or various halogens.29, 253, 259, 260

APX3330 exists as a charged molecule at physiological pH; the
addition of amide derivatives of carboxylic acid altered APX3330’s
physical properties. Also, the lipophilic carbon chain was
shortened on the double bond, making the new compounds less
lipophilic253 [Patent 9,089,605]. These changes resulted in new
compounds that exhibited greater potency than APX3330 during
in vitro testing.253

The current compounds attack Ref-1/APE1 in a highly selective
and specific manner, causing local unfolding of the protein and
inhibiting its redox signaling function.12, 21, 22, 28 Identification of
additional compounds outside of the chemical space of APX3330
and its analogs is not an easy task and is not readily amenable to
high-throughput screening. Screening for molecules that block
protein-protein interactions and, in this case, recognize an
alternative redox-active conformation of Ref-1/APE1, are intrinsi-
cally complicated to find. One must rule out extraneous non-
specific hits and target Ref-1/APE1 without unwanted toxicities or
promiscuous activity.

THE FUTURE
Ref-1/APE1 continues to be an intriguing protein in its function and
activities as well as a target for cancer therapeutics and role in other
diseases. As discussed in this review, significant studies have
identified the important interactions of Ref-1/APE1 with critical TFs
in cancer as well as in other indications (Section II), confirming that
Ref-1/APE1 is a key signaling node. Blocking the redox signaling
function is a unique approach to alter tumor cell survival and
growth and provides a novel approach to cancer therapeutics.
Additionally, recent innovative studies using Ref-1/APE1 knockdown
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and single-cell RNAseq has identified unique, hypothesis-driven
combinatorial approaches to partner the Ref-1/APE1 inhibitor
APX3330 with FDA-approved drugs (Section III). This approach will
allow specific pathways to be targeted via Ref-1/APE1 redox
inhibition as well as uncover additional roles of Ref-1/APE1 in
previously undiscovered signaling and mitochondrial pathways and
metabolism. With APX3330 advancing to clinical trials, the role of
Ref-1/APE1 in human cancer will be further elucidated.
In conclusion, there is significant interest in Ref-1/APE1 as a

cancer target as well as potential use in other diseases. The
advancement of the first clinical agent to target Ref-1/APE1 redox
function in humans will offer insight into clinical uses, as will
second-generation agents under development. With the identifi-
cation of hypothesis-driven combinations of APX3330 and other
FDA-approved drugs targeting selected pathways, a synthetic
lethal approach for precision oncology will be forthcoming.

Materials and methods
3D Co-cultures. Patient-derived Pa03C tumor cells and CAF19
cancer-associated fibroblast cells were obtained from Dr. Anirban
Maitra (Johns Hopkins) and cultured as previously des-
cribed.14, 17, 18, 180 STR analysis (CellCheck with IDEXX BioResearch)
was used to confirm the identity of the cells and that they were
mycoplasma-free. Cells were passaged up to 10 times before new
stocks were thawed. 3-dimensional tumor spheroids were cultured in
DMEM containing 3% reduced growth factor matrigel (BD Bios-
ciences) and 5% FBS as previously described.14, 64, 275 Cells were
stably transduced as follows: tumor cells with TdTomato (red), CAF
cells with EGFP (green).64, 180 3D cultures were treated on Days 4 and
8 after plating with inhibitors as indicated and analyzed using Thermo
ArrayScan high-content imaging system on Day 12 after plating.276

Western blot analysis. Western blots were performed as pre-
viously described14, 17, 18, 25, 253 with antibodies for Ref-1/APE1
(Novus Biologicals; Littleton, CO), phospho-STAT3 & total-STAT3
(Cell Signaling; Danvers, MA), phospho-histone H2AX (EMD
Millipore; Billerica, MA), and Vinculin (Sigma; St. Louis, MO). All
samples were processed and run in parallel.

Inhibitors. APX3330 was prepared and used as previously
described.14, 27, 28 Ruxolitinib was dissolved in DMSO prior to

dilution in media and use at the concentrations specified (Santa
Cruz; Dallas, Texas).

In vivo CIPN studies in tumor bearing mice. The treatment
protocol is presented in Fig. 6C. IMR32 Neuroblastoma cells253

were implanted subcutaneously into the right flanks of 6-wk old
male NSG mice and allowed to proliferate until tumor volumes ≥
150mm3. Mice were then randomized for treatment with cisplatin
± E3330 treatment. Cisplatin and E3330 were administered
concurrently for 3 weeks (Day 0–Day 17) and endpoints of
neuronal toxicity were assessed within the DRG of mice at several
time points following the last dose of cisplatin. pH2A.X
immunoreactivity was performed on isolated DRG neurons as
previously described253, 254 and shown in Fig. 6D. Quantification of
pH2A.X immunoreactivity after normalization to vinculin was
performed as previously described253, 254 (Fig. 6E). An asterisk
indicates statistical significance between D18 and D24 as
determined by a one-way ANOVA with Tukey’s posttest with p
< 0.05. A cross indicates statistical significance between Veh/Veh
group and the Veh/Cis group, as determined by a two-way ANOVA
with Bonferroni’s posttest with p < 0.05. Mouse monoclonal
anti–phospho-H2A histone X and vinculin antibodies were from
EMD Millipore (Billerica, MA). Chemiluminescence secondary
antibodies were from Roche Diagnostics (Indianapolis, IN). Ref-1
antibody was from Novus Biologicals, CO.253, 254 Cisplatin was
purchased from Sigma-Aldrich (St. Paul, MN). Neuroblastoma cells,
IMR32, were obtained from American Type Culture Collection
(Manassas, VA) and grown in RPMI 1640 medium supplemented
with 10% fetal bovine serum. Cell line identity was confirmed by
DNA fingerprint analysis (IDEXX BioResearch, Columbia, MO) for
species and baseline short-tandem repeat analysis testing. All cell
lines were 100% human and a nine-marker short tandem repeat
analysis is on file. They were also confirmed to be mycoplasma
free. All samples were processed and run in parallel.

Data availability
The data discussed in this review are available from the cited
publications. Additional data supporting studies presented or
discussed are available on request from Dr. Mark R. Kelley.

Fig. 7 APX3330 has broad potential in a variety of cancers. Supportive pre-clinical data exists for APX3330 in combination with each drug
listed in the diagram (yellow boxes) and for each indication (red boxes). The asterisk symbol indicates that in addition to anti-tumor activity,
APX3330 provides neuroprotection when administered with agents causing oxidative damage to neurons. Definitive developmental plans
await results of Phase I study and discussions with key opinion leaders
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