
Ecological Stability Properties of Microbial Communities
Assessed by Flow Cytometry

Zishu Liu,a Nicolas Cichocki,a Fabian Bonk,a Susanne Günther,a Florian Schattenberg,a Hauke Harms,a Florian Centler,a

Susann Müllera

aDepartment of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig,
Germany

ABSTRACT Natural microbial communities affect human life in countless ways, ranging
from global biogeochemical cycles to the treatment of wastewater and health via
the human microbiome. In order to probe, monitor, and eventually control these
communities, fast detection and evaluation methods are required. In order to facili-
tate rapid community analysis and monitor a community’s dynamic behavior with
high resolution, we here apply community flow cytometry, which provides single-
cell-based high-dimensional data characterizing communities with high acuity over
time. To interpret time series data, we draw inspiration from macroecology, in which
a rich set of concepts has been developed for describing population dynamics. We
focus on the stability paradigm as a promising candidate to interpret such data in
an intuitive and actionable way and present a rapid workflow to monitor stability
properties of complex microbial ecosystems. Based on single-cell data, we compute
the stability properties resistance, resilience, displacement speed, and elasticity. For
resilience, we also introduce a method which can be implemented for continuous
online community monitoring. The proposed workflow was tested in a long-term
continuous reactor experiment employing both an artificial and a complex microbial
community, which were exposed to identical short-term disturbances. The computed
stability properties uncovered the superior stability of the complex community and
demonstrated the global applicability of the protocol to any microbiome. The work-
flow is able to support high temporal sample densities below bacterial generation
times. This may provide new opportunities to unravel unknown ecological para-
digms of natural microbial communities, with applications to environmental, bio-
technological, and health-related microbiomes.

IMPORTANCE Microbial communities drive many processes which affect human well-
being directly, as in the human microbiome, or indirectly, as in natural environments
or in biotechnological applications. Due to their complexity, their dynamics over
time is difficult to monitor, and current sequence-based approaches are limited with
respect to the temporal resolution. However, in order to eventually control microbial
community dynamics, monitoring schemes of high temporal resolution are required.
Flow cytometry provides single-cell-based data in the required temporal resolution,
and we here use such data to compute stability properties as easy to interpret uni-
variate indicators of microbial community dynamics. Such monitoring tools will al-
low for a fast, continuous, and cost-effective screening of stability states of micro-
biomes. Applicable to various environments, including bioreactors, surface water,
and the human body, it will contribute to the development of control schemes to
manipulate microbial community structures and performances.
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Natural microbial communities (NMCs) drive most biogeochemical cycles, are associ-
ates of higher organisms (as in the human microbiome), and are essential catalysts

in many biotechnological processes. In recent years, new molecular tools have allowed
us to resolve the compositions and the functional repertoires of NMCs. While the
human microbiome is often the focus (1–3), NMCs are also interesting for biotechno-
logical applications, as complementary abilities of community members, for example,
those used for substrate oxidation, can reduce the need for genetically engineered pure
strains (4). Additionally, functional redundancy within the community can improve
process stability. In health and biotechnology, the idea of controlling NMCs (e.g., by
medication or augmentation) has been raised. However, such efforts are currently
based solely on experience due to the lack of a proper understanding of NMC
dynamics.

To fill this gap, macroecological concepts are increasingly applied to NMCs (5–7),
including diversity (8, 9), community function (10, 11), and trait distributions (12, 13),
which are contributing factors for community stability in all natural and artificial
ecosystems (14, 15). In macroecology, the term “stability” is widely discussed in a more
general way, even with socioecological systems (16), but it can also be used to more
specifically describe single mechanisms operating on specific biological levels (17). In
this paper, we build on macroecological theories to develop a concept of stability that
can be used in a workflow to monitor and eventually adjust microbial communities in
artificial, human, and natural environments.

The discussion of stability in ecological theory has led to a myriad of partially
overlapping definitions which cover different aspects of stability. In response to this
confusion, Grimm and Wissel (18) have distilled the essence of this discussion, identi-
fying six main stability properties: constancy, resilience (RL), persistence, resistance (RS),
elasticity (E), and domain of attraction. “Constancy” refers to the ability of a system to
stay “essentially unchanged.” “Resilience” describes the ability of a system to return to
its prior state after a temporary disturbance-induced state change (18). “Persistence,” in
turn, refers to the ability of an ecological system to last as an identifiable entity
throughout time (18). “Resistance” describes the ability of a system to stay unchanged
despite disturbances, and “elasticity” refers to the time span that a system needs to
return to its original state after a disturbance (18). Finally, the “domain of attraction”
subsumes all postdisturbance states from which the original state can be reached
again. Applying these concepts to assess how human or environmental NMCs respond
to and recover from arbitrary disturbance events, we require NMCs to be in a state of
constancy. This allows us to define a predisturbance reference state (sref) as the basis for
our calculations. To quantify NMC alterations, we propose a new protocol to calculate
the properties resistance, resilience, and elasticity. Additionally, we introduce the
property displacement speed (DS), which, by analogy to elasticity, describes how long
it takes following a disturbance event for the system to reach its disturbed state.
Although the domain of attraction is computable if the system can be described by a
mathematical model, it is difficult to define for natural systems, such as the human
microbiome. Also, the property persistence will not be considered in this study because
we do not consider the extinction of whole microbiomes. Our new workflow uses the
reductionist stability definitions as suggested by Grimm and Wissel (18) and does not
refer to the more holistic view on resilience suggested by Holling, which also includes
socioecological aspects (19).

Quantifying four stability properties, we want to contribute to an understanding of
microbiome-driven processes by introducing the concept of community stability as a
means of developing community adjustment and control strategies. Differently from
what has been developed so far for sequence-based approaches (see, e.g., reference
20), we use individual-based information for our concept. The cytometric analysis of
microbial communities relies on metadata and provides morphological and physiolog-
ical information on single cells, as well as cell abundance quantities within microbial
communities (21–23). We here focus on compositional stability, in contrast to functional
stability, as the former is likely to facilitate the latter. We note however, that due to
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functional redundancies in NMCs, functional stability may not require compositional
stability. Recently, bioinformatics tools which allow for an automatic evaluation were
provided for cytometric data sets (23, 24). The benefit of cytometric data for microbial
ecological research is the high sample density per time period and between locations
and the availability of data in nearly real time. First attempts were made by Koch et al.
(25), and only recently, this monitoring approach successfully identified species-sorting
and mass-transfer paradigms as the dominant mechanisms shaping wastewater meta-
communities (26). In addition, a phenotypic-diversity metric that allows for the study of
ecological succession of in situ microbial communities is now available (27).

In this study, we want to expand the cytometric ecological toolbox further by
providing a mathematical background and a step-by-step workflow to calculate stabil-
ity properties of complex communities. In order to demonstrate the applicability of our
workflow, both an artificial and a complex community were grown under steady-state
conditions. Community stability was debalanced by short-term alterations of physico-
chemical conditions. Samples were also subjected to Illumina sequencing for confir-
mation of cytometric data.

RESULTS

To demonstrate the usefulness of our workflow for assessing ecological stability prop-
erties of microbial communities (see Materials and Methods), we exemplarily applied it to
a long-term continuous reactor experiment in which, after prolonged cultivation, an
artificial microbial community (AMC) of low complexity was amended with a complex
microbial community (CMC) of high complexity. To mimic disturbances, pH and tem-
perature were altered for short time periods. The various structures of the AMC and
CMC were monitored by flow cytometry at the single-cell level, the resulting data were
evaluated using the tool flowCyBar (see Materials and Methods), and stability properties
were calculated according to the proposed novel workflow.

Ecological situation. As proposed by Grimm and Wissel (18), first the ecological
situation must be defined before stability properties can be calculated. Of the six
features, the first three are the same for any stability property assessment based on flow
cytometric data (see Materials and Methods), while the remaining three are application
specific. For completeness, we list all six features for our reactor experiment: (i) the level
of description refers to the whole microbial community; (ii) the variable of interest is the
community structure (relative abundances of gate populations); (iii) for defining the
reference state, we took the last sample prior to the respective disturbance event;
technical replicates had a mean standard deviation of gate abundances of 0.6% [see
Text S2, section S2.3, in the supplemental material] and led to a value of 0.16 for the
radius defining the reference space size [rc] using the Canberra distance; (iv) as the
disturbance, a continuous reactor system was consecutively subjected to five distur-
bance events (the continuous reactor was started with a low-diversity AMC, which, once
established, was treated with short-term pulses of alterations in temperature and pH;
subsequently, a more diverse CMC was added, and again, temperature and pH were
changed for short time periods [2 to 11 h]); (v) regarding the temporal scale, the reactor
was operated continuously for 435 h, with the AMC cultivated for 216 h and the CMC
cultivated for 219 h; the time between disturbances ranged from 39 h to 117 h; and (vi)
regarding the spatial scale, the reactor was well mixed, and hence, space was neglected
in the system.

Stability properties during steady-state operation. Calculating stability proper-
ties as proposed by the workflow showed that all disturbance events led to immediate
strong changes in both AMC and CMC (Fig. 1A), indicating that both communities were
affected by these disturbances. The magnitudes of disturbance-induced shifts were
different for the community types. CMCs showed the strongest resistance with very
similar RS values of 0.68 and 0.69 for the temperature and pH disturbances, respectively
(Fig. 1B), even though an unintentional transient oxygen deficiency (400 h) occurred
shortly before the second pH disturbance. Hence, the observed RS value following this
additional disturbance might represent a mixed response. AMCs were more affected by
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disturbances, and their responses differed more between disturbance types. Highest
resistance was detected for the pH disturbance with an RS value of 0.50 (Fig. 1B). The
temperature disturbance had a stronger impact, resulting in a lower resistance, with an
RS value of 0.21. As expected, the lowest resistance was measured for the disturbance
resulting from the introduction of the CMC into the continuous reactor, which changed
the AMC structure within 26 h (Text S2, section S2.7). An RS value of 0.15 marked this
least-resistant case in our experiment. Except after the pH disturbance with the AMC,
displacement speed values were similar and ranged from 0.005 to 0.009 h�1 (Fig. 1B).
For these experiments, the maximal deviation (dmax) was reached at the end, or close
to the end, of the experiment (tend). This was not the case for the pH experiment using
the AMC, where the maximal deviation was reached early on, leading to a higher
displacement speed of 0.084 h�1.

In no case was the reference space reached again at the end of the experiment.
However, although in the temperature disturbance experiments and the CMC inocu-

FIG 1 Response of microbial communities to disturbance events and stability properties of resistance, displacement speed, resilience, and
elasticity (Table 1). A low-complexity member community (AMC) and, after addition (gray box), a complex community (CMC) were cultivated
under the same conditions. Both the AMC and CMC structures were displaced in response to short-term temperature and pH disturbances (Dis:
T and Dis: pH, respectively). (A) Deviation from the reference state (sref) (red circle), calculated as the Canberra distance, and resistance over time.
Dashed horizontal green lines indicate the border of the reference space, blue triangles mark smax, and filled black circles mark send. The
determination of resistance (RS) and displacement speed (DS) is shown as a dashed black line. (B) Comparison of the stability properties resistance
and displacement speed across all disturbance experiments. (C) Comparison of the stability properties resilience and elasticity for disturbance
experiments showing resilience (AMC Dis: pH and CMC Dis: pH).
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lation experiment, the distance tended to continuously increase over time, in the pH
disturbance experiments, this trend was reversed after an initial phase of increasing
distance. For these two experiments, resilient behavior was observed (Fig. 1C). Resil-
ience values of 0.13 for the AMC and 0.19 for the CMC indicated, however, that recovery
was far from complete, with the CMC showing a better recovery.

Elasticity values could be determined only for the pH perturbations for which
resilient behavior was observed (Fig. 1C). Elasticity was higher for the CMC (E �

0.017 h�1) than for AMC (E � 0.0028 h�1), indicating a faster recovery of the CMC.
Overall, the CMC was less affected by the disturbances than the AMC, as evidenced

by higher resistance, resilience, and elasticity values (Fig. 1B and C). Values for displace-
ment speeds were in the same range for the AMC and CMC except in the pH
disturbance experiment using the AMC, where the maximal deviation was reached
much sooner than in all other cases (Fig. 1B).

While the proposed analysis so far depends on the knowledge of the maximal
deviation, which can be known only post hoc, a modified version of the resilience
equation as described in the workflow (Materials and Methods) in combination with the
current deviation from the reference state [d(t)] can also be used to monitor NMC
dynamics in an online fashion, once a reference state is defined. Online resilience can
unambiguously identify phases in which the system is pushed further away from the
reference state (indicated by a resilience value of 0) from phases in which it approaches
the reference state again (values �0). It also quantifies the success of recovery, with a
value of 1 indicating the perfect return to the reference state and lower values
indicating partial recovery. Online resilience cannot, however, quantify the severity
of phases in which the deviation increases. This in turn is directly observable from
the current deviation d(t). Hence, both properties should be used in tandem,
providing a powerful means for online monitoring able to detect stress and recovery
phases of complex microbial communities.

DISCUSSION

Macroecological concepts to reveal underlying paradigms of microbial community
behavior can be most valuable in the many areas where microorganisms are important
mediators of biotechnological and biogeochemical processes. However, the use of
these ecological concepts in microbiology is currently limited to the calculation of
diversity properties and is frequently based on next-generation sequencing (NGS) data.
NGS, however, is still too expensive and time-consuming in the handling, evaluation,
and calculation of sample data to be applied at frequencies similar to microbial
generation times, which is a necessity when fast changes in community composition
need to be detected. Although we used 16S rRNA gene amplicon sequencing in this
study to underpin our cytometric data, it became clear that sequencing-based ap-
proaches are of limited utility for tracking and being able to respond to rapid changes
in community structures. Instead, cytometry provides multivariate data sets for single
cells that indicate community structure changes quickly and inexpensively. Variation in
any microbial community structure is always caused by changes in either intrinsic
population characteristics (cell numbers and types) or/and abiotic data (e.g., pH or
temperature). Thus, the step from monitoring and observing microbial community
structure shifts to understanding of their biotic or abiotic causes would help to realize
control of human, managed, or natural ecosystems. In the last few years, rapid and
easy-to-use tools were established to analyze and visualize microbial community dynamics
(based on single-cell analytics) in a nearly fully automated fashion (23, 28). Recently,
and similarly to how data are exploited by NGS-based technologies in microbiology,
ecosystem concepts were implemented in single-cell-based workflows showing that �,
�, and � diversities can be revealed using evenness and richness properties for diversity
calculations based on bins (27) or gates (26) (parts of both approaches were applied to
the data in this study, and results are shown in Text S6 in the supplemental material).
While bin-based data usually do not need to be processed prior to further calculations
and evaluation, the gate-based approach requires a gate template, which comprises

Ecological Stability Properties of Microbiomes

January/February 2018 Volume 3 Issue 1 e00564-17 msphere.asm.org 5

msphere.asm.org


the most abundant cell clusters of a community, to be defined. Both approaches have
advantages and disadvantages. Bin-based evaluations need high computational power
when time-dependent data analysis is required and bead information used for stan-
dardization of cytometric analysis must be removed. Gate-based computing and eval-
uation procedures concentrate on the most important structures of a community (e.g.,
by MultiCola subtraction [26, 29]), enabling sorting and easy-to-use visualization tech-
niques, such as flow CyBar (23), but they need the creation of a gate template either
post hoc or “atline” (i.e., in such a fashion that analysis results are rapidly available for
process control). For our workflow, we decided to use the gate-based computation and
evaluation approach. We note, however, that our approach is equally applicable to a
bin-based evaluation scheme in which gates simply need to be replaced by bins.

We based our workflow on the stability concept predominantly to unravel stability
properties of engineered and natural microbial communities in confined environments,
such as the human microbiome, which can easily be monitored by single-cell analytics
(30). For the first time, we here propose a method to quantify crucial stability properties
based on single-cell data. These properties were taken from the macroecology concept
of Grimm and Wissel (18) and paired to the properties resistance (RS) and displacement
speed (DS), as well as resilience (RL) and elasticity (E) (Table 1). We created a workflow
that, using these four properties, characterizes the degrees and kinds of responses of
microbial communities to disturbances. For easy and fast application of our workflow,
we provide an R script requiring minimal user input (yet being highly configurable). It
computes numerical values for the stability properties discussed and generates graph-
ical visualizations of community dynamics in response to disturbance events based on
time series data of relative gate abundances (Text S4).

When applying our concept to two communities of low (AMC) and high (CMC)
structure complexities, we were able to infer different stability properties from re-
sponses to disturbances which were intentionally caused by pH and temperature
variations. All other parameters were stable due to steady-state conditions, and also cell
count values showed plateaus for the AMC (at ~2 � 108 cells · ml�1) and CMC (at ~1 �

1010 cells · ml�1). However, community structure was clearly differently affected by the
type of the disturbances (pH versus temperature) and the complexity of the community
(AMC versus CMC), which caused clear and distinct trends in their evolutions. The more
complex community acted generally with higher resistance and resilience. That com-
plex communities show higher stability properties seems common and is often de-
scribed both in macroecology (31, 32) and in microbial ecology (33, 34). Both commu-
nities showed no resilience upon temperature disturbance, whereas the pH disturbance

TABLE 1 Calculation of stability properties describing displacement and recovery of the
system by the disturbance (see Table 2 for definitions of terms)

Stability property Formula Description

Resistance (RS) 1 � dmax Describes a community’s ability to stay unchanged
in the presence of a disturbance, as a value
between 0 and 1. A value of 1 indicates no
change at all and maximum resistance; smaller
values indicate stronger changes and, thus,
lower resistance.

Displacement speed (DS) dmax

tmax � tref

Indicates the speed of displacement. tref refers
to the time point of the disturbance
event.

Resilience (RL) dmax � d�t�
dmax � d�t�

Quantifies the ability to return to the reference
state after a disturbance, as suggested by
Orwin and Wardle (43). Positive values
indicate resilient behavior, and a value of 1
marks perfect recovery.

Elasticity (E) dmax � d�trec�
trec � tmax

Indicates the speed of return after displacement
due to a disturbance event. trec refers to
the time point of recovery.
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was obviously less severe since the CMC showed high resilience and elasticity values
and even the AMC recovered from this type of disturbance, although to a clearly lesser
extent. Although a full interpretation of the biological implications of our findings
regarding our exemplary microbiomes is beyond the scope of this work, we assume
that the decrease in temperature favored the Bacillus strain over the other two
organisms probably because of its protection from cold shock proteins (35). The Bacillus
strain indeed became dominant, as was verified by the sequencing analysis (Text S5,
section S5.4).

The methodology for calculating our four stability properties requires a deviation
from a reference state (sref). This in turn requires a suitable reference state to exist,
demanding constant community states prior to the disturbance event, referring to a
constant structure. To properly define the reference space, the experiment should
include a suitably long, undisturbed phase prior to the disturbance in which represen-
tative reference samples can be obtained. In our test sample, the mean natural
variability in the reference state (�ref) was 0.6%, which is a low value (see the technical
deviation in Text S2, section S2.3). By using natural communities, earlier studies
determined much higher values of 25% for intrinsic community variations (36), and in
macroecology, values as high as 37% have been described (42). We note that if
predisturbance community dynamics are governed by Lotka-Volterra-type regular
oscillations (37–39), the reference space would become very large. In this case, al-
though we can detect whether an oscillatory system returns to its initial state range, we
are not able to distinguish a return to its original regular oscillatory dynamics from a
return to random fluctuations coincidentally covering the same range. For such sys-
tems, metrics that explicitly consider temporal dynamics are more suitable (see, e.g.,
reference 40).

When the reference state is defined, deviations from this state are used for the
quantitative calculation of stability properties of a microbial community. Both the
Euclidean distance and the Canberra distance showed similar trends (Fig. S4.1 in
Text S4), although we noted that the Canberra distance is generally more suitable and
is thus recommended for the workflow (see Materials and Methods). For the calculated
stability properties resistance and resilience, values within a well-defined numerical
range are provided by the workflow, allowing for easy comparability between different
experimental situations or even between localities. More care must be taken when
interpreting values of the stability properties displacement speed and elasticity. Both
refer to a speed for which no predefined value range exists. Especially when using these
two stability properties to compare different localities, the typical time scales of these
systems must also be considered, including, for example, generation times of organ-
isms or hydraulic retention times (which can refer to bioreactors but also to the
different parts of the human digestive system). In our experimental setting, this was of
no concern, as the operating regime of the continuous reactor, including dilution rate,
was not altered throughout the experiment.

Tools for online monitoring and evaluation, as was demonstrated by the proposed
equation to compute online resilience (see Materials and Methods), are highly desirable
to immediately interpret microbial community dynamics in order to develop strategies
for their adjustment and control. The workflow is applicable to future research which
may address microbial community design, treatment, and operation. Our online sta-
bility tool might not answer the question of which organisms in a community fail to
function or are about to go extinct, but it is able to constantly monitor community
structure variations by determining RL values. Phylotypes or specific cell functions can
nevertheless always be determined atline by cell sorting of selected subcommunities
and subsequent sequencing, as was shown for our sample experiment (Text S2,
section S2.1, and Text S5).

In conclusion, we have presented a workflow for quantifying the stability properties
resistance, resilience, displacement speed, and elasticity, originally derived from the
field of macroecology and adopted here for microbial communities. Instead of tracking
changes in function, we focused on tracking changes in community structure, which is
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more informative, as a structural change may precede functional changes, hence providing
an early warning signal. We used single-cell phenotypic data and showed that our com-
putational methods clearly characterize and quantify a microbial community’s responses to
disturbances in a confined microbial environment. Relying on the rapidity of data gener-
ation and their bioinformatics evaluation, we additionally introduced a procedure that
allowed for an online computation of resilience. The presented workflow based on stability
properties introduces a novel strategy for monitoring natural microbial communities in
human, managed, and natural environments, either post hoc or atline, and is much faster
than state-of-the-art methods based on sequence data.

MATERIALS AND METHODS
Experimental design. To exemplify the computation and interpretation of our proposed stability

properties, a continuous reactor experiment exposing microbial communities to defined disturbances
was performed. The continuous reactor provided a balanced situation for studying the dynamics of both
an artificial microbial community (AMC) and a complex microbial community (CMC), derived from a
full-scale wastewater treatment plant, during the course of a long experiment (435 h) (see Text S1 in the
supplemental material for details). Thus, we generated community states that can be assumed to be well
balanced and which served effectively as reference states for transient (2- to 11-h) disturbances. Only one
long-term disturbance was initiated by the addition of the CMC after cultivating the AMC for 216 h. The
short-term pulse disturbances were caused by pH and temperature alterations, which were applied to
both communities. We assume that the reactor content is perfectly mixed so that spatial variation does
not play any role. The continuous reactor was run in a way that excluded unwitting recruitment of
species, thus representing an isolated patch location. Both the biotic parameter cell number (Fig. S1.1A
in Text S1) and the abiotic parameters dilution rate (per hour), aeration rate (liters per minute),
temperature (degrees Celsius), and pH (Fig. S1.1B in Text S1) were recorded during the experiment.

Flow cytometric analysis. Harvested, fixed, and DNA-stained samples were measured with a MoFlo
Legacy cell sorter. The procedures for cell number determination and cell sorting are outlined in Text S2
(section S2.1), accompanied by an overview of cytometric terms used (section S2.2). The degree of
deviation between technical replicates was determined to be 0.6% by calculating abundances of cells in
gates (expressed in percentages) and their mean standard deviation (Text S2, section S2.3).

Cytometric evaluation tools. Cytometric data were acquired with Summit version 4.3 (Beckman
Coulter, Brea, CA) and FlowJo V10 (FlowJo, LLC, OR, USA). Usually, information on cell size (forward
scatter [FSC]) and chromosome contents (DAPI [4=,6-diamidino-2-phenylindole] fluorescence) were
recorded together and visualized in a two-dimensional (2D) dot plot. Two hundred fifty thousand cells
were analyzed per measurement within the parent gate (Fig. S2.3 in Text S2) and distributed virtually
according to those characteristics. Subclusters of cells with different characteristics were recorded by
setting gates and creating a gate template (Text S2, section S2.4). Thus, within one gate, we collected
cells that represent similar characteristics with regard to cell size and DNA contents. The compositions
of samples were received by evaluating the positions of gates in a histogram and calculating the
numbers of cells per gate (all values are given in Text S2, section S2.5). The gate template defined a total
of 34 gates (with noise and beads removed) whose relative abundances ranged between 0% (gate 8,
19 h) and a maximum of 72.3% (gate 21, 175.5 h), with an average fraction of cells per gate of 2.94%. The
variation in samples over time is recorded in a movie (Movie S1) and shown for exemplary samples
(Text S2, section S2.6), and values were calculated by using the bioinformatic tool flowCyBar (Text S2,
section S2.7; http://www.bioconductor.org/packages/release/bioc/html/flowCyBar.html [23, 28]). The
data clearly show how the community changes in response to the applied perturbations in the bioreactor
(Fig. 2).

Classifying ecological situations. Grimm and Wissel (18) point to the importance of the ecological
situation in which statements regarding stability are formulated. This ecological context can be described
by six features, which we first need to define for our workflow in order to assess microbial community
stability.

(i) Level of description. The level of description in our case refers to the whole microbial community,
as flow cytometric data characterize the whole community by providing relative abundance information
for gate-allocated subpopulations. This defines the structure of the community.

(ii) Variable of interest. In our case, the variable of interest is the relative community composition,
which defines the structure of our microbial system at any given time. This structure (s) is the system
state and can be defined as follows. Assume that for a given experiment, a gate template with n gates
is appropriate to flow cytometrically characterize community dynamics over time. In this case, we get
information on the relative abundance of each gate population at each sampling time. More generally,
we then can define the state of our system at time t as

s�t� :� �si�t�, · · · , sn�t��
where si(t) indicates the relative abundance of gate population i at time t. Due to dealing with relative
abundances, we have

�
i�1

n

si(t) � 1

for all times t. Next, we need a way to quantify the difference between two community structures (sa and
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sb) (Text S3). It is a common approach to interpret such structures as points in n-dimensional space, so
that the Euclidean distance (de) provides a natural way of characterizing the deviation between two

states. We additionally introduce a scaling factor �1⁄�2� to ensure that deviations can be expressed as
a value between 0 and 1:

de�sa, sb� :�
1

�2
· ��

i�1

n

�sb
i � sa

i �2

where 0 	 de 	 1. While being straightforward to compute, this way of calculating the difference
between states can be misleading, as it considers only absolute differences in gate populations. Consider
a gate population with 100,000 cells. An addition or removal of 1,000 cells would constitute only a minor
change for this population. However, if the gate population consists of 1,000 cells only, the removal or
addition of 1,000 cells leads to the extinction or the doubling of this population, qualitatively a big
change in the community structure. As the Euclidean distance cannot distinguish between these two
cases, we propose the normalized Canberra distance (dc) (41) as an alternative way to compare structures
(and later compare both approaches), as follows:

dc�sa, sb� :�
1

n
�
i�1

n |sa
i � sb

i |
sa
i � sb

i

where 0 	 dc 	 1. Here, the difference in gate populations is evaluated relative to their summed
abundances, providing a more meaningful characterization of structure deviations.

(iii) Reference state or reference dynamic. Ideally, more than one sample is available to charac-
terize the system’s state prior to the disturbance. Such m reference samples, sr

1, . . ., sr
m, can be obtained

as a time series before the disturbance event or from technical replicates. In this case, the reference state
can be determined by taking the mean values of all gate populations from these samples (sr

1, . . ., sr
m) as

follows:

sref : � �sr,1�, · · · , sr,n��
where sr,i� is the mean of gate population i over the population of all reference samples, sr

1, . . ., sr
m. As

suggested by Pimm (42), the variability of the system can be assessed by determining the standard
deviation. The standard deviations �1, . . ., �n for all n gate populations over the reference samples
provide a measure of the variability of the system in its predisturbance phase, defined as �ref :� (�1, . . .,
�n), which includes both the natural variability and the technical variability of the measurement process.

An n-dimensional sphere centered at sref can serve as a boundary whose crossing indicates the
deviation of the system from its reference state. Likewise, a return to the reference state can be
detected by a second crossing in the opposite direction. The radius (r) of this sphere is given by the
maximal deviation from the reference state calculated over all reference state samples:

FIG 2 Community dynamics over the full experiment. Nonmetric multidimensional scaling (NMDS) plot
(Bray-Curtis dissimilarity) indicating community dynamics of the artificial microbial community (AMC) (0
to 215 h, filled circles) and the complex microbial community (CMC) (216 to 435 h, open circles). Symbol
size increases with increasing sampling time.
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re ⁄c : � max
s � �s1

r , · · ·, sm
r 	

[de ⁄c(sref, s)]

either using the Euclidean or the Canberra distance. The reference state taken together with this
threshold defines the reference space, which characterizes the community’s predisturbance behavior. If
only one sample prior to the disturbance event is available, this sample can alternatively serve as the
reference state. In this case, a threshold must be selected based on previous experience.

With the reference state defined, the dynamics of the system can be followed by considering its
deviation from this reference state over time t, calculated by the Euclidean distance de, as follows:

d�t� : � de�s�t�, sref�
or by the Canberra distance (dc) likewise. Furthermore, we define the maximal deviation in response to
a disturbance event by dmax � max[d(t)] and identify the time at which this maximal deviation occurs as
tmax and the corresponding state as smax. The state at the end of the experiment is denoted as send, with
tend and dend defined likewise (Table 2).

(iv) Disturbance, spatial scale, temporal scale. The remaining three features, disturbance, spatial
scale, and temporal scale, cannot be universally defined but depend on the respective experimental
settings. For our continuous reactor experiment, the settings are described in Results and in Text S1.
Table 2 summarizes the concepts introduced so far.

Classifying stability properties. The next step in the workflow is considering systems that have
the property of constancy and for which a suitable reference state is obtainable, that is, featuring a
constant composition in the reference phase prior to the disturbance, as evidenced by low values for �ref.
Continuing in the workflow, we propose flow cytometric data-based quantification methods for four
stability properties (Table 1). (i) Resistance (RS) refers to the ability of a system to remain mostly
unchanged in the face of a disturbance. We quantify this property by the maximal deviation from the
reference state caused by a disturbance. (ii) The displacement speed (DS) indicates how fast a system is
displaced upon disturbance. This is given by the maximal distance divided by the time required for the
shift from the reference state (sref) to the maximally deviating state (smax). (iii) Resilience (RL) is the ability
of the system to return to the reference state after a disturbance. For its quantification, we use the
definition given by Orwin and Wardle (43). Resilience is computed as an index over time, with values
ranging between �1 and 1. Given a disturbance-caused displacement, positive values indicate resilient
behavior in which the system again approaches the reference state, with a value of 1 indicating full
recovery. Negative values indicate nonresilient behavior where the system, after the initial displacement,
continues to depart further from the reference state due to internal dynamics triggered by the
disturbance. In our approach, we do not distinguish such events but attribute the maximally observed
deviation (dmax) from sref to the disturbances such that negative values cannot occur. For comparing
different experiments, resilience can be computed as a single value for the final state of the system (send).
Besides introducing this post hoc analysis, we introduce a modified method to compute resilience which
can be applied as an online monitoring tool (Text S4). For online resilience computation, we replace
dmax in the resilience equation (Table 1) by the maximal distance that has been encountered in the
experiment so far. Given that ongoing variations in community structure lead to increases beyond the
previously encountered maximal distance, online resilience is evaluated to be zero. Only as a maximal
deviation is reached and the system again approaches the reference state, positive online resilience
values occur. Hence, a value of zero indicates that the system is continuing to deviate more from the
reference state, while positive values indicate the onset of recovery, with a value of 1 indicating perfect
recovery, as in post hoc analysis. (iv) Elasticity (E) indicates the speed of recovery after a disturbance-
caused displacement. This is calculated as the distance traveled from smax toward the reference state

TABLE 2 Formal definitions for characterizing NMC composition, reference state, and dynamics

Term (symbol) Formula Description

Structure, system state (s) s�t�:� �s1�t�, · · ·, sn�t�� The system state is defined by the structure of the community as given by
the relative abundances of n gate populations si(t) at time t, with
i � 1, . . ., n

Reference state (sref) sref:� �sr,1�, · · ·, sr,n�� Computed as gate population means �sr,i��, with i � 1, . . ., n over m samples
(sr

1, . . ., sr
m) characterizing the phase prior to the disturbance

Natural variability of
reference state (�ref)

�ref:� ��1, · · ·, �n� Quantifies the gate-wise natural variability of the system in its reference
state. �i is the standard deviation of the abundance of the ith gate
population over m samples (sr

1, . . ., sr
m), characterizing the phase prior

to the disturbance
Deviation from the

reference state sref
de�t�:�

1

�2
·��

i�1

n

�si�t��sref
i �2

dc�t�:�
1

n
�
i�1

n |si�t��sref
i |

si�t��sref
i

The dynamics of the community is monitored by tracking the deviation
of current state s from the reference state (sref) over time t;
calculated as Euclidean distance (de) or Canberra distance (dc)

State of maximal deviation
due to disturbance
event (smax)

smax, tmax, dmax The state that maximally deviates from the reference state in response
to the disturbance event. Occurs at time tmax, with deviation dmax

Final state (send) send, tend, dend The state at the end of the experiment at time tend; the final deviation is dend
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divided by the elapsed time. To clarify the proposed concepts, potential community dynamics featuring
high and low levels of resistance in combination with various levels of resilience are schematically shown
in Fig. 3. To easily apply the proposed quantification method, an R script is available for download at
GitHub (https://github.com/fcentler/EcologicalStabilityPropertiesComputation/) (Text S4).

Sequencing. Sequencing is included in the workflow to provide controls based on 16S rRNA gene
amplicon sequencing to support cytometric data. Information on samples analyzed by Illumina 16S rRNA
gene amplicon sequencing is given in Text S5, section S5.1. From those samples, DNA was extracted and
tested for quality (Text S5, section S5.2). The preparation of DNA from samples for Illumina sequencing
is described in Text S5, section S5.3, while the evaluation and discussion of the data are presented in
Text S5, section S5.4. In short, the CMC and gates thereof showed generally higher operational taxonomic
unit (OUT) numbers than the AMC, as expected. The influence of cell fixation procedures on the quality
of sequencing results is shown in Text 5, section S5.5.

Data availability. Cytometric data were uploaded into the Flow Repository database (https://
flowrepository.org/) under accession number FR-FCM-ZZTV (http://flowrepository.org/id/RvFrs5hE0AL
nokont7Z8GiOEZTIBr93jvwBFQeOcLxlDPSTRVvhdtB7ZiOJ1oi3p). Version 1.0 of the R script implementing
the proposed concepts is available for download at GitHub (https://github.com/fcentler/Ecological
StabilityPropertiesComputation). The tool flowCybar is available on the Bioconductor platform, http://
www.bioconductor.org/packages/release/bioc/html/flowCyBar.html. Sequencing data can be found in
the NCBI database under BioProject accession number PRJNA407269.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00564-17.
TEXT S1, PDF file, 0.3 MB.
TEXT S2, PDF file, 1.7 MB.
TEXT S3, PDF file, 0.3 MB.
TEXT S4, PDF file, 0.3 MB.
TEXT S5, PDF file, 1.1 MB.
TEXT S6, PDF file, 0.04 MB.
MOVIE S1, MOV file, 8.8 MB.
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