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Abstract: Interstitial pneumonia is a life-threatening clinical manifestation of cytomegalovirus infec-
tion in recipients of hematopoietic cell transplantation (HCT). The mouse model of experimental HCT
and infection with murine cytomegalovirus revealed that reconstitution of virus-specific CD8+ T cells
is critical for resolving productive lung infection. CD8+ T-cell infiltrates persisted in the lungs after
the establishment of latent infection. A subset defined by the phenotype KLRG1+CD62L− expanded
over time, a phenomenon known as memory inflation (MI). Here we studied the localization of
these inflationary T effector-memory cells (iTEM) by comparing their frequencies in the intravas-
cular and transmigration compartments, the IVC and TMC, respectively, with their frequency in
the extravascular compartment (EVC), the alveolar epithelium. Frequencies of viral epitope-specific
iTEM were comparable in the IVC and TMC but were reduced in the EVC, corresponding to an
increase in KLRG1−CD62L− conventional T effector-memory cells (cTEM) and a decrease in func-
tional IFNγ+CD8+ T cells. As maintained expression of KLRG1 requires stimulation by antigen, we
conclude that iTEM lose KLRG1 and convert to cTEM after transmigration into the EVC because
pneumocytes are not latently infected and, therefore, do not express antigens. Accordingly, antigen
re-expression upon airway challenge infection recruited virus-specific CD8+ T cells to TMC and EVC.

Keywords: antigen presentation; CD8 T cells; cytomegalovirus (CMV); effector-memory T cells
(TEM); hematopoietic cell transplantation (HCT); interstitial pneumonia; latent infection; lungs; lung
parenchyma; memory inflation (MI)

1. Introduction

Human cytomegalovirus (hCMV) is a prototype member of the β-subfamily of the
herpes virus family [1]. Whereas primary infection passes mostly undiagnosed without
overt clinical symptoms or organ disease when held in check by an intact innate and
adaptive immune system in the otherwise healthy, immunocompetent host, unrestricted
cytopathogenic tissue infection can lead to multiple-organ failure with often lethal outcome
in an immunocompromised host [2–4].

A significant public health and economic impact [5,6], and the main argument for the
development of a CMV vaccine [7–10], results from birth defects caused by hCMV in an
immunologically immature embryo/fetus after congenital infection following diaplacental
transmission of the virus [11,12] after primary or recurrent infection during pregnancy [13].

After clearance of productive CMV infection, a latent infection, briefly referred to as
“latency”, is established, which is defined by the presence of replication-competent viral
genomes that are silenced at loci critical for completion of the viral replicative cycle so that
infectious progeny is not produced [14,15]. However, there is increasing evidence for viral
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gene expression during latency that does not follow the canonical temporal cascade of gene
expression during productive infection [16] and that can impact the cellular secretome to
create a latency-modulated microenvironment [17–20].

Patients at risk of CMV disease following productive reactivation of latent virus
are recipients of solid-organ transplantation (SOT), who become immunosuppressed to
prevent graft rejection, as well as recipients of hematopoietic cell transplantation (HCT)
transiently immunocompromised by hematoablative therapy of aggressive hematopoietic
malignancies that are refractory to standard antitumoral therapies. On top of this, in the
case of allogeneic HCT with family or unrelated donors differing in major (HLA) and/or
minor histocompatibility antigens (mHAg), additional immunosuppressive therapy is
applied to prevent graft-versus-host (GvH) disease (for clinical overviews, see [21,22]).

In HCT with either donor or recipient or both being latently infected, hCMV can
reactivate from latently infected donor cells of the myeloid hematopoietic lineage [23–28], as
well as from latently infected cells present in the transplant recipient, presumably including
a tissue cell type that is refractory to hematoablative antitumor therapy. Endothelial
cells (EC) have been discussed as candidates [29]. Despite routine follow-up of HCT
recipients by quantitative PCR to detect virus reactivation at the earliest possible occasion
to initiate pre-emptive therapy with antiviral drugs, HCT-associated CMV disease remains
a clinical problem due to virus variants that have developed drug resistance [30]. In such
patients, immunotherapy by adoptive transfer of virus-specific CD8+ T cells has become
the last resort to prevent CMV disease [31–34]. CMV infection of the lungs is the focus of
our own work because interstitial CMV pneumonia represents the clinically most feared
manifestation of hCMV infection in HCT patients, with an often lethal outcome if treatment
fails [35–37].

The mouse model of experimental syngeneic, as well as allogeneic, HCT and infection
with murine cytomegalovirus (mCMV) has contributed much to the understanding of fun-
damental common principles of CMV pathogenesis, immune evasion, and immune control,
including the intervention by CD8+ T-cell-based immunotherapy (reviewed in [38–40]).
Specifically, as first shown in the model of syngeneic HCT, efficient and timely reconsti-
tution of virus-specific CD8+ T cells is crucial for preventing lethal viral pneumonia after
acute primary infection [41]. Lung-infiltrating protective CD8+ T cells persist in the lungs
after clearance of productive infection and the establishment of a latent infection [41]. The
observation of an expansion of CD8+ T effector-memory cells (TEM) specific for certain
viral epitopes in these persisting lung infiltrates [42] initiated extensive research on this
phenomenon that is now known as memory inflation (MI) (for reviews, see [43–48]). The
expanding cells represent a subset of CD8+ T cells that is characterized by the cell sur-
face marker phenotype KLRG1+CD62L− [49], for which we have proposed the acronym
iTEM for “inflationary T effector-memory cells” to distinguish them from the conventional
KLRG1−CD62L− T effector-memory cells, the cTEM [50]. The iTEM differ from effector
cells of the acute immune response by a prolonged life span due to IL15-mediated expres-
sion of the antiapoptotic protein Bcl-2 [51]. Importantly, MI represented by an expansion
of the iTEM pool depends on a high load of latent viral genomes, which is achieved by
systemic infection but not usually by local infection, after which viral replication and
spread are limited by immune control in the draining regional lymph node ([50] and
references therein).

Since its first description, the maintained expression of KLRG1, and thus the iTEM phe-
notype, is known to depend on continuous or at least frequent restimulation by antigen [52].
We have recently identified transient and stochastic expression of epitope-encoding viral
genes during latency, and thus a sporadic presentation of viral antigenic peptides, as the
viral molecular driver of MI [53,54]. This finding explained the independently described
stochastic nature of expansion and contraction of viral epitope-specific CD8+ T-cell clones
during MI [55] and is in perfect accordance with a mathematical model of MI curve fitting,
proposing frequent stimulation by antigen to smoothen episodes of pool expansions and
contractions [56].
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An open question concerns the precise microanatomical site(s) where latently infected
cells present antigens for the restimulation of iTEM. Competing though, in our view, not
mutually exclusive hypotheses proposed antigen presentation during viral latency to
occur in lymphoid tissue [57] or at latently infected cells of the vasculature, for instance
at endothelial cells (EC) in the capillaries of the vascular bed of the lungs [58]. In fact, we
have previously shown that latent mCMV genomes in the lungs localize to CD31+CD146+

capillary wall EC [53].
Here we studied the localization of viral epitope-specific iTEM, cTEM, and T central

memory cells (TCM) in latently infected lungs. We distinguished three compartments,
namely (1) the intravascular compartment (IVC), (2) the transmigration compartment
(TMC), which includes CD8+ T cells attached to capillary wall endothelium, cells in the
process of extravasation, and cells that have arrived in the interstitium, as well as (3) the
extravascular compartment (EVC) (Figure 1).
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Figure 1. Scheme of the lung capillary-parenchyma interface. (IVC-T) T cell in the intravascular compartment, the capillary
blood. (TMC-T) T cell in the transmigration compartment, comprising cells attached to the endothelium, cells in the process
of transmigration, and cells in the interstitium. (EVC-T) T cell in the extravascular compartment loosely attached to the
alveolar epithelium. (BAL) bronchoalveolar lavage. The red-stained nucleus symbolizes a latently infected endothelial cell.

Our data provide reasonable evidence to propose that iTEM receive their restimu-
lation by latently infected cells outside of the lung parenchyma, and convert to cTEM
by downregulation of KLRG1 when they localize to the lung parenchyma, which is not
latently infected and, hence, does not present viral antigenic peptides for restimulation and
maintained expression of KLRG1.

2. Materials and Methods
2.1. Viruses and Mice

Bacterial artificial chromosome (BAC)-cloned virus MW97.01, derived from BAC plas-
mid pSM3fr [59,60], is herein referred to as WT.BAC. For challenge infection, recombinant
viruses mCMV-IE1-L176A+m164-I265A (referred to as ∆IDE) and mCMV-IE1-A176L+m164-
A265I (referred to as ∆IDE_rev) [61] were used. Female BALBc/J mice (8 weeks old, haplo-
type H-2d) were purchased from Harlan Laboratories and were housed under specified
pathogen-free (SPF) conditions in the Translational Animal Research Center (TARC) of the
University Medical Center of the Johannes Gutenberg-University Mainz.

2.2. Establishment of Latent Infection after Experimental HCT

Syngeneic hematopoietic cell transplantation (HCT) with 9-week-old female BALBc/J
mice as bone marrow cell (BMC) donors and recipients was performed as described ([62]



Life 2021, 11, 918 4 of 13

and references therein). In brief, hematoablative conditioning was performed by sublethal
total-body γ-irradiation with a single dose of 6.5 Gy. Donor BMC (5 × 106/mouse) were
infused into the tail vein of the recipients at 6 h after irradiation, followed by intraplantar
infection with 105 plaque-forming units (PFU) of WT.BAC injected into the left hind footpad.
Latent infection was routinely confirmed by the presence of viral genomes in tissues in the
absence of infectious virus [53].

2.3. Airway Challenge Infection of Latently Infected Mice

Mice latently infected with WT.BAC were superinfected with 1 × 106 PFU of viruses
∆IDE or ∆IDE_rev by intratracheal virus application as described [63]. Four days later,
localization of virus-specific CD8+ T cells to different lung compartments was quantified
by cytofluorometric analysis.

2.4. Preparation of Compartment-Specific Lung Cells

Latently infected mice were lethally anesthetized by carbon dioxide inhalation. As the
first step, bronchoalveolar lavage (BAL) leucocytes were isolated by flushing the airways
with DPBS + 2% FCS. [64]. Leucocytes from the bloodstream were isolated from blood
taken by heart puncture directly after the BAL. Finally, leucocytes from lung tissue were
isolated essentially as described ([50] and references therein). In brief, after perfusion of the
lungs via the right ventricle to remove cells from the capillary bed of the lungs, the lungs
were excised. Tracheae, bronchi, and pulmonary lymph nodes were discarded, and the
lung lobes were minced. Lung tissue from 4 to 5 lungs was digested for 1 h at 37 ◦C with
constant stirring in 15 mL DMEM containing collagenase A (1.6 mg/mL; Roche, Mannheim,
Germany) and DNase I (50 µg/mL, Sigma-Merck, Darmstadt, Germany). Mononuclear
cells were enriched by density-gradient centrifugation for 30 min at 760× g on lymphocyte
separation medium Histopaque-1077 (Sigma-Merck).

2.5. Cytofluorometric Analyses

Single-cell suspensions were prepared from different lung compartments as described
above. Unspecific staining was blocked with unconjugated anti-FcγRII/III antibody (anti-
CD16/CD32; clone 2.4G2, BD Bioscience, Heidelberg, Germany). Living cells were de-
tected using Fixable Viability Dye eFluor 780 (ThermoFisher Scientific, Langenselbold,
Germany). Cells were specifically stained with the following antibodies for multi-color
cytofluorometric analyses: BV421-conjugated anti-CD8α (clone 53-6.7; BioLegend, San
Diego, USA), FITC-conjugated anti-KLRG1 (clone 2F1; BioLegend), BV510-conjugated
anti-CD45 (clone 30-F11; BioLegend), and PerCP-Cy5.5-conjugated anti-CD62L (clone
MEL-14; Thermo Fisher Scientific). Phenotypic characterization of peptide-specific CD8
T cells was performed using PE-conjugated dextramers H-2Ld/YPHFMPTNL (IE1), and
H-2Dd/AGPPRYSRI (m164) (Immudex, Copenhagen, Denmark). All cytofluorometric
analyses were performed with flow cytometer BD FACSCanto and BD FACSDiva analysis
software. For detailed analyses and documentation, FlowJo (version 10.6, BD Biosciences)
was used.

2.6. Quantitation of Functional Epitope-Specific CD8+ T Cells

At the indicated time during viral latency established after HCT and infection, cells
isolated from the different lung compartments served as responder cells in an IFNγ-based
enzyme-linked immunospot (ELISpot) assay ([65] and references therein). Briefly, to detect
functional, epitope-specific CD8+ T cells, synthetic peptides were exogenously loaded
at a saturating concentration of 10−7M on P815 (H-2d) mastocytoma cells for serving as
stimulator cells in the assay. Graded numbers of leucocytes were seeded with the peptide-
loaded stimulator cells in triplicate microcultures. After 18 h of coculture, spots, each
representing an IFNγ-secreting cell, were counted automatically, based on standardized
criteria using ImmunoSpot S4 Pro Analyzer (Cellular Technology Limited, Cleveland, USA).
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2.7. Antigenic Peptides

Antigenic peptides reported to be presented by MHC class-I molecules Kd, Dd, and
Ld are derived from the mCMV open reading frames (ORF), M105, m123/IE1, m145, and
m164 (listed with their amino acid sequences in [62]). Custom peptide synthesis with a
purity of >80% was performed by JPT Peptide Technologies (Berlin, Germany).

2.8. Statistics

Frequencies (most probable numbers (MPN)) of cells responding in the ELISpot assay,
and the corresponding 95% confidence intervals, were calculated by intercept-free linear
regression analysis from the linear portions of regression lines based on spot counts from
triplicate assay cultures for each of the graded cell numbers seeded [65]. Differences
between multiple groups were evaluated using one-way ANOVA with Bonferroni’s post-
hoc test and were considered as being significant at significance levels of p < 0.05 (*),
p < 0.01 (**) or p < 0.001 (***). All calculations were performed using Graph Pad Prism 6.04,
(Graph Pad Software, San Diego, CA, USA).

3. Results and Discussion
3.1. Reduced Frequency of Viral Epitope-Specific Functional IFNγ+CD8+ T Cells in the EVC of
Latently Infected Lungs

To isolate leucocytes, including CD8+ T cells, from the compartments (defined in
Figure 1) of latently infected lungs, a gentle bronchoalveolar lavage was performed as a
first step to retrieve cells that are only loosely attached to parenchymal epithelial cells of
the alveoli, defining the EVC. Blood leucocytes were isolated to represent the IVC, and, as
the last step, perfusion-resistant leucocytes were retrieved by enzymatic digestion of lung
tissue. This yields intravascular leucocytes that are more firmly attached to EC lining the
lung capillaries, cells in the process of transmigration, and extravascular cells localizing
to the connective tissue of the interstitium. As these three localizations cannot easily be
separated experimentally, they are here collectively referred to as TMC.

Cells with the functional capacity to produce IFNγ upon stimulation with presented
viral antigenic peptides were quantitated in an ELISpot assay and were normalized to the
proportion of CD45+CD8+ T cells determined in parallel by cytofluorometric analysis of
the respective leucocyte suspensions (Figure 2).
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Figure 2. Diminished frequency of epitope-specific functional IFNγ+CD8+ T cells in the EVC. The
analysis was performed 8 months after HCT and infection with mCMV. Bars represent frequencies
of CD8+ T cells specific for the viral antigenic peptides indicated and localizing to the lung com-
partments indicated (defined in Figure 1). Error bars represent the 95% confidence intervals (CI)
determined by intercept-free linear regression analysis of the ELISpot data. Differences are significant
when 95% CI do not overlap.
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The experiment was originally undertaken with the expectation that viral epitope-
specific CD8+ T cells floating in the lung capillaries would selectively bind to latently
infected EC of the capillary wall and thus would be found enriched in the TMC. At
a glance, this was not the case for any of the four viral epitopes tested, although the
genes coding for the established immunodominant and MI-driving antigenic peptides IE1
and m164 [62], and also the gene coding for M105, are stochastically expressed in lung
EC during latency [53]. Rather, within the 95% confidence intervals, frequencies were
comparable in IVC and TMC. In contrast, frequencies were significantly reduced in the
EVC for all four viral epitopes tested. Although this shows that functional IFNγ+CD8+ T
cells can, in principle, localize to the lung epithelium also during latent infection of the
lungs, their frequency is lower at this site than it is in IVC and TMC.

3.2. Localization of Viral Epitope-Specific CD8+T-Cell Activation Subsets in Latently
Infected Lungs

MI during viral latency is based on an expansion primarily of CD8+ iTEM that are
characterized by the cell surface marker phenotype KLRG1+CD62L−. For localizing iTEM
in latently infected lungs, we therefore determined the frequencies of iTEM in the three com-
partments in comparison to the frequencies of KLRG1−CD62L− cTEM and KLRG1-CD62L+

TCM (cytofluorometric data: Figure 3 and Figure S1, summary of results: Figure 4). It
should be noted that here we did not further subdivide iTEM by expression of CD127
(IL7-R) because KLRG1+CD127+ double-positive effector cells (DPEC) do not contribute to
MI in latently infected lungs [53].

Regarding absolute cell numbers, the yield of CD8+ T cells is generally low in the EVC,
which is what one would expect for a nonlymphoid site during a nonacute infection. In
particular, in the IVC, we noted an unexpected additional subpopulation of CD45+CD8+ T
cells with the cell surface marker phenotype KLRG1+CD62L+ (Figure 3). Interestingly, this
population was present also among viral epitope-specific CD45+CD8+IE-TCR+ cells. At the
moment, we can only speculate that these cells may represent iTEM in a state of transition
to memory cells, a state during which KLRG1 is not yet downregulated but CD62L already
reacquired. We did here not pursue this subpopulation and its potential function but found
its existence worth noting for future work by ourselves or by other investigators.

A compilation of all our cytofluorometric analyses of viral epitope-specific CD8+ T-cell
subset localization in latently infected lungs (Figure 4) revealed a picture for the iTEM
that strikingly parallels the lung compartment distribution shown in Figure 2 for viral
epitope-specific functional IFNγ+CD8+T cells, namely, a deprivation in the EVC compared
to IVC and TMC. In contrast, cTEM were enriched in the EVC compared to IVC and TMC.
This mirror image in the distribution suggests that iTEM lose KLRG1 and convert to cTEM
after they have reached the lung epithelium. This interpretation is supported by the known
fact that maintenance of KLRG1 requires continuous or at least frequent restimulation by
antigen [52], which is not the case in the lung parenchyma because pneumocytes are not
latently infected and thus do not present antigen during latency.

A puzzling question is why we did not find an enrichment of viral epitope-specific
cells in the TMC, although latently infected EC in the capillary walls sporadically express
epitope-encoding viral genes [53]. One possibility is that we observe a steady-state level in
which influx and efflux into and out of this compartment are in balance. Our data cannot
decide between the competing hypotheses of MI taking place at the latently infected lung
endothelium [58] or in lymphoid tissues, specifically in lung-draining lymph nodes [57].
Cells recognizing antigens presented by latently infected EC of the endothelium need to
detach for cell division. So, epitope-specific CD8+ T cells stimulated at the endothelium of
the pulmonary capillary bed might detach and migrate to the lung-draining lymph nodes
for proliferation before they return as iTEM to the lungs for immune surveillance [66].

Finally, as one would have expected for an extralymphoid site, the frequency of
viral epitope-specific TCM was low in all three compartments, and TCM were actually
undetectable in the EVC.
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Figure 3. Cytofluorometric relative quantitation of total and IE1 epitope-specific subsets of CD8+ T cells in lung compart-
ments. Data correspond to the functional data of the experiment shown in Figure 2. Shown are representative examples
illustrating the gating strategy and the definition of activation subsets iTEM, cTEM, and TCM by combination of the cell
surface markers KLRG1 and CD62L among pregated total CD45+CD8+ T cells or among IE1 epitope-specific CD45+CD8+ T
cells that were defined by expression of T-cell receptors specific for IE1 peptide presented by the MHC class-I molecule Ld.
The complete gating strategy, including a gate set on CD45+ cells to distinguish between hematopoietic lineage-derived
leucocytes and tissue cells, is shown in Figure S1 for a representative example of the TMC, in which CD45− tissue cells
released by the enzymatic tissue digest could be technically interfering contaminants.
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3.3. Acute Airway Challenge Infection Recruits CD8+ T Cells into the TMC and EVC in an
Epitope-Specific Manner

Data so far have shown that functional IFNγ+CD8+ T cells (Figure 2) and iTEM
(Figure 4) are both deprived in the EVC in latently infected mice. We have explained this
by conversion of KLRG1+ iTEM into KLRG1− cTEM due to a lack of antigen presentation
by lung epithelial cells, which are not cellular sites of latent mCMV infection. If this
explanation holds true, it must be postulated that acute infection of lung parenchyma in
latently infected mice leads to antigen presentation that restimulates cTEM in the EVC
and converts them into iTEM, and infection likely also recruits cells from the IVC into the
TMC and further into the EVC. As an approach, we used airway superinfection of latently
infected mice, a model that has a clinical correlate since humans latently infected with
hCMV can be exposed to infectious virions via the airways upon intimate contact with
acutely infected children who shed virus produced in salivary gland epithelial cells into
the saliva. To be sure that the virus reaches the alveolar epithelium, we chose intratracheal
infection, which also activates migratory CD11b+ as well as CD103+ dendritic cells [63].
Acute superinfection with a virus mutant in which MI-driving, immunodominant epitopes
(IDE) IE1 and m164 are functionally deleted by X9A point mutations of the respective
C-terminal amino acid residues (mCMV-∆IDE) cannot restimulate CD8+ T cells specific for
these epitopes in mice latently infected with wild-type virus (mCMV-WT.BAC) encoding
IE1 and m164. In contrast, restimulation of cells specific for IE1 and m164 should occur after
acute superinfection with mCMV-∆IDE_rev, in which mutations X9A are back-mutated to
A9X to restore antigenicity and immunogenicity [61] (Figure 5).
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Compared to the compartment distribution of viral epitope-specific CD8+ T cells
in latently infected lungs prior to an acute airway superinfection (Figure 4), which is
characterized by similar frequencies in IVC and TMC and a deprivation in the EVC, the
pattern is shifted to a deprivation in the IVC and similar frequencies in TMC and EVC.
Notably, the recruitment to TMC and EVC has an epitope-unspecific component seen for
IE1-specific and for m164-specific CD8+ T cells after airway superinfection with mCMV-
∆IDE not expressing these two epitopes. A likely explanation is a chemokine-mediated
recruitment of CD8+ T cells to the site of infection, as we have shown previously for
mast cell-derived chemokine CCL5 in a model of acute mCMV infection of the lungs [67].
Recruited CD8+ T cells in this acute infection model localized histologically to TMC and
EVC and controlled the infection of the alveolar epithelium. Added to this chemokine-
mediated recruitment is an epitope-dependent recruitment and clonal expansion, as it is
revealed by further increased frequencies of IE1-specific and m164-specific CD8+ T cells in
TMC and EVC upon airway superinfection with mCMV-∆IDE_rev expressing these two
epitopes (Figure 5).

4. Conclusions

Our data reveal a caveat about the definition of “tissue resident” CD8+ T cells. In
particular, in the case of the lungs, in which a widely ramified capillary bed serves for gas
exchange, it is important to distinguish between cells floating in the capillaries (IVC), cells
adhering to the capillary endothelium, or being in the process of transmigration (TMC),
and cells that localize to the lung parenchyma, the alveolar epithelium (EVC). We show
here that KLRG1+CD62L− iTEM, which account for the phenomenon of “memory inflation”
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(MI) during latent infection of the lungs, primarily localize to the IVC and TMC, where
they receive stimulation by latently infected EC that present antigenic peptides during
sporadic episodes of viral gene expression. Upon localization to the alveolar epithelium,
which is not latently infected, iTEM become deprived of stimulation by antigen, lose the
expression of KLRG1, and convert to KLRG1−CD62L− cTEM. In line with this scenario,
provision of antigens in the alveolar epithelium by acute airway superinfection recruits
epitope-specific CD8+ T cells from the IVC to the TMC and also to the EVC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11090918/s1, Figure S1: Representative example of the complete gating strategy for cells in
the TMC to exclude contaminating CD45− lung tissue cells from the analysis.
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