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Abstract

The molecular clock and its phylogenetic applications to genomic data have changed how

we study and understand one of the major human pathogens, Mycobacterium tuberculosis

(MTB), the etiologic agent of tuberculosis. Genome sequences of MTB strains sampled at

different times are increasingly used to infer when a particular outbreak begun, when a

drug-resistant clone appeared and expanded, or when a strain was introduced into a specific

region. Despite the growing importance of the molecular clock in tuberculosis research,

there is a lack of consensus as to whether MTB displays a clocklike behavior and about its

rate of evolution. Here we performed a systematic study of the molecular clock of MTB on a

large genomic data set (6,285 strains), covering different epidemiological settings and most

of the known global diversity. We found that sampling times below 15–20 years were often

insufficient to calibrate the clock of MTB. For data sets where such calibration was possible,

we obtained a clock rate between 1x10-8 and 5x10-7 nucleotide changes per-site-per-year

(0.04–2.2 SNPs per-genome-per-year), with substantial differences between clades. These

estimates were not strongly dependent on the time of the calibration points as they changed

only marginally when we used epidemiological isolates (sampled in the last 40 years) or

three ancient DNA samples (about 1,000 years old) to calibrate the tree. Additionally, the

uncertainty and the discrepancies in the results of different methods were sometimes large,

highlighting the importance of using different methods, and of considering carefully their

assumptions and limitations.

Author summary

One of the major recent advancements in evolutionary biology is the development of sta-

tistical methods to infer the past evolutionary history of species and populations with

genomic data. In the last five years, many researchers have used the molecular clock (i.e.

the observation that genomes accumulate mutations at an approximately constant pace)

to study the evolution and epidemiology of Mycobacterium tuberculosis, a bacterial patho-

gen that causes tuberculosis and is responsible for 1.6 million human deaths ever year.

Applications of the molecular clock are used to understand when tuberculosis emerged as
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a pathogen, the evolution of drug resistance, how different strains transmit and spread

across the world and how MTB populations are affected by control programs. Here, we

performed a systematic analysis of the molecular clock of MTB, analyzing several whole

genome sequence data sets with the same set of methodologies. We characterized the rate

of molecular evolution (the pace of the clock), and its variation between different MTB

populations and lineages. Our results provide an important guideline for future analyses

of tuberculosis and other organisms.

Introduction

In 1962, Zuckerland and Pauling used the number of amino-acid differences among hemoglo-

bin sequences to infer the divergence time between human and gorilla, in what was the first

application of the molecular clock [1]. Although many at the time found it “crazy” [2], soon

the molecular clock was incorporated in Kimura’s neutral theory of molecular evolution [3],

and found its place in the foundations of evolutionary biology. Thanks to the improvements

of sequencing technologies and statistical techniques, it is now possible to use sequences sam-

pled at different times to calibrate the molecular clock and study the temporal dimension of

evolutionary processes in so called measurably evolving populations [4]. These advancements

have been most relevant for ancient DNA (aDNA), and to study the evolutionary dynamics

of pathogen populations, including one of the deadliest human pathogens: Mycobacterium
tuberculosis.

In 1994, Kapur and colleagues pioneered molecular clock analyses in MTB: they assumed a

clock rate derived from other bacteria and used genetic polymorphisms to infer the age of

divergence of different MTB strains [5]. Since the publication of the MTB reference genome

[6], whole genome sequence (WGS) data of MTB strains is becoming available at increasing

speed, and especially in the last five years, studies using large WGS data sets allowed for precise

estimates of the MTB genetic diversity and of the molecular clock rate. Phylogenetic analyses

with a molecular clock have been used to estimate the timing of the introduction of MTB

clades to particular geographic regions, the divergence time of the MTB lineages, and the age

of the most recent common ancestor (MRCA) of the MTB complex [7–13]. Clock models,

together with phylodynamic models in a Bayesian setting have been used to characterize tuber-

culosis epidemics by determining the time at which outbreaks began and ended [14–18], estab-

lishing the time of origin and spread of drug resistant clades [11, 14, 19–20], and correlating

population dynamics with historical events [9, 12, 20, 21–22]. One example of the potential of

molecular clock analyses is the study of Eldholm and colleagues [20], where the collapse of the

Soviet Union and of its health system was linked to the increased emergence of drug-resistant

strains in former Soviet Republics, thus providing insights into the evolutionary processes pro-

moting drug resistance.

A key aspect about estimating evolutionary rates and timescales in microbial pathogens is

assessing their clocklike structure. All molecular clock analyses require some form of calibra-

tion. In many organisms, this consists in constraining internal nodes of phylogenetic trees to

known divergence times (for example, assuming co-divergence with the host, or the fossil

record), but in rapidly evolving pathogens and studies involving ancient (a)DNA, it is also pos-

sible to use sampling times for calibrations [23]. In the latter approach, the ages of the tips of a

tree, rather than those of internal nodes are constrained to their collection times. Clearly, the

sampling time should capture a sufficient number of nucleotide changes to estimate the evolu-

tionary rate, which will depend on the evolutionary rate of the organism and the extent of rate
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variation among lineages. Some popular methods to assess such clocklike structure are the

root-to-tip regression and the date randomization test (DRT).

While many of the studies inferring evolutionary rates for MTB reported support for a

molecular clock [10–11, 13–14, 16, 18, 20, 22], some found a lack of clocklike structure [7, 17–

18], and others assumed a molecular clock without testing whether the data had a temporal

structure [9, 12, 15, 19, 21]. In all studies where the calibration was based on the sampling time

(tip-dating), the clock rate estimates spanned roughly an order of magnitude around 10−7

nucleotide changes per site per year. This was in contrast with the results of Comas et al. 2013

[7], where the clock was calibrated assuming co-divergence between MTB lineages and human

mitochondrial haplotypes (i.e. internal node calibrations), and was estimated to be around

10−9 nucleotide changes per site years. Additionally, the age estimate of the MRCA of MTB

obtained by Comas et al. 2013 (~70,000 years) is similar to the one of Wirth et al. 2008 [24] (~

40,000 years), which was based on the molecular clock analysis of 24 variable tandem repeat

loci, but about ten times older than the one of study that used WGS of aDNA samples and tip-

dating to calibrate the tree (~ 6,000 years) [8]. The diverging results obtained by Comas et al.

2013 [7], Wirth et al. 2008 [8] and studies based on tip-dating are therefore most likely caused

by the adoption of different assumptions and methodologies.

Studies based on WGS and tip-dating found some differences in the clock rate of different lin-

eages: some lineage 2 (L2) data sets [20] were found to have a faster clock rate compared to line-

age 4 (L4) data sets [11, 14, 16, 21], while others showed lower clock rates, comparable with L4

[13, 18]. Studies based on aDNA produced slightly lower clock rate estimates [8, 10] compared to

studies based on modern strains, thus suggesting support for the phenomenon of time depen-

dency of clock rates in MTB [25–26]. All these results indicate that different MTB lineages and

populations might have different clock rates, and that the age of the calibration points could influ-

ence the results of the analyses. Comparing the results of different studies has however a main

limitation: the observed differences could be due to different rates of molecular evolution among

MTB populations, to methodological discrepancies among studies, or a combination of both.

Here we assembled a large genomic data set of sequences belonging to epidemiological con-

temporary strains (sampled in the last 40 years), including sequences from all major lineages

of MTB (6,285 strains in total, belonging to six human adapted lineages, L1-L6, and one line-

age predominantly infecting cattle, M. bovis). We then applied the same set of methodologies

to the whole data set, to individual lineages and sub-lineages, and to selected local outbreaks,

thus disentangling the temporal signal of multiple nested data sets with different structures

and complexity, and ensuring the comparability of the results among different bacterial clades

and epidemiological settings. Finally, in a separate analysis we investigated the time-depen-

dency hypothesis by including three aDNA sequences about 1,000 years old [8].

With this systematic approach, we addressed the following questions:

1. Is there a molecular clock in MTB and how do we detect it?

2. What is the clock rate of MTB, and what is its variation among lineages, sub-lineages and

individual outbreaks?

3. Are clock rate estimates dependent on the age of the calibration points in MTB?

Results and discussion

Is there a molecular clock in MTB?

Finding evidence of temporal structure is the first step when performing molecular clock anal-

yses [27]. If there is not enough genetic variation between samples collected at different times,
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these cannot be used to calibrate the molecular clock, i.e. the population is not measurably

evolving. To test the temporal structure of MTB data sets, we identified 6,285 contemporary

strains (sampled in the last 40 years) that passed our quality filters (average coverage> 15X,

they were not identified as mixed infection etc. see Methods for details), and for which the

date of isolation was known (S1 Table).

We used root-to-tip regression to evaluate the temporal structure of the whole MTB com-

plex and of the individual lineages (L1-L6 and M. bovis) [28]. The root-to-tip regression is a

regression of the root-to-tip distances as a function of sampling times of phylogenetic trees

with branch lengths in units of nucleotide changes per site, where the slope corresponds to the

rate. Under a perfect clock-like behavior, the distance between the root of the phylogenetic

tree and the tips is a linear function of the tip’s sampling year: recently sampled strains are fur-

ther away from the root than older ones, such that the R2 is the degree of clocklike behavior

[29]. We obtained very low values of R2 for all lineages (maximum 0.1 for M. bovis), indicating

a lack of strong clock-like behavior (S1 Fig). Additionally, we found a weak negative slope for

L1, L5 and L6, normally interpreted as evidence for a lack of temporal structure, or overdisper-

sion in the lineage-specific clock rates [28] (S1 Fig, S2 Table). A negative slope of the regression

line can be caused by an incorrect placement of the root [30]. To address this potential prob-

lem, we repeated these analyses rooting the trees with an outgroup. We found a negative slope

for L1 and L6 and a positive slope for L5, although with an extremely low value of R2 (< 0.01).

These results indicate that the negative slope of L1 and L6 and the low R2 values of the three

data sets are not due to an incorrect placement of the root (S2 Fig).

Since root-to-tip regression can be used only for exploratory analyses and not for formal

hypothesis testing [28], we performed a date randomization test (DRT). The DRT consists in

repeatedly reshuffling the date of sampling among taxa and then comparing the clock rate esti-

mates among the observed and reshuffled data sets [27]. If the estimate obtained from the

observed data does not overlap with the estimates obtained from the randomized data sets, we

can conclude that the observed data has a stronger temporal signal than expected by chance,

such that there is statistically significant clocklike structure [27]. Usually the DRT is imple-

mented in a Bayesian phylogenetic setting, however, considering the size and the number of

data sets included in this study, an excessive amount of computation would be required. To

overcome this problem, we estimated the clock rate with the least-squared dating method

(LSD) [31]. The advantage of this method is that it is orders of magnitude faster than fully

Bayesian approaches, and can therefore be used on data sets with thousands of taxa and with

more randomizations compared to the 10–20 typically used in a Bayesian setting [32]. A limi-

tation of least squares dating is that it typically assumes a single tree topology and vector of

branch lengths, and a strict clock (i.e. all branches have the same clock rate). However, a simu-

lation study showed that maximum likelihood trees produced similar estimates compared to

the true topology, and that it is robust to uncorrelated variation of the clock rate among

branches in the phylogeny [31–33].

For each data set (the MTB complex and the seven analyzed lineages), we reshuffled the

year of sampling among tips 100 times and estimated the clock rate of observed and random-

ized data sets with LSD. All eight data sets except L5 and L6 passed the DRT (Methods, S1 Fig,

S2 Table). L5 and L6 are the two lineages with the lowest sample size, 117 and 33 strains,

respectively. Moreover most strains were sampled in a short temporal period compared to the

other lineages (S3–S8 Figs). It is likely that with additional strains sampled across a larger time

period, L5 and L6 will also show evidence for a molecular clock.

We complemented the analysis described above with a Bayesian phylogenetic analysis in

BEAST2 [34]. Since this is computationally expensive, we reduced the large data sets (MTBC,

L1, L2, L4 and M. bovis) to 300 randomly selected strains. For each data set, we selected the
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best fitting nucleotide substitution model identified with jModelTest 2 [35]. For this first anal-

ysis, we assumed a coalescent constant population size prior, used a relaxed clock model, and a

1/x prior for the clock rate, constrained between 10−10 and 10−5 nucleotide changes per site per

year. This interval spans the range of clock rates proposed for M. tuberculosis and for most

other bacteria [20, 36]. We observed that for all data sets the posterior was much more precise

(with a narrow distribution) than the prior, thus indicating that the data was informative [37].

Again, the only exceptions were L5 and L6, where the posterior distribution was flat, ranging

between 10−10 and 10−7 nucleotide changes per site per year, confirming the lack temporal

structure of these two data sets (S1 Fig).

We repeated these analyses on 23 sub-lineages and 7 outbreaks and local populations to test

whether we could detect a temporal structure also in smaller, less diverse data sets. With this

sub-sampling scheme, we could compare the results among different clades, among outbreaks

with different epidemiological characteristics, and among local outbreaks and global data sets

(see Methods).

We found that 11 sub-lineages and 5 local populations passed the DRT (S2 Table, S3–S6

and S9–S11 Figs). All the data sets that failed the DRT had less than 350 genomes, or were

composed of strains sampled in a temporal range of 20 years or less. Additionally, only two of

the ten data sets sampled across less than 15 years, and three of the twelve data sets with less

than 100 strains passed the DRT (Fig 1; S2 Table), indicating that large sample sizes and wide

temporal sampling windows are necessary to obtain reliable estimates of evolutionary rates

and timescales in MTB. Conversely, the number of polymorphic positions and the genetic

diversity measured with Watterson’s estimator did not correlate with the outcome of the DRT

(S12 Fig).

Among the three methods generally used to study the temporal structure of a data set, the

root-to-tip regression resulted in a negative slope, and therefore failed to detect the temporal

structure of some of the data sets that passed the DRT (i.e. L1, L4.1.2 and L1.1.1). Nevertheless,

root-to-tip regression can be useful to identify data sets where the temporal signal comes from

a single strain, or a few strains (see below). Comparing prior and posterior distributions of the

clock rates was also useful to detect the presence of temporal structure, although this was not

always in agreement with the results of the DRT: some of the data sets that did not pass the

DRT (e.g. L2.2.1_nc2, Trewby 2016 [38]) had a posterior distribution of the clock rate more

distinct from the prior than some of the data sets that passed the DRT (e.g. L1.1.1, L1.2.1 and

L1.2.2) (S3, S5 and S6 Figs, S2 Table). A possible reason for this could be that LSD and BEAST

have different statistical power with different data sets. Additionally, in some cases the devia-

tion of the posterior distribution of the clock rate from the prior could be an artifact caused by

tree prior misspecification, and not the result of genuine temporal structure [39].

Sensitivity of the clock rate estimates to the model assumptions

In Bayesian analyses, different models and priors are based on different assumptions about the

evolutionary processes, and can thus influence the results [40]. Often different sets of assump-

tions are tested with the Bayes factor (the ratio of the marginal probabilities of two competing

models), and the most likely model is then chosen to estimate the parameters of interest [40].

Given the size and number of the data sets considered in this study, it was not possible to assess

the relative fit of many competing models for all data sets. However, model misspecification

can result in biased estimates. It was therefore important to investigate the robustness of the

results to different models and priors.

We repeated the Bayesian analysis using a uniform prior instead of the 1/x prior on the

clock rate. We ran a BEAST analysis sampling from the priors and found that the uniform
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prior was biased towards high clock rates and put most weight on rates between 10−6 and 10−5

nucleotide changes per site per year (S13 Fig). For all data sets, we compared the posterior dis-

tribution of the clock rate obtained with the two different priors (S14–S16 Figs, S2 Table).

Some data sets showed hardly any difference (e.g. MTBC, L1, L2, L3, L4 etc.), indicating

that the data was informative and that the data set had a strong temporal structure. However,

this did not always correlate with the results of the DRT. For example, the subset of 300 strains

of L2 and the data set Trewby 2016 [38] did not pass the DRT but showed a distinct posterior

distribution that was not sensitive to the prior choice. Other data sets, including three that

passed the DRT by a small margin (L1.1.1, L1.2.1 and L1.2.2), were more sensitive to the prior

choice and resulted in two distinct posterior distributions, indicating a weaker temporal struc-

ture (S6 Fig).

Fig 1. Results of the DRT for all data sets ordered by size and temporal range. Data sets with fewer strains sampled in a shorter period of time

tended to fail the DRT.

https://doi.org/10.1371/journal.ppat.1008067.g001
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An additional assumption of the phylogenetic model that can influence the results of molec-

ular clock analyses is the tree prior (also known as demographic model). We tested the sensi-

tivity to the tree prior by repeating the analysis with an exponential population growth (or

shrinkage) prior instead of the constant population size. For this analysis, we used the 1/x

prior on the clock rate and we considered only the data sets that passed the DRT (21 data sets).

The constant population model is a specific case of the exponential growth model (when the

growth rate is equal to zero). Therefore, if the 95% Highest Posterior Density interval (HPD)

of the growth rate does not include zero, we can conclude that the data reject a demographic

model with constant population size. We found that 14 data sets rejected the constant popula-

tion size model, and that all of them had positive growth rates (S2 Table). The three data sets

that were found to be sensitive to the prior on the clock rate were also sensitive to the tree

prior, confirming their low temporal structure and information content, while the results

for all other data sets were only moderately influenced by the tree prior (S17 and S18 Figs,

S2 Table).

Overall, we found that, except for three data sets (L1.1.1, L1.2.1 and L1.2.2), the clock rate

estimates were robust to different priors of the clock rate and to different demographic models.

To compare the clock rates of different data sets, we report the analysis with the 1/x prior on

the clock rate because the uniform prior can bias the estimates upward. For data sets that

showed evidence against the constant population size model (95% HPD of the growth rate not

including zero), we report the results of the analysis with the exponential population growth,

and for the others, we report the results of the analysis with constant population size.

What is the clock rate of MTB, and what is its variation among lineages,

sub-lineages and outbreaks?

We found that the point estimates of all data sets where we detected temporal structure ranged

between 2.86x10-8 (L3, BEAST analysis) and 4.82x10-7 (Eldholm 2016 [20], BEAST analysis)

nucleotide changes per site per year. While some data sets had a low range of the 95% confi-

dence interval (CI), reaching the hard limit imposed by LSD of 10−10, most of the CI and 95%

highest posterior density intervals (HPD) were included between 10−8 and 5x10-7 (Fig 2, S2

Table). This range encompasses previous estimates obtained with epidemiological samples

and aDNA, and is among the lowest in bacteria, thus supporting our conclusion from above:

tip-dating with MTB requires samples collected over a long period of time because of the slow

clock rate.

There was one notable exceptions to the pattern described above: the data sets L4_nc which

showed a much higher clock rate estimate compared to all other data sets included in this

study (~10−6; S2 Table). However, this is most likely an artifact: 1) L4_nc is the smallest among

all considered data sets, with 32 strains. 2) Most strains are identical or nearly so, collected in

the same year, and form a monophyletic clade (S7 and S19 Figs). It is known that data sets

with a high degree of temporal and phylogenetic clustering can pass the DRT also when they

do not have temporal structure [41]. 3) The root-to-tip regression suggests that the temporal

signal comes from one single strain in L4_nc (S5 Fig). We therefore excluded the L4_nc data

set from further analyses.

Our results suggest that different lineages of MTB have different clock rates. For example

most L1 data sets had point estimates higher than most L4 data sets, although the CI and HPD

were often overlapping. The point estimates indicate that the clock rate of L1 is more than dou-

ble the clock rate of L4: two average L1 strains are expected to differ by 12 SNPs after ten years

of divergence, while two average L4 strains will differ by 5 SNPs after the same period of time.

This was supported by the results of both LSD, where the 95% CI of L1 and L4 did not overlap,

The molecular clock of Mycobacterium tuberculosis
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and BEAST, where the 95% HPD overlapped partially, but the two posterior distributions

showed distinct peaks (Fig 2, S2 Table, S20 Fig). A practical implication of these results per-

tains to the widespread use of SNP distances to identify ongoing transmission in MTB epide-

miological studies. Usually, recent transmission is postulated when two or more strains differ

by a number of SNPs below a certain threshold [42]. However, this approach will result in sys-

tematically lower levels of transmission for clades with faster rates of molecular evolution. For

example, a recent study reported low transmission rates of L1 compared to L2 and L4 in Viet-

nam [43], which could partially be explained by a faster clock rate of L1, as opposed to reduced

ongoing transmission.

When considering the results of BEAST, L2 had a higher clock rate compared to L4, and all

data sets included in the sub-lineage L2.2.1 showed a faster clock rate compared to the com-

plete L2 data set (Fig 2). The sub-lineage L2.2.1 includes the so called “modern Beijing” family,

which was shown to be epidemiologically associated with increased transmission, virulence

and drug [43–48], and to have a higher mutation rate compared to L4 strains [49]. However,

Fig 2. Estimated clock rates of all lineages, sub-lineages and local data sets that passed the DRT. Solid lines represent the 95% confidence interval

estimated with LSD, dashed lines represent the 95% highest posterior density (HPD) estimated by BEAST (the larger dot is the median of the posterior

distribution). We show here the results of the BEAST analysis with the 1/x prior on the clock rate. For data sets that rejected the constant population

size, we show the result obtained with the exponential population growth prior, for the other data sets we show the results obtained with the constant

population size prior. Data sets marked with � have been reduced to 300 randomly picked strains for the BEAST analysis.

https://doi.org/10.1371/journal.ppat.1008067.g002
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the LSD estimates for L2.2.1 and for its sub-lineages, despite showing the same trend of

BEAST, support a lower clock rate compared to BEAST, and have large confidence intervals,

overlapping with the results of L2 and L4 (Fig 2).

Further evidence of among-lineage variation is provided by the results of the Bayesian anal-

yses, where for most data sets, we obtained coefficients of variation (COV) with a median of

0.2–0.3, and not abutting zero (S2 Table), thus rejecting the strict clock [37].

Taken together, these results indicate that there is a moderate variability among the current

rate of molecular evolution of different MTB lineages, which could be caused by different

mutation rates as it was reported for L2 and L4 [49], and support the idea that the inference of

transmission in MTB should move away from the use of SNP distances to methods that incor-

porate information about the molecular clock [50].

In our analysis, we included two outbreaks caused by strains belonging to the same sub-

lineage (L4.1.2; Eldholm 2015 [14], Lee 2015 [15]). This gave us the opportunity to compare

the molecular clock of clades with a similar genetic background in different epidemiological

settings. The Eldholm 2015 data set is a sample of an outbreak in Argentina, in which resis-

tance to multiple antibiotics evolved several times independently [14]. The Lee 2015 data set

represents an outbreak of drug-susceptible strains in Inuit villages in Québec (Canada) [15].

The clock rates of these two data sets were highly similar (95% CI and HPD ranging between

5.07x10-8 and 8.88x10-8 for all analyses; Fig 2, S2 Table), thus suggesting that for these two

data-sets, different epidemiological characteristics, including the evolution of antibiotic resis-

tance, did not have a large impact on the rate of molecular evolution of MTB.

Overall, our results are comparable with previously published tip-dating studies of MTB

that used WGS data, indicating that in practice, using different sequencing and data analysis

pipelines is unlikely to lead to drastically different results. However, further studies are needed

to reveal in detail the effect that some steps of the bioinformatic pipeline, such as the exclusion

of low confidence SNP calls, repetitive genomic regions, or mixed infections might have on

the results of molecular clock analyses.

A faster clock for the ancestor of M. bovis?
We showed that in the last 40 years, the clock rates of different MTB data sets were moderately

divergent. A different question is whether the clock rate was constant during the evolutionary

history of the MTB complex. When looking at the phylogenetic tree of the MTB complex,

rooted with the genome sequence of M. canettii, one notices that strains belonging to different

lineages, despite being all sampled in the last 40 years, have different distances from the root

(Fig 3). For example, since their divergence from the MRCA of the MTB complex, the two M.

africanum lineages (L5 and L6) and especially M. bovis, accumulated more nucleotide changes

than the lineages belonging to MTB sensu stricto (L1-L4; Fig 3). Additionally, all methods

(root-to-tip regression, LSD and BEAST) if used without an outgroup, placed the root on the

branch between M. bovis and all other lineages, while rooting the tree with the outgroup M.

canettii placed the root on the branch connecting MTB sensu stricto with M. africanum (L5

and L6) and M.bovis. The different root placement affects the clock rate estimation only mod-

erately (4.16x10-8 LSD analysis without outgroup, 5.59x10-8 LSD analysis with outgroup; S2

Table), but it is a further indication of the variation of the rate of molecular evolution during

the evolutionary history of the MTB complex. The observation that all M. bovis strains, despite

having a clock rate similar to all other data sets, have a larger distance from the root of the

MTB complex tree compared to other lineages is intriguing, and could be explained by a

faster rate of molecular evolution of the ancestors of M. bovis (Figs 2 and 3). It is believed

that M. bovis switched host (from human to cattle) [51–53], and it is possible that during the
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adaptation to the new host, several genes were under positive selection, thus leading to an

increase in the accumulation of substitutions in the M. bovis genome. Another possibility is

that the ancestor of M. bovis experienced a period of reduced population size, a bottleneck,

and as a consequence, slightly deleterious mutations were fixed by genetic drift, resulting in a

faster clock rate compared to larger populations where selection is more efficient in purging

deleterious mutations [54–55].

Time dependency of the clock rate

It has been suggested that in MTB, as in other organisms, the clock rate estimation is depen-

dent on the age of the calibration points [7, 25–26, 36, 56], and that using recent population-

based samples could result in an overestimation of the clock rate, because these samples

include deleterious mutations that have not yet been purged by purifying selection. However,

the validity of the time dependency hypothesis has been contested in general [57], and for

MTB in particular [21]. Here we used an approach similar to Rieux et al. 2014 [58] and tested

whether the time dependency hypothesis was supported by our data. We repeated the analyses

presented above, only this time we included the aDNA genome sequences of three MTB strains

obtained from Precolumbian human remains from Peru [8]. If the clock rate estimates depend

on the age of the calibration points, adding ancient genomes should result in lower clock rates.

We performed this analysis with LSD, using the complete data set (6,285 strains), and with

Fig 3. a) The Maximum Likelihood tree of the 6,285 strains considered in this study rooted with the genome sequence of M. canetti. b) Phylogenetic

distance from the root (expected nucleotide changes per site) of MTB strains by lineage.

https://doi.org/10.1371/journal.ppat.1008067.g003
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BEAST, using the sub-sample of 300 randomly selected strains described above, and an addi-

tional independent random sub-sample of 500 strains (Methods).

With LSD, adding the aDNA samples resulted in a slightly faster clock rate, conversely all

the analyses performed with BEAST resulted in marginally slower clock rates when the aDNA

samples were included (Table 1). These results indicate that the effect of the age of the calibra-

tion points on the clock rate is modest, and they are corroborated by the observation that MTB

mutation rates in vitro and in vivo, estimated with fluctuation assays and resequencing of

strains infecting macaques, are remarkably similar to the clock rates obtained in our study

(~ 3x10-8–4x10-7) [59].

The aDNA samples considered in this study are not optimal to test the time dependency

hypothesis because they belong to the M. pinnipedii clade of the MTB complex [8]. The mod-

ern strains of this lineage are rarely sampled, because they are infecting seals and sea lions

rather than humans. The only additional aDNA samples available for MTB are L4 samples iso-

lated from 18th century Hungarian mummies [10, 60]. However, these samples are a mix of

strains with different genotypes, and cannot be easily integrated with the data and pipelines

used in this study. While these results suggest that the age of the calibration points has a small

effect on the clock rate estimates, they are based on only three aDNA samples. Additional

aDNA samples from older periods and belonging to other lineages are necessary to reject

(or confirm) the time dependency hypothesis in MTB. Recently, Sabin and colleagues [61]

reported the sequencing of a high quality MTB genome from the 17th century, this data will

contribute to the investigation of the time dependency hypothesis in MTB.

Dating MTB phylogenies

In most cases, the goal of molecular clock studies is not to estimate the clock rates, but rather

the age of the phylogenetic tree and of its nodes. Conceptually, this means extrapolating the

age of past events from the temporal information contained in the sample set. If we exclude

the few aDNA samples that are available [8, 10], all MTB data sets have been sampled in the

last 40 years. It is therefore evident that the age estimates of recent shallow nodes will be more

accurate than medium and deep nodes. In part, this is reflected in the larger CI and HPD of

the age of ancient nodes compared to more recent ones. Extrapolating the age of trees that are

thousands of years old with contemporary samples is particularly challenging, because the

observed data captures only a small fraction of the sample’s evolutionary history, and these are

the cases where aDNA samples are most valuable.

Nevertheless, the age of the MRCA of the MTB complex and of its lineages is highly relevant

to understand the emergence and evolution of this pathogen and a debated topic [7–8, 24].

Table 1. Results of LSD and BEAST for the MTB complex with and without aDNA samples. With BEAST we per-

formed three different analyses, two using a sub-sample of 300 strains and different priors on the clock rate (1/x and

uniform), and one using a sub-sample of 500 strains (Methods, S2 Table).

Data set Clock rate

MTBC 6,285 + M. canettii (LSD) 5.59E-08 (4.12E-08, 6.17E-08)

MTBC 6,285 + M. canettii + aDNA (LSD) 6.93E-08 (5.48E-08, 8.42E-08)

MTBC 300 (BEAST 1/x) 8.2254E-08 (4.964E-08, 1.141E-07)

MTBC 300 +aDNA (BEAST 1/x) 7.3978E-08 (4.648E-08, 1.019E-07)

MTBC 300 (BEAST unif) 8.26E-08 (4.82E-08, 1.14E-07)

MTBC 300 +aDNA (BEAST unif) 7.1794E-08 (4.157E-08, 9.851E-08)

MTBC 500 (BEAST unif) 6.08E-08 (4.21E-08, 8.07E-08)

MTBC 500 +aDNA (BEAST unif) 5.20E-08 (3.41E-08, 7.12E-08)

https://doi.org/10.1371/journal.ppat.1008067.t001
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The LSD analyses on the tree rooted with M. canettii estimated the MRCA of the MTB com-

plex to be between 2,828 and 5,758 years old (S2 Table). These results are highly similar to the

ones of Bos and colleagues (2,951–5,339) which were obtained with Bayesian phylogenetics

and a much smaller sample size [8]. These estimates should be taken with caution because of

the intrinsic uncertainty in estimating the age of a tree that is several thousands of years old,

calibrating the molecular clock with the sampling time of modern strains and only three

aDNA samples. A more approachable question is the age of the MRCA of the individual MTB

lineages. Here we can consider the results of four different analyses: the LSD and BEAST anal-

yses on the individual lineages (L1-L4, and M. bovis), and the LSD and BEAST analyses on the

complete MTB complex (including the aDNA samples), from which the age of the MRCA of

the lineages can be extracted (L1-L6, and M. bovis). When we combined all these results, merg-

ing the CI and HPD, we obtained an estimate of the age of the MTB lineages which accounts

for the uncertainty intrinsic in each analysis, but also for the differences among inference

methods and models, thus providing a more conservative hypothesis. In all our analyses, the

point estimates of the age of all lineages resulted to be at most 2,500 years old, and the com-

bined CI and HPD extended to a maximum of 11,000 years ago for L2 (95% CI of the LSD

analysis; Fig 4, S3 Table). The large CI of L2 obtained with LSD was maybe due to among-line-

age variation of the clock rate in L2. While L5, L6 and M. bovis have younger MRCAs and nar-

rower confidence intervals, we should note that for these lineages the sampling is much less

complete compared to L1-L4, and it is possible that further sampling will add more basal

strains to the tree, thus resulting in older MRCAs. For the other lineages, where the sampling

is more representative of the global diversity, the confidence intervals of the age of the MRCAs

extend over several thousands of years, and the point estimates of the four analyses spread over

1,000–2,000 years. This shows that we should be very careful when interpreting the results of

tip-dating in MTB, especially if our goal is to estimate the age of ancient nodes such as the

MRCAs of MTB lineages. Conservative researchers might want to use different methods; sev-

eral model and prior combinations should be formally tested in BEAST, and the final results

can be combined in one range providing an estimation of the uncertainty of the clock rate and

of the age of some specific node of the tree.

Altogether our results highlight the uncertainty of calibrating MTB trees with tip-dating,

they nevertheless support the results of Bos et al. 2014 [8] that found the MRCA of the MTB

complex to be relatively recent, and not compatible with the Out-of-Africa hypothesis [7, 24]

in which the MTB lineage differentiated in concomitance with the dispersal of Homo sapiens
out of Africa, about 70,000 years ago. Dating analyses based on DNA samples can only recon-

struct the evolutionary history of the data set as far back as the MRCA of the sample. It is possi-

ble that in the future new lineages will be sampled, and the MTB phylogeny will be updated

moving the MRCA further in the past. Additionally, it is also possible that extinct lineages

were circulating and causing diseases much earlier that the MRCA of the strains that are circu-

lating now. This hypothesis is supported by the detection of molecular markers specific for

MTB in archeological samples (reviewed in [62]), the oldest of them in a bison’s bone about

17,500 years old [63]. Several such studies directly challenge the results of tip-dating presented

here because they reported molecular markers specific to MTB lineages in archeological sam-

ples that predate the appearance of those lineages as estimated by tip-dating [64–66]. However,

there is a controversy regarding the specificity of some of the used markers, and the potential

contamination of some of the samples by environmental mycobacteria [67–68].

Whole genome sequences from additional aDNA samples are needed to reconcile these two

diverging lines of evidence. Ideally, these samples should represent different lineages, span dif-

ferent periods, and be more ancient than the currently available aDNA from Peruvian human

remains.
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Conclusions

In this systematic study of the molecular clock of MTB, we collected the genome sequences of

6,285 strains from all over the world, divided them into multiple data sets and used different

tip-dating methods to assess their temporal structure and molecular clock rates. In most cases,

the clock rate could be estimated reliably only if the data sets included strains sampled for 15

or more years. We inferred an overall clock rate ranging between 10−8 and 5x10-7 nucleotide

changes per site per year, independently of the data set. We explored different methodologies

Fig 4. The inferred age of the MTB lineages. LSD: results of the LSD analysis performed on the individual lineages. BEAST: results of the BEAST

analysis performed on the individual lineages (median values). LSD MTBC + aDNA: results of the LSD analysis performed on the complete data set of

6,285 strains + 3 aDNA samples, the age of the MRCA of the individual lineages was identified on the calibrated tree. BEAST MTBC + aDNA: results of

the BEAST analysis performed on the random subsample of 500 strains + 3 aDNA samples, the age of the MRCA of the individual lineages was

identified on the calibrated tree (median values). The confidence intervals were obtained merging the 95% CI and HPD of all analyses. The shaded area

represents the age of the MRCA of the MTB complex obtained with the LSD analyses (with and without aDNA, the two 95% CI were merged). For L5

and L6 we report only the age inferred on the complete MTB complex tree, because when analyzed individually these two data sets showed a lack of

temporal structure (they failed the DRT).

https://doi.org/10.1371/journal.ppat.1008067.g004
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and approaches to molecular clock analyses in MTB, thus providing information and guidance

for future studies.

Our results support the robustness of molecular clock analyses in MTB under some condi-

tions, but also highlight the challenges of tip-dating with large genome sizes and slow evolu-

tionary rates. The first challenge is to sample strains for a period long enough to calibrate the

clock. When this cannot be done, it is possible to include in the analysis additional strains with

older dates that are phylogenetically closely related and for which the genome sequence is

available in the public domain. Alternatively, for data with no temporal structure, our esti-

mates can be used to calibrate the clock rate at 10−8–5x10-7 nucleotide changes per site per

year, thus obtaining a broad (conservative) time estimate for the age of the tree and of its

nodes.

The second challenge is computational. As the cost of sequencing decreases, large WGS

data sets with several hundred (or thousand) of strains are becoming more common. While

large data sets allow for a more precise estimation of the clock rate, they are problematic to

analyze with Bayesian phylogenetics. Two possible strategies around this problem are sub-

sampling large data sets or reducing the parameter space by using hybrid methods (e.g. using a

fixed tree topology) [32].

Some of these challenges might be overcome through future developments. For example,

the expansion of fast tip-dating algorithms (such as LSD) to incorporate relaxed clock models

would benefit the analysis of large data sets. Additionally, the use of long-read sequencing data

will enable the inclusion of SNPs located in repetitive regions of the genome, thus maybe

shortening the sampling period needed to calibrate the molecular clock.

Methods

Bioinformatic pipeline

We identified 21,734 MTB genome sequences from the sequence read archive (S4 Table). All

genome sequences were processed similarly to what was described in Menardo et al. 2018 [69].

We removed Illumina adaptors and trimmed low quality reads with Trimmomatic v 0.33

(SLIDINGWINDOW:5:20) [70]. We excluded all reads shorter than 20 bp and merged over-

lapping paired-end reads with SeqPrep (overlap size = 15) (https://github.com/jstjohn/

SeqPrep).

We mapped the resulting reads to the reconstructed ancestral sequence of the MTB com-

plex [7] using the mem algorithm implemented in BWA v 0.7.13 [71]. Duplicated reads were

marked by the MarkDuplicates module of Picard v 2.9.1 (https://github.com/broadinstitute/

picard). We performed local realignment around Indel with the RealignerTargetCreator

and IndelRealigner modules of GATK v 3.4.0 [72]. We used Pysam v 0.9.0 (https://github.

com/pysam-developers/pysam) to exclude reads with alignment score lower than

(0.93�read_length)-(read_length�4�0.07)): this corresponds to more than 7 miss-matches per

100 bp. We called SNPs with Samtools v 1.2 mpileup [73] and VarScan v 2.4.1 [74] using the

following thresholds: minimum mapping quality of 20; minimum base quality at a position of

20; minimum read depth at a position of 7X; minimum percentage of reads supporting the call

90%; no more than 90%, or less than 10% of reads supporting a call in the same orientation

(strand bias filter). SNPs in previously defined repetitive regions were excluded (PPE and

PE-PGRS genes, phages, insertion sequences and repeats longer than 50 bp) [53]. We excluded

all strains with average coverage < 15 X. Additionally, we excluded genomes with more than

50% of the SNPs excluded due to the strand bias filter, and genomes with more than 50% of

SNPs with a percentage of reads supporting the call included between 10% and 90%. We fil-

tered out genomes with phylogenetic SNPs belonging to different lineages or sub-lineages
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(only for L4) of MTB, as this is an indication that a mix of strains could have been sequenced.

To do this, we used the diagnostic SNPs obtained from Steiner et al. 2014 [75] and Stucki et al.

2016 [76] for L4 sub-lineages. We excluded all strains for which we could not find the date of

isolation 1) in the SRA meta-information, 2) in the associated publications, 3) from the authors

of the original study after inquiry. We divided all remaining strains by lineage (L1 -L6 and M.

bovis), and excluded strains with a number of called SNPs deviating more than three standard

deviations from the mean of the respective lineage. We built SNPs alignments for all lineages

including only variable positions with less than 10% of missing data. Finally, we excluded all

genomes with more than 10% of missing data in the alignment of the respective lineage. After

all filtering steps, we were able to retrieve 6,285 strains with high quality genome sequences

and an associated date of sampling (S1 Table).

Dataset subdivision

To perform a systematic analysis of the molecular clock in MTB we considered different data

sets:

1. the complete data set (6,285 strains)

2. the different lineages of MTB (L1, L2, L3, L4, L5, L6, M. bovis)

3. the sub-lineages of L1 (L1.1.1, L1.1.1.1, L1.1.2, L1.1.3, L1.2.1 and L1.2.2) and L2 (L2.1,

L2.2.1, L2.2.2 and L2.2.1.1) as defined by Coll et al. 2014 [77]; the sub-lineages of L4 (L4.1.1,

L4.1.2, L4.1.3, L4.4, L4.5, L4.6.1 and L4.10) as defined by Stucki et al. 2016 [76]. Addition-

ally, we identified two L4 clades that were not classified by the diagnostic SNPs of Stucki

et al. 2016 [76] (L4_nc and L4.1_nc, respectively, included into L4.6.2 and L4.1.2 as defined

by Coll et al. 2014 [77]), and three sub-clades of L2.2.1 that were not previously designated

as sub-lineages (L2.2.1_nc1, L2.2.1_nc2 and L2.2.1_nc3) (S9–S11 Figs).

4. Selected data sets representing outbreaks or local populations that have been used for

molecular clock analyses in other studies

Lee et al. 2015 [15]—Mj clade outbreak among a Inuit population in Canada (L4)

Eldholm et al. 2015 [14]- Multi-drug resistant outbreak in Argentina (L4)

Eldholm et al. 2016 [20]–Afghan family outbreak in Oslo (L2)

Trewby et al. 2016 [38]–M. bovis in Northern Ireland

Crispell et al. 2017 [78]–M. bovis in New Zealand

Folkvardsen et al. 2017 [16]—C2/1112-15 outbreak in Denmark (L4)

Bainomugisa et al. 2018 [17]–Multi-drug resistant outbreak on Daru island in PNG (L2)

LSD analysis

For all data sets, we assembled SNPs alignments including variable positions with less than

10% of missing data. We inferred phylogenetic trees with raxml 8.2.11 [79] using a GTR model

(-m GTRCAT -V options). Since the alignments contained only variable positions, we rescaled

the branch lengths of the trees rescaled_branch_length = ((branch_length � alignmen-

t_lengths) / (alignment_length + invariant_sites)), Duchene and colleagues [32] showed that

this method produced similar results compared to ascertainment bias correction. We then

used the R package ape [80] to perform root to tip regression after rooting the trees in the
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position that minimizes the sum of the squared residuals from the regression line. Root to tip

regression is only recommended for exploratory analyses of the temporal structure of a dataset

and it should not be used for hypothesis testing [28]. A more rigorous approach is the date ran-

domization test (DRT) [81], in which the sampling dates are reshuffled randomly among the

taxa and the estimated molecular clock rates estimated from the observed data is compared

with the estimates obtained with the reshuffled data sets. This test can show that the observed

data has more temporal information that data with random sampling times. For each dataset,

we used the least square method implemented in LSD v0.3-beta [31] to estimate the molecular

clock in the observed data and in 100 randomized replicates. To do this, we used the QPD

algorithm allowing it to estimate the position of the root (option -r a) and calculating the confi-

dence interval (options -f 100 and -s). We defined three different significance levels for the

DRT: 1) the simple test is passed when the clock rate estimate for the observed data does not

overlap with the range of estimates obtained from the randomized sets. 2) The intermediate

test is passed when the clock rate estimate for the observed data does not overlap with the con-

fidence intervals of the estimates obtained from the randomized sets. 3) The stringent test is

passed when the confidence interval of the clock rate estimate for the observed data does not

overlap with the confidence intervals of the estimates obtained from the randomized sets.

Bayesian phylogenetic analysis

Bayesian molecular clock analyses are computationally demanding and problematic to run on

large data sets. Therefore we reduced the thirteen largest data sets (MTBC, L1, L1.1.1, L1.1.1.1,

L2, L2.2.1, L2.2.1.1, L2.2.1_nc1, L2.2.1_nc3, L4, L4.1.2, L4.10 and M. bovis) to 300 randomly

selected strains. For each data set we used the Bayesian information criterion implemented in

jModelTest 2.1.10 v20160303 [35] to identify the best fitting nucleotide substitution model

among 11 possible schemes including unequal nucleotide frequencies (total models = 22,

options -s 11 and -f). We performed Bayesian inference with BEAST2 [34]. We corrected the

xml file to specify the number of invariant sites as indicated here: https://groups.google.com/

forum/#!topic/beast-users/QfBHMOqImFE, and used the tip sampling year as calibration.

We ran four BEAST analyses with different settings: we used a relaxed lognormal clock

model [37], the best fitting nucleotide substitution model according to the results of jModelT-

est, and two different coalescent priors: constant population size and exponential population

growth (or shrinkage). We chose a 1/x prior for the population size [0–109], two different pri-

ors for the mean of the lognormal distribution of the clock rate (1/x and uniform) [10−10–

10−5], a normal(0,1) prior for the standard deviation of the lognormal distribution of the clock

rate [0 –infinity]. For the exponential growth rate prior, we used the standard Laplace distribu-

tion [-infinity–infinity]. For all data sets, we ran at least two runs, we used Tracer 1.7.1 [82] to

identify and exclude the burn-in, to evaluate convergence among runs and to calculate the esti-

mated sample size. We stopped the runs when at least two chains reached convergence, and

the ESS of the posterior and of all parameters were larger than 200.

Analyses with the complete MTB complex and aDNA

We analyzed the complete data set of 6,285 genomes with the same methods described above.

The only difference was that for the LSD analysis, we rooted the input tree using Mycobacte-
rium canetti (SAMN00102920, SRR011186) as outgroup. We did this because we noticed that

without outgroup, all methods placed the root on the branch separating M. bovis from all

other lineages, and not on the branch separating MTB sensu stricto from the other lineages.

To test the time dependency hypothesis, we repeated the LSD and BEAST analyses on the

MTB complex, adding the aDNA genome sequences of three MTB strains obtained from
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Precolumbian Peruvian human remains [8]. These are the most ancient aDNA samples avail-

able for MTB. For LSD, we assigned as sampling year the confidence interval of the radiocar-

bon dating reported in the original publication. For BEAST, we assigned uniform priors

spanning the confidence interval but we failed to reach convergence, therefore we used the

mean of the maximum and minimum years in the confidence interval (SAMN02727818: 1126

[1028–1224], SAMN02727820: 1117 [1023–1211], SAMN02727821: 1211 [1141–1280]). We

ran three different analyses with BEAST: we used the sub-sample of 300 strains with two differ-

ent priors on the clock rate (1/x and uniform), and an independent sub-sample of 500 strain,

for this last data set (500 strains) we assumed a HKY model and used a uniform prior on the

clock rate (S2 Table).

To summarize the results of the BEAST analysis with the aDNA samples and retrieve the

age of the MRCA of the individual lineages, we considered the analysis performed on the sub-

set of 500 strains: we randomly sampled 5,000 trees from the posterior (after excluding the

burn-in), and calculated the Maximum clade credibility tree with the software Treeannotator

v2.5.0.

Supporting information

S1 Table. List of strains used in this study with sampling year and accession numbers.

(XLSX)

S2 Table. Results of BEAST and LSD for all data sets.

(XLSX)

S3 Table. The age of the MTB complex and of its lineages resulted from different analyses.

(DOCX)

S4 Table. List of all accession numbers, before filtering.

(XLSX)

S1 Fig. For each data set we report the results of the root to tip regression, where the dis-

tance from the root of the tree (expected substitution per site) is plotted against the year of

sampling, the results of the date randomization test (DRT) with LSD, and the comparison

of the prior and posterior distribution of the clock rate. The simple DRT is passed when the

clock rate estimate for the observed data does not overlap with the range of estimates obtained

from the randomized sets. The intermediate DRT is passed when the clock rate estimate for

the observed data does not overlap with the confidence intervals of the estimates obtained

from the randomized sets. The stringent DRT is passed when the confidence interval of the

clock rate estimate for the observed data does not overlap with the confidence intervals of the

estimates obtained from the randomized sets. Large data sets (MTBC, L1, L2, L4 and M. bovis)
were randomly sub-sampled to 300 strains for the BEAST analysis.

(TIF)

S2 Fig. Root to tip regression analysis of L1, L5 and L6. The difference compared to S1 Fig is

that the root was not placed in the position that minimizes the sum of the squared residuals

from the regression line, but was obtained from the complete MTBC tree as shown in Fig 3a,

and it is therefore defined by the outgroup of each of these lineages.

(TIF)

S3 Fig. For each data set we report the results of the root to tip regression, where the dis-

tance from the root of the tree (expected substitution per site) is plotted against the year of

sampling, the results of the date randomization test (DRT) with LSD, and the comparison
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of the prior and posterior distribution of the clock rate. The simple DRT is passed when the

clock rate estimate for the observed data does not overlap with the range of estimates obtained

from the randomized sets. The intermediate DRT is passed when the clock rate estimate for the

observed data does not overlap with the confidence intervals of the estimates obtained from the

randomized sets. The stringent DRT is passed when the confidence interval of the clock rate esti-

mate for the observed data does not overlap with the confidence intervals of the estimates

obtained from the randomized sets. Large data sets (L1.1.1, L1.1.1.1, L2.2.1, L2.2.1.1, L2.2.1_nc1,

L2.2.1_nc3, L4.10, L4.1.2) were randomly sub-sampled to 300 strains for the BEAST analysis.

(TIF)

S4 Fig. For each data set we report the results of the root to tip regression, where the dis-

tance from the root of the tree (expected substitution per site) is plotted against the year of

sampling, the results of the date randomization test (DRT) with LSD, and the comparison

of the prior and posterior distribution of the clock rate. The simple DRT is passed when the

clock rate estimate for the observed data does not overlap with the range of estimates obtained

from the randomized sets. The intermediate DRT is passed when the clock rate estimate for

the observed data does not overlap with the confidence intervals of the estimates obtained

from the randomized sets. The stringent DRT is passed when the confidence interval of the

clock rate estimate for the observed data does not overlap with the confidence intervals of the

estimates obtained from the randomized sets. Large data sets (L1.1.1, L1.1.1.1, L2.2.1, L2.2.1.1,

L2.2.1_nc1, L2.2.1_nc3, L4.10, L4.1.2) were randomly sub-sampled to 300 strains for the

BEAST analysis.

(TIF)

S5 Fig. For each data set we report the results of the root to tip regression, where the dis-

tance from the root of the tree (expected substitution per site) is plotted against the year of

sampling, the results of the date randomization test (DRT) with LSD, and the comparison

of the prior and posterior distribution of the clock rate. The simple DRT is passed when the

clock rate estimate for the observed data does not overlap with the range of estimates obtained

from the randomized sets. The intermediate DRT is passed when the clock rate estimate for the

observed data does not overlap with the confidence intervals of the estimates obtained from the

randomized sets. The stringent DRT is passed when the confidence interval of the clock rate esti-

mate for the observed data does not overlap with the confidence intervals of the estimates

obtained from the randomized sets. Large data sets (L1.1.1, L1.1.1.1, L2.2.1, L2.2.1.1, L2.2.1_nc1,

L2.2.1_nc3, L4.10, L4.1.2) were randomly sub-sampled to 300 strains for the BEAST analysis.

(TIF)

S6 Fig. For each data set we report the results of the root to tip regression, where the dis-

tance from the root of the tree (expected substitution per site) is plotted against the year of

sampling, the results of the date randomization test (DRT) with LSD, and the comparison

of the prior and posterior distribution of the clock rate. The simple DRT is passed when the

clock rate estimate for the observed data does not overlap with the range of estimates obtained

from the randomized sets. The intermediate DRT is passed when the clock rate estimate for

the observed data does not overlap with the confidence intervals of the estimates obtained

from the randomized sets. The stringent DRT is passed when the confidence interval of the

clock rate estimate for the observed data does not overlap with the confidence intervals of the

estimates obtained from the randomized sets. Large data sets (L1.1.1, L1.1.1.1, L2.2.1, L2.2.1.1,

L2.2.1_nc1, L2.2.1_nc3, L4.10, L4.1.2) were randomly sub-sampled to 300 strains for the

BEAST analysis.

(TIF)
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S7 Fig. Distribution of the sampling years.

(TIF)

S8 Fig. Distribution of the sampling years.

(TIF)

S9 Fig. Sub-lineages of L1 that were included in the analysis. Clades colored in gray did not

pass the DRT, clades colored in black passed the DRT. �: simple DRT passed, �� intermediate

DRT passed, ���: stringent DRT passed.

(TIF)

S10 Fig. Sub-lineages and outbreaks of L2 that were included in the analysis. Clades colored

in gray did not pass the DRT, clades colored in black passed the DRT. �: simple DRT passed,
�� intermediate DRT passed, ���: stringent DRT passed. Dotted lines represent two outbreaks

from previous studies.

(TIF)

S11 Fig. Sub-lineages and outbreaks of L4 that were included in the analysis. Clades colored

in gray did not pass the DRT, clades colored in black passed the DRT. �: simple DRT passed,
�� intermediate DRT passed, ���: stringent DRT passed. Dotted lines represent three outbreaks

from previous studies.

(TIF)

S12 Fig. Results of the DRT for all data sets ordered by genetic diversity (Watterson’s esti-

mator and number of polymorphic positions) and temporal range. Data sets with fewer

strains sampled in a shorter period of time tended to fail the DRT irrespectively of the genetic

diversity of the data set.

(TIF)

S13 Fig. Comparison of different priors on the clock rate (1/x prior and uniform prior).

The uniform prior place most weight on high clock rates, while the 1/x prior distributes the

weight through all orders of magnitude.

(TIF)

S14 Fig. Posterior distribution of the clock rate, obtained with two different priors

(1/x and uniform [10−10–10−5]). The prior distributions for the two analyses are shown in

S13 Fig.

(TIF)

S15 Fig. Posterior distribution of the clock rate, obtained with two different priors (1/x

and uniform [10−10–10−5]). The prior distributions for the two analyses are shown in S13 Fig.

(TIF)

S16 Fig. Posterior distribution of the clock rate, obtained with two different priors (1/x

and uniform [10−10–10−5]). The prior distributions for the two analyses are shown in S13 Fig.

(TIF)

S17 Fig. Comparison of the posterior distribution of the clock rate obtained with a con-

stant population size and an exponential population growth prior.

(TIF)

S18 Fig. Comparison of the posterior distribution of the clock rate obtained with a con-

stant population size and an exponential population growth prior.

(TIF)
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S19 Fig. Phylogenetic tree of data set L4_nc with tips colored according to the year of sam-

pling.

(TIF)

S20 Fig. Posterior distribution of the clock rate for L1 and L4. These are the results of the

analysis with the 1/x prior on the clock rate and the exponential population growth (or shrink-

age) prior.

(TIF)
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