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OBJECTIVE—Higher heme iron intake is associated with increased type 2 diabetes risk.
However, no previous study has evaluated gestational diabetes mellitus (GDM) risk in relation
to heme iron intake during pregnancy. We investigated associations of maternal preconceptional
and early pregnancy heme and nonheme iron intake with subsequent GDM risk.

RESEARCH DESIGN AND METHODS—We conducted a prospective cohort study of
3,158 pregnant women. A food frequency questionnaire was used to assess maternal diet. Mul-
tivariable generalized linear regression models were used to derive estimates of relative risks
(RRs) and 95% CIs.

RESULTS—Approximately 5.0% of the cohort developed GDM (n = 158). Heme iron intake
was positively and significantly associated with GDM risk (Ptrend = 0.04). After adjusting for
confounders, women reporting the highest heme iron intake levels ($1.52 vs. ,0.48 mg per
day) experienced a 3.31-fold–increased GDM risk (95% CI 1.02–10.72). In fully adjusted mod-
els, we noted that a 1-mg per day increase in heme iron was associated with a 51% increased
GDM risk (RR 1.51 [95% CI 0.99–2.36]). Nonheme iron was inversely, though not statistically
significantly, associated with GDM risk, and the corresponding RRs were 1.00, 0.83, 0.62, and
0.61 across quartiles of nonheme iron intake (Ptrend = 0.08).

CONCLUSIONS—High levels of dietary heme iron intake during the preconceptional and
early pregnancy period may be associated with increased GDM risk. Associations of GDM risk
with dietary nonheme iron intake are less clear. Confirmation of these findings by future studies
is warranted.

Diabetes Care 34:1564–1569, 2011

I ron deficiency is the most common
nutritional deficiency in the U.S. and
worldwide (1). In recent years, con-

cerns about iron overload in developed
countries have spurred research designed
to assess cardiometabolic risks secondary
to excess body iron stores and high die-
tary iron intake (2,3). As a result, iron
now is viewed as a double-edged sword
for living systems. Increasingly, clinical
and epidemiological evidence suggest
that both iron deficiency and iron over-
load influence the production of reac-
tive oxygen species, leading to oxidative

stress, systemic inflammation, and alter-
nations in mitochondrial function (4).
Taken together, cellular and metabolic al-
terations secondary to iron overload are
thought to contribute to increased risks
of hypertension (2), cardiovascular dis-
ease (5), and type 2 diabetes (3,6–8).

The two kinds of dietary iron, heme
and nonheme iron, with distinct meta-
bolic pathways and intestinal absorption
potential, are thought to play distinct
roles in the pathophysiology of cardio-
metabolic disorders (4). Heme iron is
exclusively present in hemoglobin and

myoglobin from animal sources, includ-
ing red meat and poultry. Nonheme iron,
which is abundant in cereals, vegetables,
fruits, beans, and dairy products, ac-
counts for .85% of dietary iron intake.
Although heme iron accounts for a
smaller proportion of dietary iron, it is
absorbed two to three times more readily
than nonheme iron and is less affected by
other dietary constituents. The bioavail-
ability of heme and nonheme iron is in-
fluenced by dietary factors, including
ascorbic acid, coffee, and whole grains
(9). Body iron stores also are important
determinants of intestinal absorption of
heme and nonheme iron (10).

The expanding literature suggests
that iron influences glucose metabolism
(3). Statistically significant positive asso-
ciations of dietary iron intake, particularly
heme iron, with incident type 2 diabetes
has been reported (6–8). These epidemi-
ological associations are supported by
findings documenting increased risks of
incident type 2 diabetes among indivi-
duals with elevated serum ferritin concen-
trations (6,11). The relationship between
nonheme iron intake and type 2 diabetes,
however, has been far less consistent.
Some (7), but not all (8), investigators
have reported inverse associations of in-
cident type 2 diabetes and dietary non-
heme iron intake.

Although there have been several
studies investigating the possible role of
dietary iron and body iron stores on
glucose metabolism, only a few have en-
rolled pregnant women, and the results
have been inconsistent (12–14). The ef-
fect of iron supplement use on gestational
diabetes mellitus (GDM) risk also is con-
troversial (14,15). To the best of our
knowledge, no previous study has exam-
ined the associations of dietary heme and
nonheme iron with the risk of GDM.
Given mounting available experimental
and epidemiological evidence from stud-
ies of men and nonpregnant women sup-
porting associations of heme iron and risk
of type 2 diabetes, we hypothesized that
higher preconceptional and early preg-
nancy dietary heme iron intake may be
associated with increased GDM risk. We
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also hypothesized that diets high in non-
heme iron may be associated with re-
duced GDM risk. We investigated these
hypotheses among a well-characterized
prospective cohort of pregnant women.

RESEARCH DESIGN AND
METHODS—The Omega Study is a
prospective cohort study designed to
examine the dietary risk factors of adverse
pregnancy outcomes. Participants were
women attending prenatal care clinics
affiliated with the Swedish Medical Cen-
ter and Tacoma General Hospital in Seat-
tle and Tacoma,WA (16). Eligible women
were those who began prenatal care be-
fore 20 weeks’ gestation, spoke and read
English,were aged$18 years, and planned
to deliver at either of the two hospitals.
During early pregnancy, participants
were asked to complete an interviewer-
administered questionnaire. Participants
also completed a 121-item semiquantita-
tive food frequency questionnaire (FFQ)
(17). Pregnancy outcome information was
abstracted from medical records. All pro-
cedures and study protocols were ap-
proved by the institutional review boards
of the study hospitals. All participants pro-
vided written informed consent.

Analytical population
Women with pre-gestational diabetes
(determined by self-report of physician-
diagnosed diabetes) (n = 57), those with
multifetal pregnancies (n = 118), those
with pregnancies lasting ,20 weeks (n =
58), and those who moved out of the
study area (n = 170) were excluded. Also
excluded were women with incomplete
dietary intake information (n = 372) and
those who reported extreme levels of daily
energy intake (,500 [n = 24] or .3,500
[n = 43] calories per day). A cohort of
3,158 women remained for analysis.

Data collection
We obtained information of covariates,
including maternal age, educational at-
tainment, height, prepregnancy weight,
and reproductive and medical histories.
We also collected information on maternal
smoking status and leisure time physical
activity during pregnancy. Prepregnancy
BMI was calculated as self-reported pre-
pregnancy weight (in kilograms) divided
by the square of height (in meters). We
used the FFQ from the Women’s Health
Initiative Clinical Trial (17) to assess ma-
ternal dietary intake during the 3-month
period (before conception and during the
first trimester). Participants were provided
with instructions, including photos of

portion sizes. The FFQ has documented
reliability of accurately recording intake
over an extended period of observation
(17). Participants completed FFQs at an
average of 15.3 weeks’ gestation. Dietary
intake values of nutrients, vitamins, and
minerals, including heme iron, nonheme
iron (18), and total iron intake, were esti-
mated using food composition tables from
theUniversity ofMinnesotaNutritionCod-
ing Center Nutrient Database (Nutrition
Coordinating Center, Minneapolis, MN).

Medical records were reviewed to
collect detailed clinical information. In
our study settings, according to American
Diabetes Association guidelines (19),
pregnant women were screened at 24–
28 weeks’ gestation using a 50-g 1-h oral
glucose challenge test. Those who failed
this screening test ($7.8 mmol/L) were
then followed-up within 1–2 weeks
with a 100-g 3-h oral glucose tolerance
test (OGTT). We also abstracted labora-
tory results from participants’ 50-g 1-h
glucose challenge test and from the diag-
nostic 100-g 3-h OGTT. Women were di-
agnosed with GDM if two or more of the
100-g OGTT glucose concentrations ex-
ceeded American Diabetes Association
criteria (19) (fasting $5.3 mmol/L, 1-h
postchallenge $10.0 mmol/L, 2-h post-
challenge $8.6 mmol/L, and 3-h post-
challenge $7.8 mmol/L).

Statistical analysis
We classified each subject according to
quartiles of dietary heme and nonheme
iron intake. We examined frequency dis-
tributions of maternal characteristics and
energy-adjusted nutrient intake accord-
ing to these categories. We fitted general-
ized linear models, using a log-link
function, to derive risk ratios (RRs) and
95% CIs. To assess confounding, we
entered covariates into each model one
at a time and compared adjusted and
unadjusted RRs. Final models included
covariates that altered unadjusted RRs
by at least 10% and those that were
identified a priori as potential confound-
ers. Given that red and processed meats,
saturated fat, and cholesterol intake have
been implicated as potential risk factors
for GDM, we report results from models
adjusted for these covariates. In multivar-
iable analyses, we evaluated linear trends
in risk by treating heme and nonheme
iron intake as continuous variables after
assigning a score to each quartile. We also
explored the possibility of a nonlinear
relationship of heme iron intake with
GDM risk by fitting a multivariable logistic

regressionmodel that implemented the gen-
eralized additive modeling method (20).

Given that nonheme iron absorption
is known to be influenced by body iron
stores, particularly iron deficiency anemia
status (10,21), we repeated the analyses
after excluding 55 women with iron de-
ficiency anemia. We also repeated the
analyses after excluding women (n = 75)
who did not take prenatal-care vitamins
during early pregnancy. S-Plus 6.1 (In-
sightful, Seattle, WA) was used for gen-
eralized additive modeling. All other
analyses were performed using Stata 9.0
(Stata, College Station, TX).

RESULTS—Heme iron accounted for
~7% of total dietary iron intake (93%
nonheme iron) in this study cohort. Red
and processed meat consumption, a ma-
jor food source of dietary heme iron, was
highly correlated with heme iron intake
(r = 0.85, P, 0.001) and explained 72%
of the variability in heme iron intake in
the cohort. Fruits, vegetables, and total
fiber consumption explained 50% of the
variability of nonheme iron. Women who
reported higher heme iron intake tended
to be heavier and multiparous (Table 1).
Heme iron intake was positively associ-
ated with saturated fat, trans fat, red and
processed meats, poultry meat, fruits,
vegetables, and vitamin C intake. Heme
iron intake was positively related to the
percentage of dietary calories from fat
and protein and was inversely related to
the percentage of calories from carbohy-
drates (all Ptrends , 0.05). As expected,
higher nonheme iron intake was associated
with higher intake of fruits, vegetables, fiber,
and vitamin C.

Approximately 5.0% of the cohort
developed GDM. GDM risk increased
with increasing levels of heme iron
(Ptrend = 0.04) (Table 2). Multivariate-
adjusted RRs for GDM were 1.00, 1.17,
1.20, and 1.57 across successive quartiles
of heme iron intake. Women reporting
very high heme iron intake ($1.52 mg
per day, upper decile) had a 2.26-fold–in-
creased (95% CI 1.09–4.69) GDM risk
compared with women reporting lower
levels of heme iron intake (,0.48 mg
per day, lowest quartile). After additional
adjustment for red and processed meats,
saturated fat, and cholesterol intake,
women reporting very high heme iron
intake ($1.52 mg per day) had a 3.31-
fold–increased (1.02–10.72) GDM risk
compared with women reporting lower
levels of intake (,0.48 mg per day), sug-
gesting that the additional covariates may
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have a diluting effect on the heme iron–
GDM association. Adjustments for fish
and poultry intake did not materially alter
these associations.

We also explored the possibility of a
nonlinear relation of heme iron intake
with GDM risk using regression proce-
dures based on a generalized additive
model. The results (Fig. 1) indicate an in-
creasing risk of GDM with increasing di-
etary heme iron intake. In fully adjusted
models, we noted that a 1-mg per day in-
crease in heme iron intake was associated
with a 51% increased GDM risk (RR 1.51
[95% CI 0.99–2.36]). Because the log
odds of GDM risk appeared to raise
steeply above daily heme iron intake lev-
els.2.0 mg per day (Fig. 1), we repeated
this analysis after restricting the study co-
hort to those women with daily reported
heme iron take of 2.0 mg (n = 111). In this
subgroup analysis, after adjusting for con-
founders including red and processed
meat consumption, a 1-mg per day in-
crease in daily heme iron intake was asso-
ciated with a 186% increased GDM risk
(2.86 [0.69–11.82]). Inferences from this
subgroup analysis, however, are hindered
by the relatively small sample size avail-
able for study.

GDM risks were reduced with in-
creasing nonheme iron intake, although
the association did not reach statistical
significance (Ptrend = 0.08). Multivariable-
adjusted RRs for GDM were 1.00, 0.83,

0.62, and 0.61, from the lowest to the
highest quartiles of nonheme iron intake,
respectively. Additional adjustments for
red and processed meat consumption
had little effect on the magnitudes of the
observed associations (Table 2).

The above results were similar when
we excluded women with early pregnancy

iron deficiency anemia. For instance, the
fully adjusted RRs for GDM were 1.00,
1.22, 1.39, and 2.09 for successive quar-
tiles of heme iron intake after we excluded
55 women with early pregnancy iron de-
ficiency anemia. Nonanemic women re-
porting very high heme iron intake ($1.52
mg per day) had a 3.35-fold–increased

Table 2—RRs and 95% CIs of GDM according to quartiles of dietary heme and nonheme iron intake, Seattle and Tacoma, WA,
Omega Cohort Study

Dietary iron variables Median
GDM (n) Energy adjusted Adjusted* Adjusted†

Incidence (%) RR (95% CI) RR (95% CI) RR (95% CI)

Dietary heme iron (mg per day)
Quartile 1 (,0.48) 0.30 33 (4.1) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent)
Quartile 2 (0.48–0.75) 0.61 36 (4.7) 1.22 (0.76–1.96) 1.17 (0.73–1.89) 1.27 (0.77–2.09)
Quartile 3 (0.76–1.11) 0.93 36 (4.5) 1.28 (0.79–2.08) 1.20 (0.73–1.95) 1.41 (0.81–2.44)
Quartile 4 ($1.12) 1.43 53 (6.7) 2.12 (1.31–3.43) 1.57 (0.95–2.61) 2.15 (1.09–4.27)
P for trend 0.003 0.09 0.04
Quartile 1 (,0.48) 0.30 33 (4.1) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent)
Upper decile ($1.52) 1.85 25 (7.8) 3.32 (1.70–6.47) 2.26 (1.09–4.69) 3.31 (1.02–10.72)

Dietary nonheme iron (mg per day)
Quartile 1 (,9.10) 7.16 50 (6.4) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent)
Quartile 2 (9.10–12.16) 10.65 44 (5.6) 0.83 (0.54–1.28) 0.85 (0.54–1.33) 0.83 (0.53–1.31)
Quartile 3 (12.17–15.97) 13.81 33 (4.2) 0.60 (0.36–1.00) 0.63 (0.37–1.08) 0.62 (0.36–1.06)
Quartile 4 ($12.98) 19.60 31 (3.9) 0.54 (0.29–0.99) 0.61 (0.32–1.17) 0.61 (0.31–1.18)
P for trend 0.03 0.08 0.08
Quartile 1 (,9.10) 7.16 50 (6.4) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent)
Upper decile ($21.13) 25.19 11 (3.5) 0.29 (0.10–0.84) 0.34 (0.10–1.10) 0.30 (0.09–0.99)

*Adjusted for daily energy intake, maternal age, race/ethnicity, parity, physical activity, prepregnancy BMI, dietary fiber, and vitamin C intake. †Adjusted for daily
energy intake; maternal age; race/ethnicity; parity; physical activity; prepregnancy BMI; and dietary fiber, vitamin C, saturated fat, cholesterol, and red and processed
meat intake.

Figure 1—Relationship between maternal dietary heme iron intake in early pregnancy and risk
of GDM (solid line) with 95% CIs (dotted lines) after adjusting for daily energy intake; maternal
age; race/ethnicity; parity; physical activity; prepregnancy BMI; and dietary fiber, vitamin C,
saturated fat, cholesterol, and red and processed meat intake. The vertical bars along the dietary
heme iron intake axis indicate the distribution of study subjects.

care.diabetesjournals.org DIABETES CARE, VOLUME 34, JULY 2011 1567

Qiu and Associates



(95% CI 1.04–10.79) GDM risk compared
with nonanemic women reporting lower
levels of heme iron intake (,0.48 mg
per day). This association was slightly at-
tenuated from that observed when the
entire population was analyzed. The as-
sociation of nonheme iron intake with
GDM risk did not change substantially
after further restriction of the cohort to
nonanemic women. In a second series of
sensitivity analyses, we excluded 75
women who reported taking no prenatal
vitamins and repeated the above described
analyses. Observed associations of dietary
heme and nonheme iron intake with GDM
were similar to those reported for the en-
tire cohort (data not shown).

Given that the bioavailability of heme
iron and body iron stores are influenced
by dietary and nondietary factors such as
ascorbic acid, dietary fiber, obesity, and
cigarette smoking, we conducted multi-
variate analyses within the strata of each
of these covariates. Although we found no
evidence of statistically significant effect
modification by these factors, we did note
that GDM–heme iron associations were
somewhat stronger among women who
smoked during pregnancy. Among the
cohort of nonsmokers (n = 2,987) the
RR for GDM among those with high
heme iron intake ($1.12mg per day) ver-
sus those with lower levels of intake, was
1.48 (95% CI 0.89–2.46). The corre-
sponding RR for participants who
smoked during pregnancy (n = 171) was
2.09 (0.42–10.41) (Pinteraction = 0.196).

CONCLUSIONS—We observed sig-
nificant and positive associations of ma-
ternal dietary heme iron intake with the
risk of GDM. Women with the highest
levels of heme iron intake experienced at
least a twofold higher risk of GDM com-
pared with those who reported lower
intake levels. This association was inde-
pendent of established GDM risk factors,
such as maternal age; race/ethnicity; pre-
pregnancy BMI; parity; and other dietary
factors, including saturated fat, choles-
terol, and red and processed meat con-
sumption; and was robust across study
design and subanalyses restricted to
women without iron deficiency anemia
and those who did not consume prenatal
vitamins. Nonheme iron appeared to be
inversely associated with the risk of GDM;
however, relative risk estimates generally
were statistically nonsignificant.

To the best of our knowledge, this is
the first study to explore the risk of GDM
in relation to maternal dietary heme and

nonheme iron intake during pregnancy.
Our findings, however, are largely con-
sistent with existing literature reporting
associations of dietary heme iron intake
with risk of incident type 2 diabetes in
men and nonpregnant women (6–8). In
addition, our findings are supported by
studies documenting increased risks of
incident GDM (13) or type 2 diabetes
(6,11) among individuals with increased
levels of serum ferritin, a biological
marker of body iron stores. Chen et al.
(13), in a prospective study of 1,456
healthy pregnant women, reported that
maternal elevated serum ferritin concen-
trations were associated with a twofold
increased GDM risk. However, the asso-
ciation was greatly attenuated after fur-
ther adjustment for prepregnancy BMI.

The possible modest inverse relation
between dietary nonheme iron and GDM
risk suggested in our study is in general
agreement with a report by Lee et al. (7),
who noted that type 2 diabetes risks de-
creased across successive quintiles of
nonheme iron intake among postmeno-
pausal women in the Iowa Women’s
Health Study. Among nondrinkers, ad-
justed RRs were 1.0, 0.83, 0.87, 0.72,
and 0.67 across quintiles (Ptrend , 0.01)
(7). Larger studies are needed to more for-
mally and precisely assess GDM risk in
relation to dietary nonheme iron intake.

Observed associations of increased
GDM risk with increased heme iron con-
sumption is biologically plausible. Iron, a
strong pro-oxidant that catalyzes several
reactions leading to the formation of re-
active oxygen species such as hydroxyl
radicals (22), is thought to contribute to
an increased risk of diabetes through sev-
eral potential mechanisms. First, in-
creased accumulation of iron affects
insulin synthesis and secretion in the
pancreas and interferes with the insulin-
extracting capacity of the liver so that he-
patic neoglucogenesis suppression might
be implicated (23). Second, excess iron
deposition in muscle might decrease glu-
cose uptake (23). Third, iron also may
impair insulin action and interfere with
glucose uptake in adipocytes (24). Finally,
insulin stimulates cellular iron uptake
through increased transferrin receptor
externalization (25). Thus, insulin and
ironmight act synergistically, contributing,
in a vicious cycle, to insulin resistance and
diabetes (25). Future studies that empiri-
cally evaluate thesemechanistic hypotheses
are needed.

Our study has several strengths. The
prospective design of the Omega Study

and exclusion of women with diagnosed
pregestational diabetes reduced the po-
tential for bias from recall differences or
dietary changes secondary to the disor-
der. Collection of dietary intake informa-
tion in early pregnancy, before GDM was
diagnosed, enhanced causal inference
given our increased ability to infer the
temporal relationship of heme and non-
heme iron intake with subsequent GDM
risk. In addition, the high follow-up rate
of enrolled Omega Study participants
(.95%) minimized possible selection
bias. Nonetheless, several limitations of
our study should be considered when in-
terpreting study findings. Measures of
body iron status, hemoglobin levels, and
iron supplement use were not available.
Although observed associations were ro-
bust across sensitivity analyses that ex-
cluded women with early pregnancy
iron deficiency anemia and those who re-
ported not taking prenatal vitamins dur-
ing pregnancy, large-scale prospective
studies in pregnant women, with detailed
measures of dietary iron intake, supple-
mental intake, and body iron status, and
studies of diet-genetic interactions are
warranted. Second, because dietary iron
intake was self-reported, we cannot ex-
clude the possibility of reporting errors.
However, because dietary intake informa-
tion was collected before the testing and
diagnosis of GDM, reporting errors are
likely to have resulted in an attenuation
of observed associations. Third, universal
glucose tolerance testing in early preg-
nancy is not part of standard obstetric
care. Hence, we cannot exclude the pos-
sibility that some subjects in our study
had undiagnosed pregestational diabetes.
Over 95% of study subjects reported
having regular medical exams within a
24-month period before the index preg-
nancy, and the cumulative incidence of
GDM in our study cohort is consistent
with observations in other settings (19).
These observations serve to attenuate
concerns. Fourth, as with all observa-
tional studies, although we adjusted for
known and suspected confounders, we
cannot exclude the possibility of residual
confounding from unmeasured covari-
ates. Fifth, our relatively small number
of incident GDM cases hindered infer-
ences from some analyses. Finally, the
generalizability of our findings may be
limited to a largely white, well-educated
obstetric population who registered for
prenatal care early in pregnancy and
who participate in regular annual medical
exams. Their dietary behaviors, including
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dietary iron intake, are likely to differ
from those of other socioeconomic, racial,
and ethnic backgrounds.

In summary, we found significant
associations between dietary heme iron
intake and GDM risk. Confirmation of
these findings in other populations and
further exploration of possible underlying
biological mechanisms of observed asso-
ciations are warranted. Furthermore,
given emerging evidence of harmful ef-
fects for unnecessary iron supplementa-
tion (14), studies designed to examine
ways of increasing the intake of nonheme
food or supplementation of vitamins and
iron should be carried out to improve the
iron status of pregnant women.
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