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Abstract: High-throughput sequencing technologies have enabled the generation of single-cell
RNA-seq (scRNA-seq) data, which explore both genetic heterogeneity and phenotypic variation
between cells. Some methods have been proposed to detect the related genes causing cell-to-cell
variability for understanding tumor heterogeneity. However, most existing methods detect the related
genes separately, without considering gene interactions. In this paper, we proposed a novel learning
framework to detect the interactive gene groups for scRNA-seq data based on co-expression network
analysis and subgraph learning. We first utilized spectral clustering to identify the subpopulations
of cells. For each cell subpopulation, the differentially expressed genes were then selected to construct
a gene co-expression network. Finally, the interactive gene groups were detected by learning
the dense subgraphs embedded in the gene co-expression networks. We applied the proposed
learning framework on a real cancer scRNA-seq dataset to detect interactive gene groups of different
cancer subtypes. Systematic gene ontology enrichment analysis was performed to examine the
detected genes groups by summarizing the key biological processes and pathways. Our analysis
shows that different subtypes exhibit distinct gene co-expression networks and interactive gene
groups with different functional enrichment. The interactive genes are expected to yield important
references for understanding tumor heterogeneity.

Keywords: single-cell RNA-seq; machine learning; interactive gene groups; co-expression networks;
subgraph learning

1. Introduction

Recent advances in Next-generation sequencing (NGS) technologies have enabled the generation
of high-throughput single-cell gene expression data exploring both genetic heterogeneity and
phenotypic variation between cells [1,2]. Single-cell RNA-seq (scRNA-seq) acquires transcriptomic
information from individual cells, providing a higher resolution of cellular differences and a better
understanding of cell functions at genetic and cellular levels [3]. In contrast with traditional bulk
RNA-seq that reveals the average gene expression of a collection of cells, scRNA-seq will allow
researchers to uncover new and potentially unexpected biological discoveries [4]. scRNA-seq has
been utilized to study cancer, where tumor heterogeneity poses significant challenges in the
clinical diagnosis, cancer treatment, and patient survival [5]. The unprecedented ability of measuring
gene expression from individual cells holds enormous potential for detecting the clinically important
tumor subpopulations and understanding tumor heterogeneity [6].

Many machine learning methods have been applied to analyze scRNA-seq data for determining
cell types and predicting diagnoses [7]. scRNA-seq data often comes with high dimensionality,
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which involves a large number of genes but a small number of samples. Since the limited
number of samples may lead to overfitting due to the noisy genes [8], dimensionality reduction
methods are usually carried out after counting normalization to avoid the curse of dimensionality,
meanwhile provide visual representations of the cellular composition within high-dimensional data.
Principal component analysis (PCA) [9] and t-Distributed Stochastic Neighbor Embedding (t-SNE) [10]
are wildly used to project high-dimensional gene expression data into a low-dimensional space.
Recently, uniform manifold approximation and projection (UMAP) [11] has been applied to visualize
scRNA-seq data and shows better performance than t-SNE [12]. Other dimensionality reduction
methods such as feature selection [13,14] can also be applied to delete the noisy genes and identify
the most discriminant gene subset for distinguishing different types of cells and finding the biological
information embedded in scRNA-seq data. Recently, some feature extraction tools have been developed
for DNA, RNA and protein sequence analysis, such as BioSeq-Analysis [15] and BioSeq-Analysis2.0 [16]

Besides dimensionality reduction methods, clustering methods are critical to single-cell analysis,
helping to understand potential cellular mechanisms [17]. Classic clustering methods such as
K-means [18], hierarchical clustering [19], and EM [20] can be applied in single-cell clustering directly.
Spectral clustering methods [21,22] which make use of the spectrum of graph Laplacian to reveal
the cluster structure have been reported to be more effective than other classic clustering methods
for scRNA-seq data [3]. Meanwhile, several analysis tools designed for scRNA-seq data provide
clustering methods to improve the capability of data analysis, including Seurat [23], SINCERA [24],
CIDR [25], SC3 [26], and SNN-cliq [27]. Based on the clustering results, diverse downstream expression
analysis can be carried out, such as identification of subpopulations of cells and detection of differential
expression signatures [28].

Existing methods have been proposed to detect the related genes causing cell-to-cell variability
for studying gene expression dynamics [29,30]. Gene co-expression networks are a potent approach to
the identification of genes not yet associated with explicit biological questions and for accelerating
the interpretation of molecular mechanisms at the root of significant biological processes [31].
Some methods using gene co-expression networks have been proposed to identify important genes that
are related to different cancer subtypes [32]. However, most existing methods detect the related genes
separately, without considering gene interactions. Many human diseases are multigenic, which are
caused by the mutations in multiple genes that all affect a single phenotypic trait [33]. Genes regulate
the activity of one-another in large co-expression networks. Therefore, SNPs may not only affect the
activity of a single target gene, but the activity of multiple biologically related genes within the same
co-expression network to influence the manifestation of a phenotype [34]. Thus, it is necessary to
detect interactive genes that are related to different cell subpopulations.

In this paper, to detect the interactive genes for scRNA-seq data, we proposed a novel learning
framework based on co-expression network analysis and subgraph learning. Firstly, spectral clustering
was utilized to identify the subpopulations of cells. Then, for each cell subpopulation, the genes
more strongly differentially expressed were selected to construct a gene co-expression network.
The topological overlap matrix was used to represent the gene connectivity. Finally, the interactive gene
groups were detected by learning the dense subgraphs embedded in the gene co-expression networks.
The proposed framework was applied on a real cancer scRNA-seq dataset to detect the interactive
gene groups of different cancer subtypes. We performed systematic gene ontology enrichment analysis
to examine the potential functions of the detected interactive gene groups by summarizing the key
biological processes and pathways.

2. Materials and Methods

An overview of the proposed learning framework is illustrated in Figure 1. The proposed framework
mainly contains four stages. (a) Filtering rare, ubiquitous, and invariable genes. (b) Spectral clustering to
identify cell subpopulations. (c) Constructing gene co-expression network for each cell subpopulation.
(d) Detecting dense subgraphs embedded in the gene co-expression networks.
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Figure 1. The proposed learning framework to detect interactive gene groups. Four major
steps: (a) Filtering rare, ubiquitous, and invariable genes; (b) Spectral clustering to identify cell
subpopulations; (c) Constructing gene co-expression networks; (d) Detecting dense subgraphs
embedded in the gene co-expression networks.

2.1. Methods: The Proposed Learning Framework

2.1.1. Gene Filtering

In the gene filtering step, we filtered out the rare, ubiquitous, and invariable genes to focus on the
intrinsic transcriptomic signatures of cells in the scRNA-seq data. Since the rare and ubiquitous genes
are usually not useful for identifying different cell subpopulations, the genes that are expressed in less
than r% of cells (i.e., rare genes) or expressed in at least (100− r)% of cells (i.e., ubiquitous genes) were
firstly filtered out. We set r% as 6, as that considered in the previous study [35]. Then, the most c%
variable gene set across the single-cells was identified by controlling the relationship between mean
expression and variability.

2.1.2. Spectral Clustering to Identify Cell Subpopulations

Given a set of n data samples X = {x1, x2, ..., xn} in Rd, the objective of spectral clustering
is to divide the data samples into K clusters. Spectral clustering consists of two main steps:
(1) Dimensionality reduction based on the eigenvectors of the Laplacian matrix; (2) Finding clusters in
the low-dimensional space.

In the first step, a similarity matrix was constructed to calculate the Laplacian matrix.
The similarity matrix S has pairwise similarities sij (i, j = 1, ..., n) as its entries, i.e., S = (sij). By using
the Gaussian kernel function, the pairwise similarity is calculated as

sij =

{
exp(− ‖xi−xj‖2

2σ2 ), if i 6= j ,
0, if i = j,

(1)

where ‖xi − xj‖ is the Euclidean distance between data samples xi and xj, σ is the kernel parameter.
Furthermore, the undirected kNN graph was applied to sparse the similarity matrix, by which sij is
calculated as Equation (1) when xi is one of the k nearest neighbors of xj or xj is one of the k nearest
neighbors of xi, otherwise sij = 0. The normalized Laplacian matrix L was then calculated as L = D− S,
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where D is a n× n diagonal matrix with di = ∑n
j=1 sij on the diagonal. The K smallest eigenvectors

corresponding to the K smallest eigenvalues of L were computed to form a low K-dimensional space.
In the second step, the K-means clustering method was performed to divide the data into K

clusters in the low-dimensional space. By using spectral clustering, the cells in a cluster were identified
as the same subpopulation.

2.1.3. Differentially Expressed Gene Selection

Genes that are more strongly differentially expressed (DE) are more likely to cause separated
clusters of cells [36]. We selected the DE genes for the samples in each cluster to construct the gene
co-expression networks.

To select the DE genes, we used the Welch t-test [37] to test differences in expression
between clusters. Pairwise comparisons between clusters were performed for each gene. The genes
differentially expressed in any pairwise comparison between clusters will be given a low p-value.
For a cluster, we combined the p-value for each gene by combining the p-values across the pairwise
comparisons involving this cluster [38]. For example, considering 3 clusters and combining the p-value
of each gene for cluster 1. Pairwise comparisons between clusters 1 and 2, and between clusters 1 and
3 were performed for each gene, respectively. Then the p-value of each gene in the two comparisons
were combined. The combined p-value for each gene was calculated as the middle-most value by
applying the Holm-Bonferroni correction [39] across its p-values. Thus, in each cluster, a gene will
achieve a low combined p-value if it is strongly differentially expressed in all pairwise comparisons to
other clusters.

Then, we calculated the false discovery rate (FDR) by the Benjamini–Hochberg method [40] based
on the combined p-value. For each cell subpopulation, the genes with 5% FDR were selected as the
DE genes.

2.1.4. Gene Co-Expression Network Construction

For each cell subpopulation, we constructed a gene co-expression network based on the
selected DE genes. A gene co-expression network is a transcript–transcript association network,
generally reported as an undirected graph, in which genes are connected when there is a significant
co-expression relationship between them [41].

Firstly, we calculated the adjacency matrix A = (aij), in which aij is the adjacency value between
gene i and gene j. aij is calculated as

aij = |wij|β, (2)

where wij is the gene-wise similarity which is calculated as the absolute value of the pairwise Pearson
correlation between gene i and gene j, β is the single soft threshold which is chosen by scare free
topology criterion.

Then, we applied the topological overlap matrix (TOM) to calculate the gene connectivity in
the co-expression network. TOM provides the implication of the connected genes and their useful
biological function or pathway [42]. The entries of TOM, i.e., tij, is calculated based on aij as follows.

tij =
∑m aimamj + aij

min{∑m aim, ∑m amj}+ 1− aij
. (3)
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We further constructed a binary matrix B by using 1 to represent the strong similarity and
using 0 to represent the weak similarity. The top g% values in TOM were set as 1 and the rest
were set as 0. The binary matrix B = (bij) directly presents the connectivity between genes in
the co-expression network. That is, bij = 1 if there is an edge between gene i and gene j and
bij = 0 otherwise. In this paper, the g% was set by experience.

2.1.5. Subgraph Detection

We detected the dense subgraphs embedded in the gene co-expression network based on
eigenvector L1 norms of a modularity matrix [43,44]. Newman’s notion of the modularity matrix [45]
associated with an unweighted, undirected graph is given by

M = B− 1
2|E|HHT . (4)

Here B is the binary matrix used to construct the gene co-expression network. H is the degree
vector of the co-expression network, where the ith component of H is the number of edges adjacent
to gene i. |E| is the total number of edges in the co-expression network. Since M is real and
symmetric, it admits the eigendecomposition M = UΛUT , where U is a matrix with each column
being an eigenvector of M, and Λ is a diagonal matrix of eigenvalues.

We detected the dense subgraphs based on L1 properties of the largest eigenvectors corresponding
to the largest eigenvalues of the modularity matrix. The L1 norms of an eigenvector vi = [vi1, vi2, ..., viz]

T

is calculated as

‖ vi ‖=
Z

∑
j=1
|vij|. (5)

Here Z is the number of genes in the co-expression network. The L1 properties of the largest
eigenvectors have been exploited in a graph-theoretic setting for finding maximal cliques. If a small
set of genes are interactive, i.e., forms a community group in the co-expression network, there will be
an eigenvector well aligned with this set, which implies that the L1 norm of this eigenvector would
be smaller than that of an eigenvector with a similar eigenvalue when there is no dense subgraph.
The genes involved in dense subgraph are probably interactive since they are tightly connected.

2.2. Materials

In this study, we used a single-cell expression dataset from a recent scRNA-seq study,
i.e., GSE72056 [46], which was selected from the data repository NCBI Gene Expression Omnibus.
In this dataset, 4645 single cells with 23684 genes were isolated from 19 patients with melanoma tumor.
There are 1257 malignant melanoma tumor cells and 3388 benign tumor cells. The detailed number of
cells in each sample/patient is listed in Table 1.

The proposed framework was applied to the malignant melanoma tumor cells to identify the
cancer subtypes and detect the interactive gene group in each cancer subtype. As shown in Table 1,
the 1257 malignant cells were derived from 15 patients. The dataset was transformed by logTPM
before being processed by the proposed framework.
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Table 1. Number of cells in each sample/patient.

Sample ID Total Cells Benign Cells (Percentage) Malignant Cells (Percentage)

Melanoma_53 143 127 (88.8%) 16 (11.2%)
Melanoma_58 142 142 (100%) 0
Melanoma_59 70 16 (22.9%) 54 (77.1%)
Melanoma_60 226 217 (96.0%) 9 (4.0%)
Melanoma_65 63 59 (93.7%) 4 (6.3%)
Melanoma_67 95 95 (100%) 0
Melanoma_71 89 35 (39.3%) 54 (60.7%)
Melanoma_72 181 181 (100%) 0
Melanoma_74 147 147 (100%) 0
Melanoma_75 344 341 (99.1%) 3 (0.9%)
Melanoma_78 131 11 (8.4%) 120 (91.6%)
Melanoma_79 896 428 (47.8%) 468 (52.2%)
Melanoma_80 480 355 (74.0%) 125 (26.0%)
Melanoma_81 205 72 (35.1%) 133 (64.9%)
Melanoma_82 84 52 (61.9%) 32 (38.1%)
Melanoma_84 159 145 (91.2%) 14 (8.8%)
Melanoma_88 351 234 (66.7%) 117 (33.3%)
Melanoma_89 475 377 (79.4%) 98 (20.6%)
Melanoma_94 364 354 (97.3%) 10 (2.7%)

3. Results

3.1. Identification of Cancer Subtypes

We applied spectral clustering to identify the cancer subtypes due to its superior performance
compared to other classic clustering methods. To evaluate the performance of spectral clustering,
we first compared spectral clustering with other classic clustering methods, i.e., K-means [18],
hierarchical clustering [19], EM [20], on the clustering task: clustering the 4645 cells in GSE72056
into two clusters (malignant and benign tumor cells). We used the adjusted rand index (ARI) [47] to
measure the accuracy of clustering results. A larger value of ARI indicates a better clustering result.
The comparison result is shown in Figure 2. We can see that spectral clustering outperforms other
classic clustering methods.

Figure 2. Performance comparison of different clustering methods. Adjusted rand index (ARI) is
employed to measure the accuracy of clustering results.

Then, spectral clustering was applied to identify the cancer subtypes of malignant melanoma
tumor in GSE72056. Since there is no ground truth of the clusters for these malignant cells,
we applied Calinski-Harabaz Index [35] to decide the number of clusters. Spectral clustering identified
six clusters, i.e., six cancer subtypes, in the dataset. In spectral clustering, the six smallest eigenvectors
corresponding to the six smallest eigenvalues of the Laplacian matrix were computed to form a low
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six-dimensional space. Since six-dimensional space cannot be visualized directly, we show the
three-dimensional spaces constructed by the first three eigenvectors and the last three eigenvectors in
Figure 3a,b, respectively. We can see that the three clusters denoted by red, pink, and green colors can
be separated by the first three eigenvectors, and the other three clusters denoted by brown, purple,
and black colors can be separated by the last three eigenvectors. Thus, by using the six eigenvectors,
the six clusters can be separated and identified.

(a) First three eigenvectors (b) Last three eigenvectors

Figure 3. Three-dimensional spaces constructed by (a) the first three eigenvectors and (b) the last
three eigenvectors. Different colors denote different clusters output by spectral clustering.

We also visualized the clustering result of spectral clustering by t-SNE and UMAP,
the corresponding results are shown in Figure 4a,b, respectively. Spectral clustering displays six
clearly recognizable clusters in the two-dimensional space constructed by both t-SNE and UMAP.
The two-dimensional space constructed by UMAP shows more clearly recognizable clusters than that
by t-SNE.

(a) t-sne (b) UMAP

Figure 4. Visualization of cancer subtypes identified by spectral clustering from human melanoma
scRNA-seq data set in two-dimensional space constructed by (a) t-SNE and (b) UMAP, respectively.
Different colors denote different clusters output by spectral clustering.

We listed the 6 cell subpopulations presented in each sample/patient in Table 2. For each
sample/patient, the majority of cells belonging to a subtype was highlighted in bold-face type. We can
see from Table 2, in most cases, the subpopulations are indeed present in the same patients (100%)
or the majority of cells in the same patients (>92%). Some patients may refer to more than one
melanoma subtype, such as Melanoma_60 and Melanoma_94.
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Table 2. Cell subpopulations presented in each sample/patient. The majority of cells belonging to a
subtype was highlighted in bold-face type.

Sample ID Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5 Subtype 6

Melanoma_53 0 0 16 (100%) 0 0 0
Melanoma_59 52 (96.3%) 0 0 0 0 2 (3.7%)
Melanoma_60 1 (11.1%) 0 0 6 (66.7%) 1 (11.1%) 1 (11.1%)
Melanoma_65 4 (100%) 0 0 0 0 0
Melanoma_71 50 (92.6%) 1 (1.8%) 0 0 0 3 (5.6%)
Melanoma_75 3 (100%) 0 0 0 0 0
Melanoma_78 6 (5.0%) 0 0 114 (95.0%) 0 0
Melanoma_79 2 (0.4%) 465 (99.4%) 0 0 1 (0.2%) 0
Melanoma_80 0 0 0 0 0 125 (100%)
Melanoma_81 2 (1.5%) 0 131 (98.5%) 0 0 0
Melanoma_82 0 0 32 (100%) 0 0 0
Melanoma_84 1 (7.1%) 1 (7.1%) 0 0 1 (7.1%) 11 (68.7%)
Melanoma_88 116 (99.1%) 0 0 0 0 1 (0.9%)
Melanoma_89 1 (1.0%) 0 0 0 97 (99.0%) 0
Melanoma_94 6 (60.0%) 1 (10.0%) 2 (20.0%) 0 1 (10.0%) 0

3.2. Detecting Interactive Gene Groups

We detected the interactive gene groups from each cancer subtype identified by spectral clustering.
In each cancer subtype, the DE genes were selected to construct a gene co-expression network.
The numbers of selected DE genes for subtypes 1 to 6 are 3092, 4679, 5644, 4364, 4538, and 2533,
respectively. We used the WGCNA [48] to calculate the TOM matrix. The top g% values to be 1 for
subtypes 1 to 6 were set as 3.5, 1.5, 0.4, 0.9, 0.9, and 0.9, respectively. A binary matrix was formed
based on the TOM matrix to decide the edges in the gene co-expression network. Then, the interactive
gene groups were detected based on the eigenvector L1 norms of the modularity matrix which was
calculated based on the binary matrix.

For each cancer subtype, we computed the largest 100 eigenvectors of the modularity matrix and
the L1 norm of each eigenvector. Comparing each L1 sequence to a “smoothed” version, we selected
the two eigenvectors that deviate the most from this trend [43]. For the six cancer subtypes, the two
eigenvectors that deviate most are those with the smallest L1 norm. Figures 5 and 6 show the plots of
the L1 norms of the largest 100 eigenvectors and the scatterplots in the space of the corresponding two
eigenvectors with the smallest L1 norm. The eigenvectors declared are highlighted by circles.

The dense subgraphs detected by L1 analysis are presented in Table 3. Two subgraphs are first
chosen from each cancer subtype, corresponding to the points highlighted by circles in the scatterplots
in Figures 5 and 6. The two subgraphs are denoted as Subg 1 and Subg 2 in Table 3. For each subgraph,
we listed the size (number of genes), density (internal edges divided by the maximum number of
edges), and the eigenvector that separates it from the co-expression network. ej denotes the jth largest
eigenvector. We can see from Table 3, the detected subgraphs are quite dense, all with 100% density.
That is, the genes are connected to each other in each detected subgraph.

We then examined the genes in the detected dense subgraph. We found that the genes in
a detected subgraph are highly connected, however, they may isolate from other genes outside
the subgraph. For example, subgraph 1 detected in cancer subtype 2, as shown in Figure 7. Figure 7
shows the gene co-expression network of cancer subtype 2, constructed by the Cytoscape software [49].
Two detected subgraphs are highlighted by red circles in the gene co-expression network. To see
the genes in the subgraphs, we further enlarge the two detected subgraphs and show them in two
green squares, respectively. The above green square shows Subg 1, in which the 10 genes, i.e., SNAR-A9,
SNAR-A6, SNAR-A14, SNAR-A11, SNAR-A4, SNAR-A8, SNAR-A7, SNAR-A3, SNAR-A5, SNAR-A10,
are highly connected. These genes are not connected to other genes outside Subg 1. The genes in Subg
1 have a very close relationship since they have the same prefix name. Note that the scatterplots of
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these genes in the space of two eigenvectors in Figure 5d, i.e., the points in the left circle, also isolate
from other points/genes. Similar subgraphs are detected in subtypes 3 (Subg 1) and 6 (Subg 1),
which are corresponding to the points in the left circle in Figure 5f and the points in the right circle in
Figure 6f, respectively. The genes in Subg 1 of subtypes 3 are CT47A4, CT47A10, CT47A6, CT47A2,
CT47A3, CT47A5, CT47A11, CT47A12, CT47A8, CT47A9, CT47A1, CT47A7, while the genes in Subg
1 of subtypes 6 are SNAR-A6, SNAR-A5, SNAR-A4, SNAR-A7, SNAR-A9, SNAR-A10, SNAR-A3,
SNAR-A8. These genes in the detected subgraph all have the same prefix name.

(a) L1 norms in Subtype 1 (b) Scatterplot in Subtype 1

(c) L1 norms in Subtype 2 (d) Scatterplot in Subtype 2

(e) L1 norms in Subtype 3 (f) Scatterplot in Subtype 3

Figure 5. Eigenvector L1 norms (left column): (a) L1 norms in Subtype 1, (c) L1 norms in Subtype 2,
and (e) L1 norms in Subtype 3. Scatterplots of the projection into the subspace defined by the indicated
eigenvectors (right column): (b) Scatterplot in Subtype 1, (d) Scatterplot in Subtype 2, and (f) Scatterplot
in Subtype 3.
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(a) L1 norms in Subtype 4 (b) Scatterplot in Subtype 4

(c) L1 norms in Subtype 5 (d) Scatterplot in Subtype 5

(e) L1 norms in Subtype 6 (f) Scatterplot in Subtype 6

Figure 6. Eigenvector L1 norms (left column): (a) L1 norms in Subtype 4, (c) L1 norms in Subtype 5,
and (e) L1 norms in Subtype 6. Scatterplots of the projection into the subspace defined by the indicated
eigenvectors (right column): (b) Scatterplot in Subtype 4, (d) Scatterplot in Subtype 5, and (f) Scatterplot
in Subtype 6.
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Table 3. Dense subgraphs detected by L1 analysis.

Subtype Subgraph Eigenvector Subgraph Size Subgraph Density

Subtype 1 Subg 1 e5 20 100%
Subg 2 e11 9 100%

Subtype 2 Subg 1 e62 10 100%
Subg 2 e12 13 100%

Subtype 3 Subg 1 e36 12 100%
Subg 2 e23 15 100%

Subtype 4 Subg 1 e13 13 100%
Subg 2 e11 13 100%

Subtype 5 Subg 1 e26 12 100%
Subg 2 e27 9 100%

Subtype 6 Subg 1 e32 8 100%
Subg 2 e9 13 100%

Figure 7. Two detected subgraphs in the gene co-expression network of cancer subtype 2. Two detected
subgraphs are highlighted by red circles. Genes in the subgraphs are shown in the green squares.

We further performed systematic gene ontology enrichment analysis on the genes in a subgraph
by using DAVID tools and summarize the key biological processes and pathways [50]. We have
detected two subgraphs for each cancer subtype. Table 4 lists the enrichment analysis of the genes in
one subgraph for each cancer subtype, in which the genes in the listed subgraph that are more enriched
than those in another. For example, the genes in Subg 1 for cancer subtype 1 are listed since the analysis
of genes in Subg 1 are more enriched than those in Subg 2. These modules are enriched for biologically
important processes that are relevant to melanoma, such as cell cycle. The abnormal proliferation
resulting from alterations in cell cycle regulatory mechanisms will lead to the transformation of
melanocytes to melanoma cells [51]. In Table 4, we also summarize the number of genes that are
involved in the same term type and write it in brackets, e.g., BP: cell cycle (18) means that 18 genes
in Subg 1 are involved in BP: cell cycle, which are BUB1, FANCI, TPX2, ASPM, ANLN, AURKB,
BIRC5, CENPF, CENPM, CDK1, DTL, MKI67, NUSAP1, PKMYT1, TYMS, TOP2A, UBE2C, UHRF1.
In subtype 2, the largest number of genes belonging to the same type is 10, which are BUB1, ANLN,
BIRC5, CENPF, KIFC1, NCAPH, NUSAP1, TYMS, TOP2A, UBE2C, and they are involved in BP: mitotic
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cell cycle process. In subtype 3, the most connected genes are also involved in BP: mitotic cell cycle
process., which are NDC80, RACGAP1, TTK, CCNB1, CDKN3, CKAP2, FAM64A, FOXM1, KIF14,
KIF20A, KIF20B, KIF4A, SKA3. We can see that these genes are different from those involved in BP:
mitotic cell cycle process in subtype 2. A similar result can be found in the most highly connected
genes in subtype 4 and subtype 6, which are involved in the same term type but the related genes
are different. That may be because for different cancer subtypes the informative genes are different.
We also can see from the enrichment analysis results in Table 4, the genes in the detected subgraph are
closely related. For example, there are 20 genes in Sunb1 of subtype 1 and 18 of them are involved
in the same term type. For Subg 2 in subtype 5, all the genes are involved in the same term type,
i.e., BP: cellular macromolecule. The interactive genes detected in different cancer types are expected
to yield important references for finding new markers and understanding tumor heterogeneity.

Table 4. Significant genes and Gene Ontology (GO) analysis of the co-expression networks of different
melanoma subtypes.

Subgraph Gene List Term Type & Name p-Value

Subtype 1: Subg 1 UHRF1, TK1, UBE2T, FANCI, BP: cell cycle (18) 1.4 × 10−15

DTL, TYMS, CENPF, NUSAP1, BP: nuclear division (13) 1.2 × 10−13

BIRC5, TOP2A, UBE2C, CENPM, CC: chromosome (11) 6.4 × 10−8

TPX2, CDK1, ANLN, ASPM, KEGG: Cell cycle (3) 8.4 × 10−3

BUB1, MKI67, PKMYT1, AURKB

Subtype 2 : Subg 2 GGH, TK1, TYMS, BP: sister chromatid segregation (8) 5.4 × 10−11

BUB1, UBE2C, BIRC5, CENPF, BP: mitotic cell cycle process (10) 6.5 × 10−10

ANLN, NUSAP1, UBE2T, BP: chromosome organization (8) 5.2 × 10−6

TOP2A, NCAPH, KIFC1 KEGG: Pyrimidine metabolism (3) 8.5 × 10−2

Subtype 3: Subg 2 LMNB1, CKAP2, FOXM1, TTK, BP: mitotic cell cycle process (13) 6.2 × 10−15

NDC80, DEPDC1B, KIF20A, BP: cell division (10) 4.2 × 10−11

KIF4A, CDKN3, FAM64A, KIF14, CC: spindle (9) 8.8 × 10−11

RACGAP1, CCNB1, SKA3, KIF20B BP: microtubule-based process (9)) 3.8 × 10−9

MF: microtubule binding (5) 1.2 × 10−5

KEGG:Cell cycle (2) 1.8 × 10−2

Subtype 4: Subg 2 ORC6, KIF20B, RTKN2, EZH2, BP: mitotic cell cycle (9) 5.1 × 10−8

CENPW, BRCA2, ARHGAP11B, BP: organelle fission (6) 4.6 × 10−5

KIAA1524, TIMELESS, CC: centrosome (6) 3.7 × 10−4

CEP55, PLK4, ESPL1, NEIL3 BP: DNA metabolic process (5) 4.3 × 10−3

Subtype 5 : Subg 2 CDCA7, MCM4, DSCC1, BP: DNA replication (7) 7.2 × 10−10

CHAF1A, E2F7, HELLS, CC: chromosomal part (7) 8.5 × 10−7

GINS2, MCM5, MCM10 MF: helicase activity (4) 3.6 × 10−5

BP: cellular macromolecule (9) 6.7 × 10−5

KEGG: DNA replication (2) 5.2 × 10−3

Subtype 6: Subg 2 FANCI, TYMS, BIRC5, ASPM, BP: mitotic cell cycle (11) 2.5 × 10−11

PRC1, CENPF, TK1, BP: organelle fission (9) 1.6 × 10−9

TOP2A, KIF14, NDC80, CC: condensed chromosome (6) 4.4× 10−7

HMGB2, MKI67, CDC20 KEGG: Pyrimidine metabolism (2) 5.7 × 10−2

4. Conclusions and Discussion

scRNA-seq brings unprecedented insights into cellular heterogeneity, in which detecting the
related genes causing cell-to-cell variability is critical. The related genes are usually detected separately
without considering gene interactions. However, considering gene interaction is important since
many human diseases are multigenic. In this paper, we proposed a novel learning framework
to detect the interactive genes for scRNA-seq data based on co-expression network analysis and
subgraph learning. We identified the cell subpopulations using spectral clustering and selected the
differentially expressed genes to construct a gene co-expression network for each cell subpopulation.



Cells 2020, 9, 1938 13 of 15

The interactive gene groups were detected by learning the dense subgraphs embedded in the gene
co-expression networks. We applied the proposed learning framework on the real melanoma tumor
scRNA-seq dataset. Six cancer subtypes were identified, and we detected the interactive gene groups
from each cancer subtype. The genes were highly connected, i.e., connected to each other, in each
detected gene group. Systematic gene ontology enrichment analysis was performed to examine the
potential functions of the detected interactive genes by summarizing the key biological processes
and pathways. Our analysis shows that different subtypes exhibit distinct gene co-expression networks
and interactive gene groups with different functional enrichment. The interactive genes are expected
to yield important references for understanding tumor heterogeneity.

Although our framework is proposed for scRNA-seq data and the experimental results are from
the application on melanoma tumor dataset, the proposed framework is generally applicable to other
types of biological data and other types of tumors. For example, the proposed framework can be
apply to protein datasets to analyze the signal transduction pathways in protein interaction networks.
Other types of biological data with the need for detecting interactive groups can apply the subgraph
detection methods in the proposed framework.

Nevertheless, the current learning models in the proposed framework still have some limitations.
Firstly, we used a published dataset with a low number of cells. In future work, we will
analyze scRNA-seq datasets with a larger number of cells to better demonstrate the power of the
proposed framework. Secondly, some known human gene-disease interactions can be integrated
to improve the learning models. For example, using the known information to improve the model
parameter setting. Thirdly, some ensemble learning and feature selection procedures can be properly
integrated into the clustering process to enhance performance. Fourthly, significance of the findings can
be much more articulate and interpreted in the light of the up-to-date knowledge of melanoma biology.
We will leave these issues for future work.
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