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Abstract

The Arabidopsis thaliana genome contains 20 CNGCs, which are proposed to encode cyclic nucleotide gated, non-selective,
Ca2+-permeable ion channels. CNGC7 and CNGC8 are the two most similar with 74% protein sequence identity, and both
genes are preferentially expressed in pollen. Two independent loss-of-function T-DNA insertions were identified for both
genes and used to generate plant lines in which only one of the two alleles was segregating (e.g., cngc7-1+/2/cngc8-22/2
and cngc7-32/2/cngc8-1+/2). While normal pollen transmission was observed for single gene mutations, pollen harboring
mutations in both cngc7 and 8 were found to be male sterile (transmission efficiency reduced by more than 3000-fold).
Pollen grains harboring T-DNA disruptions of both cngc7 and 8 displayed a high frequency of bursting when germinated
in vitro. The male sterile defect could be rescued through pollen expression of a CNGC7 or 8 transgene including a CNGC7
with an N-terminal GFP-tag. However, rescue efficiencies were reduced ,10-fold when the CNGC7 or 8 included an F to W
substitution (F589W and F624W, respectively) at the junction between the putative cyclic nucleotide binding-site and the
calmodulin binding-site, identifying this junction as important for proper functioning of a plant CNGC. Using confocal
microscopy, GFP-CNGC7 was found to preferentially localize to the plasma membrane at the flanks of the growing tip.
Together these results indicate that CNGC7 and 8 are at least partially redundant and provide an essential function at the
initiation of pollen tube tip growth.
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Introduction

Fertilization in flowering plants requires a series of carefully

coordinated events, including pollen grain germination, pollen

tube growth, and directional changes in pollen tube tip growth

that guide pollen tubes into the micropyle of an ovule [1–3]. When

pollen tubes reach a synergid, they burst and discharge sperm cells

[4–7]. These series of events involve signaling processes that

coordinate dynamic changes in the cytoskeleton, ion homeostasis,

and membrane trafficking.

Ca2+ signals are thought to play a central role in pollen tube tip

growth and fertilization [8–12]. Evidence from pharmacological

and genetic approaches support an important role for at least two

different types of Ca2+-permeable channels, cyclic nucleotide gated

channels (CNGCs) and glutamate receptor-like proteins (GLRs)

[13–18]. In addition, a knockout of a plasma membrane Ca2+-

pump ACA9 results in pollen defects that include slow tube growth

and a reduced ability to discharge sperm cells to synergids [19]. A

double knockout of two pollen-expressed Ca2+-dependent protein

kinases CPKs 17 and 34 results in tubes that are slow, short and

impaired in their ability to find ovules [20]. Moreover, Ca2+

signals have been implicated in regulating the dynamics of the

actin cytoskeleton [21,22] and the activity of Rops, which are

small GTPases that can regulate cytoskeletal and secretory

processes [22–24].

In Arabidopsis thaliana, 6 of the 20 CNGCs show detectable

expression in pollen [25,26] and CNGC18 was shown to be

essential for pollen tube tip growth [13,14]. This is consistent with

pharmacological evidence that cyclic nucleotide monophosphate

(cNMP) signals can trigger growth-altering Ca2+ signals [27–29].

While it is possible that cNMP triggered Ca2+ signals are a direct

result of Ca2+ conductance through a CNGC, these channels are

also permeable to K+, and could be functioning in a way that

indirectly triggers a Ca2+ release from an internal store [9,30,31].
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Regardless, a GFP-tagged CNGC18 was found to localize to the

growing apical region [13,14], supporting a model in which cNMP

signals have a specific role in regulating signaling and tip growth.

Here we show that two additional pollen-expressed CNGCs (7

and 8) are essential to pollen tube growth. A double knockout of

CNGC7 and 8 results in pollen grains that burst when germinated

in vitro. A GFP-tagged CNGC7 was found to localize to the plasma

membrane, with the strongest GFP signal at the flanks of the

pollen tube tip. This favors a model in which the formation and

maintenance of pollen tube tip growth requires multiple CNGCs,

including CNGC18 and either CNGC7 or 8.

Results

CNGC7 and 8 have Redundant Functions Required for
Pollen Transmission

Among the six CNGCs that are most highly expressed in A.

thaliana pollen (Figure 1), CNGC7 (At1g15990) and 8 (At1g19780)

are the two most closely related (74% aa identity). To determine if

these genes have redundant functions in pollen development, two

independent T-DNA gene disruptions for each gene were obtained

from publically available T-DNA insertion collections: cngc7-1, 7-3,

8-1, and 8-2 [32–34] (Figure 2). The cngc7-3 and 8-2 alleles have

insertions located in exons that encode essential features for a

CNGC. As individual mutations, all four insertions showed normal

Mendelian segregation when heterozygous plants were self-

fertilized or tested for pollen transmission in a manual cross

(Table 1).

The creation of plants harboring independent sets of double

knockouts required the identification of cross-over recombination

events between different pairs of cngc7 and 8 T-DNA insertions,

since CNGC7 and 8 are closely linked on chromosome 1 (Figure 1).

Plant lines with different sets of alleles were allowed to self-fertilize

and plant lines with the following 4 genotypes were identified in

which only one of the two alleles was segregating: cngc7-3 (2/2)/

8-1 (+/2 Sulfr), cngc7-3 (+/2)/8-1 (2/2), cngc7-1 (2/2)/8-2 (+/

2 Sulfr), and cngc7-1 (+/2 Bastar)/8-2 (2/2). For three of these

genotype combinations, the segregating allele is linked to a unique

selectable marker-gene associated with the T-DNA insertion, either

providing resistance to glufosinate ammonium (Bastar) or sulfadi-

azine (Sulfr).

To try and identify a homozygous cngc7/8 double knockout,

cngc7/8 combinations segregating only one of the mutant alleles

were allowed to self-fertilize, and the progeny was genotyped by

PCR assays. In more than 389 progeny analyzed, no plants were

found harboring a double homozygous mutation (Table 1). This

segregation distortion was corroborated by analyzing the trans-

mission frequencies of the Bastar or Sulfr markers associated with

two different cngc7/8 knockout combinations (, 49% marker

transmission observed versus 75% expected, n = 1236).

To determine if the inability to segregate a homozygous cngc7/8

mutant was due to a male or female defect, reciprocal crosses were

conducted with three of the different allele combinations. For

transmission of the cngc7/8 double mutation through the female,

we observed the expected 50% transmission frequency (n = 451,

Table 1). In contrast, no male transmission events were ever

detected in more than 6766 progeny analyzed, indicating that

pollen transmission was reduced by more than 3000-fold.

To corroborate that the cngc7/8 mutations used here represent

loss of function null alleles (i.e., knockout), we tested whether the

pollen transmission phenotype could be rescued by pollen

expression of a transgene encoding either CNGC7 or 8. The N-

terminal ends of CNGC7 and 8 were engineered with either GFP

or a FLAG-tag, and the transgenes were expressed under the

control of either a strong or weak pollen promoter (derived from

the regulatory regions upstream of the pollen-expressed Ca2+-

pump ACA9 [19] or CNGC18 [13,14], respectively). Outcrosses to

a female cngc7-3 (2/2) were done using pollen from plants that

were cngc7-3 (2/2)/8-1 (+/2 Sulfr) and hemizygous for a

transgene encoding either a GFP- or FLAG-tagged CNGC7 or

8. In this situation, meiosis produces pollen with the following 4

genotypes: cngc7/8 (+/2 the transgene) and cngc7/CNGC8 (+/2 the

transgene). Since a cngc7/8 pollen without a transgene fails to show

any transmission (see Table 1), only 3 of the 4 meiotic products

have the potential for transmission. Thus, a transgene providing a

perfect rescue of cngc7/8 pollen would result in 33% of the progeny

showing the transmission of the cngc7/8 double knockout, as

scored by the segregation of the Sulfr marker associated with the

Figure 1. Expression profiles showing preferential pollen
expression for six CNCGs in Arabidopsis thaliana. A) Relative
expression levels in different tissues are shown for CNGC7, 8, 9, 10, 16,
and 18 (AT1G15990, AT1G19780, AT4G30560, AT1G01340, AT3G48010,
and AT5G14870, respectively) obtained from the Arabidopsis eFP
Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) [55] The ex-
pression of CNGC7 in dry seed was arbitrarily set to 1, and the rest of the
data normalized accordingly. B) Relative expression levels of pollen
expressed CNGCs at different stages of pollen development obtained
from The Pollen Transcriptome Navigator (http://pollen.umd.edu/),
which uses data from Honys and Twell, 2004 [25] (left half) and Qin
et al., 2009 [26] (right half). Developmental stages are denoted as MS:
microspore; BC: bicellular; TC: tricellular; MP: mature pollen; 0.5 h:
pollen tube germinated in vitro for 30 minutes. 4 h: pollen tube
germinated in vitro for 4 hours, and SIV: pollen tubes after semi-in vivo
growth through a stigma. For each data set, the expression of CNGC7 in
microspore and dry pollen were arbitrarily set to 1 and rest of the data
normalized accordingly.
doi:10.1371/journal.pone.0055277.g001
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cngc8-1 allele. While all transgene variations tested were able to

rescue the cngc7/8 pollen transmission defect to some extent, the

best transmission frequencies (23 to 27%) were observed for pollen

harboring a FLAG-CNGC7 transgene expressed under the control

of the relatively weak CNGC18 promoter (Figure 3). These results

indicate that the cngc7/8 mutations studied here result in loss of

function phenotypes that can rescued by a transgene encoding

either a CNGC7 for CNGC8.

A Regulatory Site Mutation Impairs the Function of
CNGC7 and 8

To generate a mutant plant with only a partial rescue of cngc7/8,

rescue constructs were engineered to encode mutant versions of

CNGC7 and 8 that contained an F589W or F624W substitution,

respectively. These substitutions are positioned at a site conserved

in plant CNGCs near the carboxyl end of the predicted cyclic

nucleotide binding domain (CNBD) and the beginning of a

potentially overlapping calmodulin binding-site (CaMBS) (Figure

S1).

The respective rescue constructs harboring F to W substitutions

were introduced into plants in which the cngc7 allele was

homozygous and the 8 allele was segregating (i.e., cngc7-3 (2/2)/

8-1 (+/2 Sulfr)). Pollen was then outcrossed and the transmission

frequency of a cngc7/8 double knockout scored in progeny by

either PCR genotyping or the expression of a Sulfr phenotype. In

contrast to a robust rescue using a wild type version of a FLAG-

CNGC7 or 8, the incorporation of an F to W substitution (at amino

acids 589 and 624, respectively) reduced the pollen transmission

efficiency by 10 to 20-fold (Figure 3).

To evaluate whether the F to W substitutions would also

compromise the seed set potential in a homozygous mutant,

homozygous cngc7-3/8-1 lines rescued with a FLAG-CNGC7-

F589W were identified by PCR genotyping. Although individual

plants sometimes showed a reduction in seed set compared to wild

type controls, this phenotype was not consistently observed. To

understand the cause of this variation, three different plants

displaying poor seed set were manually fertilized with the plant’s

own pollen. In these cases, the manual self-fertilization was able to

restore full seed set. This indicates that the variation in seed set is

not a defect associated with the female gametophyte. Rather, the

variation is either a result of less pollen being delivered to the

stigma, and/or a further decrease in pollen fitness due to unknown

variations in growth environments or plant health.

cncg7/8 Pollen Grains Burst as they Germinate
To determine why cngc7/8 mutant pollen are sterile, we first

conducted a semi- in vivo pollen tube growth assay using pollen

Figure 2. Diagram of the genomic structure of CNGC7 and 8 and
related T-DNA insertions. A) Locations of T-DNA insertions are shown
for cngc7-1, cngc7-3, cngc8-1 and cngc8-2. Arrows indicate the direction
of the T-DNA left border. Coding sequences are highlighted with
expanded rectangles; lines indicate introns and flanking DNA sequenc-
es. CNGC7 and CNGC8 each have five exons, and encode proteins with
six transmembrane spanning domains (S1-6; highlighted in black); a
pore between S5 and S6 (shaded), a cyclic nucleotide binding domain
(CNBD; shaded), and a calmodulin (CaM) binding site (CaMBS; shaded
with gray lines) (after Köhler et al., 1999 [55] ). B) A diagram of
chromosome 1 showing the arrangement of 2 different combinations of
cngc7 and 8 alleles in which one of the two alleles is segregating with
either a Bastar or Sulfr marker.
doi:10.1371/journal.pone.0055277.g002

Table1. Segregation analysis showing a pollen transmission
defect associated with a double knockout of cngc7/8.

Cross F1 Segregation of +/2 T-DNA

Female X Male Total
Expect
%a

Observed
% p- valueb

Crosses with single mutants

cngc7-1+/2; SELFED 559 75 74.1f, e 0.99

cngc7-3+/2; SELFED 178 75 74.7c 0.99

cngc8-1+/2; SELFED 1347 75 74.5d 0.97

cngc8-2+/2; SELFED 1409 75 77.4d 0.6

WT X cngc7-1+/2 37 50 54c 0.95

WT X cngc7-3+/2 71 50 51c 0.99

WT X cngc8-2+/2 206 50 50d 1

Crosses with double mutants (one gene 2/2, second gene +/2)

cngc7-12/2, 8-2+/2; SELFED 637 75 50d ,0.0001

cngc7-1+/2, 8-22/2;SELFED 599 75 47.7g,h ,0.0001

cngc7-3+/2, 8-12/2; SELFED 76 75 51c,h #0.06

cngc7-12/2, 8-2+/2 X WT 143 50 55d 0.7

cngc7-32/2, 8-1+/2 X WT 308 50 55d 0.5

WT X cngc7-1+/2, 8-22/2 727 50 0e ,0.0001

WT X cngc7-12/2, 8-2+/2 756 50 0d ,0.0001

WT X cngc7-32/2, 8-1+/2 5283 50 0d ,0.0001

aExpected percentages based on Mendelian segregation.
bSignificance determined by the Pearson’s Chi-Squared test with two degrees
of freedom.
cPCR genotyping.
dMutant allele scored by Sulfr marker.
eMutant allele scored by Bastar maker.
f117 by PCR genotyping.
g313 by PCR genotyping.
hno homozygous double knockout found.
doi:10.1371/journal.pone.0055277.t001
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from a double knockout mutant segregating a GFP-CNGC7 rescue

construct to 50% of the pollen grains. To set up these assays,

receptive stigmas were manually pollinated and then cut and

transferred to an agar surface for semi-in vivo growth. The only

tubes observed to grow were those that showed GFP fluorescence,

and therefore were rescued by a GFP-CNGC7 transgene (n = 27).

The absence of any tubes without a GFP-CNGC7 suggested that

non-rescued mutant tubes were defective at some early stage of

pollen grain germination or tube growth.

In vitro pollen germination assays were then used to specifically

evaluate potential defects at early stages of tip growth initiation. In

these assays, we evaluated two different combinations of cngc7/8

alleles in which only one of the alleles was segregating. For both

allele combinations, we observed a high frequency (50 to 60%) of

pollen grains bursting (Figure 4). In contrast, wild type controls

showed an average bursting frequency of less than 10%. For cngc7/

8 mutants, the bursting events usually occurred before any tube

growth could be detected (see Figure 5D for example). Similar

bursting phenotypes and frequencies were observed using two

different standard germination media.

A cngc7/8 -dependent bursting phenotype was confirmed in two

ways (Figure 4). First, in vitro germination assays were done with

homozygous cngc7/8 mutants in which 50% of the pollen were

expressing a rescue construct encoding GFP-CNGC7 (i.e., parent

plants were hemizygous for the transgene). Plants segregating 50%

of their pollen with a rescue construct were identified by imaging

pollen from each plant for the expression of GFP. Using pollen

from these plants, the bursting frequency was near 50% (n = 684).

This is consistent with the expectation that 50% of the mutant

pollen would be rescued from bursting through the expression of a

GFP-CNGC7. This was corroborated by confocal fluorescence

microscopy, which revealed that the only tubes to grow beyond the

budding stage were those that showed GFP fluorescence (n .50).

A second approach was to examine the frequency of bursting in

mutant pollen grains from cngc7/8 plants that harbor transgenes

that conferred only a partial rescue. For these pollen expressing

either CNGC7-F589W or CNGC8-F624W, the bursting frequen-

Figure 3. The cngc7/8 pollen transmission defect can be
rescued by CNGC7 and 8 transgenes. Pollen transmission efficien-
cies for cngc7/8 are shown, as scored by the transmission of the Sulfr

marker to F1 progeny. The Sulf r marker was associated with the cngc8-1
allele that was segregating in the parental line. The cngc7-3 allele was
homozygous. Pollen outcrosses were made by manually pollinating
females that were wild type or cngc7-3(2/2) with equivalent results. All
pollen outcrosses were done using male parents that were verified by
reciprocal crosses to be hemizygous for the transgene. In these pollen
outcross assays, a perfect rescue would result in 33% of the progeny
carrying the Sulfr marker; because only 3 of the 4 meiotic products have
the potential to show transmission to F1 progeny (see text). Numbers
preceded by ss (seed stock) under each bar represent independent
transgenic lines used for outcrossing. Homozygous double knockout
seed stocks, created by selfing or out-crossing, are identified in Figure
S4. Lines shown displayed typical rescue efficiencies mediated by
transgene constructs for GFP-7 (9p-i-GFP-CNGC7), FLAG-7 or 8 (18p-i-
FLAG-CNGC7 or 8), FLAG-7 or 8 F to W (18p-i-FLAG-CNGC7-F589W and
18p-i-FLAG-CNGC8-F624W). Three additional homozyogus rescued lines
were obtained (not shown) using a transgene construct ps1687 18-i-
GFP-CNGC8 (ss1402, ss1404, ss1405).
doi:10.1371/journal.pone.0055277.g003

Figure 4. Mutant cngc7/8 pollen grains burst during in vitro
germination. Pollen grains were germinated in vitro and scored for
bursting at the time of germination. A ,5-fold higher bursting
frequency was observed for two different combinations of cngc7/8
alleles (cngc7-1+/2, 8-22/2 and cngc7-32/2, 8-1+/2) in which only
one of the alleles was segregating. An equivalent bursting frequency
was observed for a cngc7-3/8-1 double knockout in which only 50% of
the pollen harbored a rescue construct encoding GFP-CNGC7 (GFP-7)
(denoted by ‘‘Hemi-’’). A ,90% bursting frequency was observed when
a cngc7/8 double knockout was rescued with a FLAG-CNGC7 or 8
harboring an F to W substitution. In these ‘‘F to W’’ examples, the pollen
came from a mixed pool of parental plants that were either hemizygous
or homozygous for the transgene (i.e., at least 50% of the pollen had a
‘‘rescue’’ construct). Each hash mark indicates the % bursting for each of
the six independent experiments. Results using two different media
(standard, and 10% PEG media) showed equivalent results (n = 3
experiments each).
doi:10.1371/journal.pone.0055277.g004
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cy was around 90%, which was about 10-fold higher than wild

type controls.

CNGC7 is Localized to the Plasma Membrane of Pollen
Tubes

To provide evidence for the subcellular location of CNGC7,

fluorescence confocal microscopy was used to image GFP-

CNGC7 in pollen. All imaging was done with homozygous

cngc7/8 mutants that had been rescued by pollen expression of a

GFP-CNGC7. Two different promoters were used to drive GFP-

CNGC7 expression. We failed to see detectable levels of GFP using

a weak promoter from CNGC18, although this promoter was

capable of providing low levels of expression sufficient for

functional rescues (see Figure 3). Therefore, to obtain high enough

expression levels for imaging, we employed a stronger promoter

from ACA9 [19], which resulted in a range of expression levels,

from high to barely detectable. Figure 5 shows representative

images of cells that have relatively weak but detectable levels of

expression. Pollen with very high levels of expression always

showed strong fluorescence throughout the cell, including en-

domembranes (as also observed in transient expression by [13,14]).

However, since functional rescues were observed with very low

expression levels (e.g., provided by the CNGC18 promoter), we

posit that images corresponding to low expression levels are more

likely to reflect a normal distribution for a CNGC7, and less likely

to be an artifact of over-expression [35]. With the imaging

parameters used here, autofluorescence was occasionally seen

associated with the cell wall (for example, Figure 5D). However, no

other significant background fluorescence was detected within

cells. In comparison, pollen expressing relatively low levels of GFP-

CNGC7 showed strong fluorescent signals predominately associ-

Figure 5. Confocal microscopy showing PM localization for GFP-CNGC7, and the cngc7/8 bursting defect. Pollen were germinated
in vitro and imaged. DIC images are shown to the left, and corresponding confocal fluorescence micrographs to the right. A) A negative control
showing a wild type pollen tube without any GFP. B and C), GFP-CNGC7 in cngc7-32/2, 8-12/2 showing a tip focused PM (plasma membrane)
localization at the emerging tube (B) and the tip shank during tube extension (C). D) A non-rescued pollen from cngc7-32/2, 8-12/2 (segregating a
GFP-CNGC7) showing a typical bursting event at germination. Scale bar = 10 mm.
doi:10.1371/journal.pone.0055277.g005
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ated with the PM at the bud site (Figure 5B), and in growing tubes,

predominately at a region flanking the growing tip (Figure 5C).

Discussion

Genetic evidence presented here indicates that CNGC7 and 8

function together to provide at least one redundant activity that is

essential for pollen fertility in Arabidopsis thaliana. Pollen harboring

a cngc7/8 double knockout failed to show any transmission events

in pollen outcrosses yielding more than 6000 progeny (expected

frequency = 50%, Table 1).

Three lines of evidence suggest that the primary defect in cngc7/

8 pollen occurs at the initiation of pollen tube tip growth, as shown

with in vitro pollen growth assays (Figure 4). First, pollen grain

bursting was observed for approximately 50% of the pollen

assayed from mutant plants segregating 50% of their pollen as a

cngc7/8 double knockout. Second, an equivalent bursting frequen-

cy was observed for pollen from a plant homozygous for cngc7/8 in

which only half of the pollen harbored a GFP-tagged CNGC7

rescue construct. Third, a higher bursting frequency near 90% was

observed for cngc7/8 pollen partially rescued by a transgene

encoding a CNGC7 or 8 that was functionally compromised by an

F to W substitution near the end of the proposed cyclic nucleotide

binding domain (F589W or F624W, respectively). These in vitro

results are consistent with the failure to observe tube growth for a

cngc7/8 mutant in a semi-in vivo growth assay in which pollen was

allowed to germinate on a stigma surface.

Of more than 50 mutations identified with defects associated

with pollen germination, only two others are well characterized

with an increased bursting frequency, vgd1 and anx1/anx2 [6,7,21].

AtAnx1 and 2 encode receptor-like kinases preferentially expressed

in pollen, and are proposed to function redundantly in a signaling

pathway that controls the timing of pollen tip bursting and sperm

discharge when pollen tubes reach the synergid [7]. AtVGD1

(Vanguard1) encodes a pectin methyltransferase that is important

for modifying the pollen cell wall to increase its rigidity [6]. In the

absence of a rigid wall, pollen tubes, which have turgor pressure,

are more likely to burst.

A CNGC18-7/8 Regulatory Node for Pollen Tube Tip
Growth?

The cngc7/8 bursting defect also has similarities to the

phenotype observed for cngc18 null mutants [13,14]. In the case

of cngc18, mutant pollen produced short kinky tubes that would

often terminate by bursting. While some of the cngc7/8 pollen also

germinated with similar projections, the dominant phenotype

appeared to be a bursting projection directly from the pollen grain

(Figure 5D). Given the similarities in phenotypes, further research

is warranted to determine if CNGC18 might form multimeric

complexs with CNGC7 and/or 8. In both plants and animals,

CNGCs are thought to function as hetero-multimers [36–39],

Assuming that hetero-multimers do form between CNGC18 and

either CNGC7 or 8, a mutation that disrupts one of the subunits

(e.g., CNGC18) might create a dysfunctional or destabilized

complex.

Models for CNGC Regulation of Tip Growth
There are at least two reasonable models, not mutually

exclusive, to explain the bursting phenotype associated with a

dysfunctional CNGC7/8 multimeric complex. First, the channel

complex might be essential for an ion homeostasis mechanism that

regulates turgor. When the channel complex is dysfunctional,

turgor pressure might increase to a bursting point, as the pollen

grain cell wall begins to weaken during germination [6,40,41].

Since CNGCs are also permeable to K+, they might directly

contribute a K+ transport involved in turgor regulation. Regula-

tion of K+ transport has been proposed as a key feature in the

mechanism of tube bursting at the time of sperm discharge [5].

In a second model, the CNGC complex might provide a

signaling function that helps coordinate growth cycles at the pollen

tube tip. For example, a cyclic nucleotide triggered Ca2+ signal

might function as a ‘‘stop signal’’ to terminate a growth cycle and

restrict growth to a manageable rate. In the absence of such a

signal, growth processes might become uncoordinated and thereby

make pollen tubes or buds highly susceptible to bursting. This

speculation is consistent with a model in which Ca2+ signals can

block signaling pathways, for example, ROP GTPases, which are

implicated in promoting tip growth in pollen tubes and root hairs

[42–45]. Alternatively, uncoordinated growth cycles might disrupt

proper cell wall assembly at the growing tip, and give rise to a

structurally weak wall, with a bursting phenotype analogous to

that seen with the vanguard mutant [6].

While additional insights will be required to distinguish between

these models, evidence here supports a model in which CNGCs 7

and 8 have redundant functions that are essential for the initiation

or maintenance of pollen tube tip growth. It remains to be

determined as to whether CNGC7 and 8 can form functional

interactions with the other four pollen-expressed CNGCs in A.

thaliana. Regardless, loss of function mutations for CNGC18 and 7/8

identify at least one CNGC activity that has evolved to be essential

to the life cycle of a flowering plant.

Materials and Methods

Metadata for CNGC7 and CNGC8 can be found at TAIR, The

Arabidopsis Information Resource (http://www.arabidopsis.org/),

under the following accession numbers: At1g15990 and

At1g19780, respectively.

Plant Growth Conditions
Arabidopsis thaliana ecotype Columbia (wild type Col-0 and

transgenic plants) were germinated on half-strength MS medium

(Murashige and Skoog, 1962) with 0.05% (w/v) MES, 0.5% (w/v)

sucrose, pH 5.7, and 1% (w/v) agar, under a 24-h light regime, at

21uC. MS medium was supplemented, when necessary, with the

appropriate selection marker. Concentrations were as follows:

25 mg/ml hygromycin; 10 mg/ml basta (glufosinate ammonium);

50 mg/ml kanamycin; and 75 mg/ml sulfadiazine.

10-days old seedlings were transplanted to Metro-Mix 200

Series soil (Hummert), fertilized with Triple Ten 10-10-10

containing 40% slow release nitrogen (Growth Products) and

grown under a 16-h light/8-h dark regime, at 21uC. All

experiments were conducted by comparison of wild type and

mutant plants grown side-by-side.

Isolation of cngc7 and cngc8 T-DNA Insertions
T-DNA insertions were identified using the SIGnAL ‘‘T-DNA

Express’’ Arabidopsis Gene Mapping Tool (http://signal.salk.

edu/cgi-bin/tdnaexpress). CNGC7 T-DNA insertion lines were

obtained from Syngenta Arabidopsis Insertion Library collection

(cngc7-1, SAIL_59_F03, harboring a glufosinate-resistance gene,

Bastar; [32]), and SALK collection (cngc7-3, Salk_060871 [33]). T-

DNA insertion lines for cngc8 were obtained from GABI-Kat

collection (cngc8-1, GABI_101C03; cngc8-2, GABI_462B04; [34]),

all harboring a sulfadiazine-resistance (Sulfr) marker within the T-

DNA insertion. The glufosinate-ammonium used for Bastar

selection and sulfadiazine used for Sulfr are obtained from

Sigma-Aldrich (St. Louis,).
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The genotypes of all plant lines were confirmed by PCR analysis

of genomic DNA using gene-specific and T-DNA left border

primers. The presence of a wild type CNGC7 was diagnosed using

gene specific primers 1345a and 1345b (Figure S2). The cngc7-1

and 7-3 insertion alleles were diagnosed using primers 1345br and

638, and 1345a and 792, respectively. CNGC8 was diagnosed using

gene specific primers 960a and 960b. The cngc8-1 and 8-2

insertion alleles were diagnosed using primers 960a and 958, and

960b and 958, respectively. T-DNA border fragments were

amplified and sequenced for each line to verify the site of T-

DNA insertion.

Plasmid Constructs Encoding CNGC7 and CNGC8
Plant expression constructs were made in a modified pGreenII

vector system [46], with a kanamycin selection marker for

bacteria, and a hygromycin marker for plants. The DNA sequence

of each construct is provided as a supplemental file (Figure S3).

The 9p promoter corresponds to the upstream regulatory region

for calcium pump ACA9 [19]. The 18p promoter corresponds to

the upstream regulatory region of CNGC18 [13,14]. In each

construct, the 59 UTR contains an intron corresponding to a

59UTR intron from AHA3 [13,14,47]. All CNGC7 constructs

contain a genomic sequence for CNGC7, which was PCR

amplified from Col-0 genomic DNA using primers 1147a and

1147br (Figure S2). All CNGC8 constructs were made with a

CNGC8 cDNA, which was amplified from a Col-0 pSPORT

cDNA library (Invitrogen) using primers 1148a and 1148br

(Figure S2). F to W substitutions were engineered by a two-step

PCR [48]. All sequences derived from PCR reactions were verified

by DNA sequencing.

9p-i-GFP-CNGC7 (ps1300) encodes a GFP-tagged CNGC7,

expressed under the control of a 9p promoter. 18p-i-FLAG-CNGC 7

(ps1692) encodes a FLAG epitope [49,50] tagged CNGC7,

expressed under the control of the CNGC18 promoter. 18p-i-

FLAG-CNGC7(F589W) (ps1650) is the same as ps1692, but

encodes a CNGC7 with an F589W substitution. 18p-i-FLAG-

CNGC8 (ps1687) encodes a FLAG epitope tagged CNGC8,

expressed under the control of the CNGC18 promoter. 18p-i-

FLAG-CNGC8(F624W) (ps1685) is the same as ps1687, but

encodes a CNGC8 with an F624W substitution. Representative

transgenic plants with these constructs are listed in Figure S4 seed

stock table.

Plant Transformation
Transgenic Arabidopsis thaliana plants were generated by floral

dipping with Agrobacterium tumefaciens strain GV3101 [51]. Trans-

genic plants were selected on MS medium containing hygromycin.

Pollen Germination
Pollen from open flowers was germinated on standard medium

containing 1% low-melting agarose with 0.01% H3BO3,1 mM

CaCl2, 5 mM KCl, 10% sucrose, pH 7.5, as modified from [52].

An alternative medium with 10% PEG (polyethylene glycol 4000)

was modified from [53,54] and contained, 0.01% H3BO3, 3 mM

Ca(NO3)2, 1 mM MgSO4, 1 mM KNO3, 10% (w/v) PEG, 10%

(w/v) sucrose, pH 7.5 with KOH. To make solid medium with

PEG, the liquid medium minus PEG was first solidified with 1%

low-melting agarose, and then equilibrated with liquid medium

including 10% PEG. To enhance the germination rate, one pistil

was placed in proximity of the pollen on the germination medium.

Image Acquisition
Images of GFP fluorescence were collected on a Olympus

confocal system (FluoView FV10-ASW 1.5; Olympus) attached to

an Olympus microscope (Inverted IX81) using a 60X objective

(N.A. = 1.39) and an argon gas laser for generating a 488-nm

excitation line. Emission was detected with band pass between 510

and 530 nm. Differential interference contrast (DIC) images were

collected on the same system by using a single transmitted light

detector. Images were processed by using FluoView software.

Supporting Information

Figure S1 Sequence alignment of cyclic nucleotide
binding domains (CNBDs) from CNGCs.
(TIF)

Figure S2 Primers used in this study.
(TIF)

Figure S3 DNA sequences of plasmid constructs used in
this study.
(PDF)

Figure S4 Seed stocks used in this study.
(TIF)
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