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Abstract

Motivation: Modern population genetics studies typically involve genome-wide genotyping of

individuals from a diverse network of ancestries. An important problem is how to formulate and

estimate probabilistic models of observed genotypes that account for complex population struc-

ture. The most prominent work on this problem has focused on estimating a model of admixture

proportions of ancestral populations for each individual. Here, we instead focus on modeling vari-

ation of the genotypes without requiring a higher-level admixture interpretation.

Results: We formulate two general probabilistic models, and we propose computationally efficient

algorithms to estimate them. First, we show how principal component analysis can be utilized to

estimate a general model that includes the well-known Pritchard–Stephens–Donnelly admixture

model as a special case. Noting some drawbacks of this approach, we introduce a new ‘logistic fac-

tor analysis’ framework that seeks to directly model the logit transformation of probabilities under-

lying observed genotypes in terms of latent variables that capture population structure. We demon-

strate these advances on data from the Human Genome Diversity Panel and 1000 Genomes

Project, where we are able to identify SNPs that are highly differentiated with respect to structure

while making minimal modeling assumptions.

Availability and Implementation: A Bioconductor R package called lfa is available at http://www.bio

conductor.org/packages/release/bioc/html/lfa.html.

Contact: jstorey@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most important goals of modern human genetics is to ac-

curately model genome-wide genetic variation among individuals, as

it plays a fundamental role in disease gene mapping and characteriz-

ing the evolutionary history of human populations. In this article,

we develop latent variable probabilistic models and estimation

methods of genetic variation that provide allele frequency estimates

of each individual/SNP combination in the presence of arbitrarily

complex population structure. Accurate estimates of allele frequen-

cies in this setting allow for improved tests of genetic associations

with complex traits and other population genetic analyses which do

not rely on overly restricted models of population structure. For ex-

ample, the models and methods developed here provide the key esti-

mation step in the implementation of a new framework for

association testing in the presence of arbitrarily complex structure

(Song et al., 2015). Other applications we explore here are to
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identify loci differentiated with respect to structure, test for random

mating in the presence of structure, generalize the estimation of FST,

and characterize the global distribution of allele frequencies of dis-

ease SNPs—all making minimal assumptions about the complexity

and form of structure.

A longstanding problem has been to provide well-estimated

probabilistic models of observed genotypes in the presence of com-

plex population structure (see Raj et al., 2014 and references

therein). A series of influential publications have proposed methods

to estimate a model of admixture, where the primary focus is on the

admixture proportions themselves (Alexander et al., 2009; Pritchard

et al., 2000; Tang et al., 2005), which in turn may produce estimates

of the allele frequencies of every genetic marker for each individual.

Here, we significantly relax the assumptions made about the mani-

festation of structure to yield more general latent variable models of

structure. Rather than targeting admixture proportions, we instead

focus on the estimation of the individual-specific allele frequencies,

and we show that we make significant gains over existing methods

in the accuracy and computational efficiency in estimating these

quantities. The individual-specific allele frequencies, rather than ad-

mixture proportions, are ultimately the key quantities that need to

be estimated in the applications we discuss as well as in the associ-

ation testing method of Song et al. (2015).

We propose two flexible genome-wide models of individual-

specific allele frequencies as well as methods to estimate them. First,

we develop a model that includes as special cases the aforemen-

tioned models; specifically, the Balding–Nichols (BN) model

(Balding and Nichols, 1995) and its extension to the Pritchard–

Stephens–Donnelly (PSD) model (Pritchard et al., 2000). However,

we identify some limitations of our method to estimate this model.

We therefore propose a second model based on the log-likelihood of

the data that allows for rapid estimation of allele frequencies while

maintaining a valid probabilistic model of genotypes.

The estimate of the first model is based on principal component

analysis (PCA), which is a tool often applied to genome-wide data

of genetic variation in order to uncover structure. One of the earliest

applications of PCA to population genetic data was carried out by

Menozzi et al. (1978). Exploratory analysis of complex population

structure with PCA has been thoroughly studied (Manni, 2010;

Menozzi et al., 1978; Novembre and Stephens, 2008; Rendine et al.,

1999; Sokal et al., 1999). We show that a particular application of

PCA can also be used to estimate allele frequencies in highly struc-

tured populations, although we have to deal with the fact that PCA

is a real-valued operation and is not guaranteed to produce allele

frequency estimates that lie in the unit interval [0,1].

The estimate of the second model is based on generalized factor

analysis approaches that directly model latent structure in observed

data, including categorical data (Bartholomew et al., 2011) in

which genotypes are included. We utilize a factor model of popula-

tion structure (Engelhardt and Stephens, 2010) in terms of non-

parametric latent variables, and we propose a method called ‘logis-

tic factor analysis’ (LFA) that extends the PCA perspective toward

likelihood-based probabilistic models and statistical inference

(Collins et al., 2002). LFA is shown to provide accurate and inter-

pretable estimates of individual-specific allele frequencies for a wide

range of population structures. At the same time, this proposed ap-

proach provides visualizations and numerical summaries of struc-

ture similar to that of PCA, building a convenient bridge from

exploratory data analysis to probabilistic modeling. LFA plays a

key role in the aforementioned new test of genome-wide associ-

ation of Song et al. (2015), called the genotype-conditional associ-

ation test.

We compare our proposed methods with existing algorithms,

ADMIXTURE (Alexander et al., 2009) and fastSTRUCTURE (Raj

et al., 2014), and show that when the goal is to estimate all

individual-specific allele frequencies, our proposed approaches are

conclusively superior in both accuracy and computational speed.

We apply the proposed methods to the Human Genome Diversity

Project (HGDP) (Cann et al., 2002; Rosenberg et al., 2002, 2005)

and 1000 Genomes Project (TGP) (1000 Genomes Project

Consortium, 2010) datasets, which allows us to estimate allele fre-

quencies of every SNP in an individual-specific manner. Using LFA,

we are also able to rank SNPs for differentiation according to popu-

lation structure based on the likelihoods of the fitted models. In

both datasets, the most differentiated SNP is proximal to SLC24A5,

and the second most differentiated SNP is proximal to EDAR.

Variation in both of these genes has been hypothesized to be under

positive selection in humans. In the TGP dataset, the second most

different SNP is rs3827760, which confers a missense mutation in

EDAR and has been recently experimentally validated as having a

functional role in determining a phenotype (Kamberov et al., 2013).

We also identify several SNPs that are highly differentiated in these

global human studies that have recently been associated with dis-

eases such as cancer, obesity and asthma.

2 Methods

2.1 Models of Allele Frequencies
It is often the case that human and other outbred populations are

‘structured’ in the sense that the genotype frequencies at a particular

locus are not homogeneous throughout the population (Astle and

Balding, 2009). Geographic characterizations of ancestry often ex-

plain differing genotype frequencies among subpopulations. For ex-

ample, an individual of European ancestry may receive a particular

genotype according to a probability different than an individual of

Asian ancestry. This phenomenon has been observed not only across

continents, but on very fine scales of geographic characterizations of

ancestry. Recent studies have shown that population structure in

human populations is quite complex, occurring more on a continu-

ous rather than a discrete basis (Rosenberg et al., 2002). We can

illustrate the spectrum of structural complexity with Figure 1, which

shows dendrograms of hierarchically clustered individuals from the

HapMap (phase II), HGDP and TGP datasets. The HapMap sam-

ples strongly indicate explicit membership of each individual to one

of three discrete subpopulations (due to the intended sampling

scheme). On the other hand, the clusterings of the HGDP and TGP

individuals show a very complex configuration, more representative

of random sampling of global human populations.

Let us introduce Z as an unobserved variable capturing an indi-

vidual’s structure, which we will estimate with dimension d. Let

xij be the observed genotype for SNP i and individual j

(i ¼ 1; . . . ;m; j ¼ 1; . . . ;n), and assume that xij is coded to take the

values 0, 1, 2. We call the observed m�n genotype matrix X. For

SNP i, the allele frequency can be viewed as a function of Z, i.e.

piðZÞ. For a sampled individual j from an overall population, we

have ‘individual-specific allele frequencies’ (Thornton et al., 2012)

defined as pij � piðzjÞ at SNP i. Each value of pij informs us as to the

expectation of that particular SNP/individual pair under the scen-

ario we observed a new individual at that locus with the same struc-

ture, specifically as E½xij�=2 ¼ pij. If an observed SNP genotype xij is

treated as a random variable, then we assume that pij serves to

model xij as a Binomial parameter: xijjZ ¼ zj � Binomialð2; piðzjÞÞ.
(We will drop the conditioning on Z in the subsequent text for
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convenience.) This Binomial distribution assumption is also made in

the PSD model (Alexander et al., 2009; Pritchard et al., 2000). The

focus of this article is on the simultaneous estimation of the pij val-

ues (i ¼ 1; . . . ;m; j ¼ 1; . . . ;n).

The flexible, accurate and computationally efficient estimation

of individual-specific allele frequencies is important for population

genetic analyses, illustrated by the following examples.

Example 1: Corona et al. (2013) recently showed that considering

the worldwide distribution of allele frequencies of SNPs known to

be associated with human diseases may be a fundamental compo-

nent to understanding the relationship between ancestry and disease.

Example 2: We may use individual-specific allele frequency esti-

mates to determine whether genotype data follow a probability distri-

bution indicative of random mating, conditional on population

structure. This involves verifying that xijjZ ¼ zj � Binomialð2; pijðzjÞÞ.
Verifying this model can be viewed as testing for a version of Hardy–

Weinberg equilibrium conditional on structure; it is also the probabilis-

tic assumption underlying the STRUCTURE (Pritchard et al., 2000),

ADMIXTURE and fastSTRUCTURE software packages that all fit the

PSD model. Verifying this model assumption can be accomplished by

assessing the goodness-of-fit of the model by testing whether the geno-

type frequencies for SNP i follow probabilities p2
ij; 2pijð1� pijÞ, and

ð1� pijÞ2 for all individuals j ¼ 1; . . . ; n.

Example 3: It can be shown that an FST-related measure can be

characterized for SNP i using values of pij, j ¼ 1; 2; . . . ;n

(Supplementary materials, Section S5).

Example 4: We have recently developed a test of association that cor-

rects for population structure and involves the estimation of log
pij

1�pij

� �
(Song et al., 2015).

These examples demonstrate that flexible and well-behaved esti-

mates of the individual-specific allele frequencies pij are needed for

downstream population genetic analyses.

It is straightforward to write other models of population struc-

ture in terms of Z. For the BN model, each individual is assigned to

a population, thus zj indicates individual j’s population assignment.

For the PSD model, each individual is considered to be an admixture

of a finite set of ancestral populations. Following the notation of

Pritchard et al. (2000), we can write zj as a vector with elements qkj,

where k indexes the ancestral populations, and we constrain qkj to

be between 0 and 1 subject to
P

kqkj ¼ 1. Assuming the PSD model

allows us to write each pij ¼
P

kpikqkj and leads to a matrix form:

F ¼ PQ, where F is the m�n matrix of allele frequencies with (i, j)

entry pij, P is the m�d matrix of ancestral population allele frequen-

cies pik and Q is the d�n matrix of admixture proportions. The

elements of P and Q are explicitly restricted to the range ½0;1�.
The PSD model is primarily focused on the matrix Q and second-

arily on the matrix P, which have standalone interpretations. We

aim instead to estimate all pij quantities with a high level of accuracy

and computational efficiency. Writing the structure of the allele fre-

quency matrix F as a linear basis, we have:

Model 1 : F ¼ CS; (1)

where C is m�d and S is d�n with d�n, and the entries of both

matrices are unrestricted real numbers. The d�n matrix S encapsu-

lates the genetic population structure for these individuals since S is

not SNP-specific. The m�d matrix C maps how the structure S is

manifested in the allele frequencies. Operationally, each SNP’s allele

frequencies are a linear combination of the rows of S, where the lin-

ear weights for SNP i are contained in row i of C. We define the di-

mension d so that d¼1 corresponds to the case of no structure:

when d¼1, S ¼ ð1; 1; . . . ;1Þ and C is the column vector of marginal

allele frequencies.

This model is not necessarily the most effective way to estimate

pij when working in the context of a probabilistic model or with the

likelihood function given the data. Model 1 resembles linear regres-

sion, where the allele frequencies are treated as a real-valued re-

sponse variable that is linearly dependent on the structure. A version

of regression for the case of categorical response variables (e.g. geno-

types) with underlying probability parameters is logistic regression.

We developed an approach called logistic factor analysis (LFA),

Fig. 1. A hierarchical clustering of individuals from the HapMap, HGDP and

TGP datasets. A dendrogram was drawn from a hierarchical clustering using

Ward distance based on SNP genotypes (MAF > 5%). Whereas the HapMap

project shows a definitive discrete population structure (by sampling design),

the HGDP and TGP data show the complex structure of human populations
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which is essentially an extension of non-parametric factor analysis

to {0, 1, 2}-valued genotype data. The justification for LFA derives

from that of generalized linear models (McCullagh and Nelder,

1989), where in our case observed covariates are instead replaced

with unobserved latent variables that must also be estimated.

The log-likelihood is the preferred mathematical framework for

representing the information the data contain about unknown par-

ameters (Lehmann and Casella, 1998). Suppose that the model as-

sumption holds such that xij � Binomialð2; pijÞ. We can write the

log-likelihood of the data for SNP i and individual j as:

‘ðpijjxijÞ ¼ log
�

PrðxijjpijÞ
�

/ log
�
p

xij

ij ð1� pijÞ2�xij

�
¼ xijlog

pij

1� pij

� �
þ 2logð1� pijÞ:

The log-likelihood of SNP i for all unrelated individuals is the sum:Pn
j¼1 ‘ðpijjxijÞ. The term log

pij

1�pij

� �
is the logit function and is written

as logitðpijÞ. logitðpijÞ is called the ‘natural parameter’ or ‘canonical

parameter’ of the Binomial distribution and is the key component of

logistic regression (McCullagh and Nelder, 1989). An immediate

benefit of working with logitðpijÞ is that it is real valued, which

allows us to directly model logitðpijÞ with a linear basis.

Let L be the m�n matrix with (i, j) entry equal to logitðpijÞ. We

form the following parameterization of L:

Model 2 : L ¼ AH; (2)

where A is m�d and H is d�n with d�n. In this case we can write

logitðpijÞ ¼
Xd

k¼1

aikhkj;

where all parameters are free to span the real numbers. We choose

the value of d by identifying the one that provides the best goodness-

of-fit (Supplementary materials, Section S2).

We call the rows of H ‘logistic latent factors’ or just ‘logistic fac-

tors’ as they represent unobserved variables that explain the inter-

individual differences in allele frequencies. In other words, the logit

of the vector of individual-specific allele frequencies for SNP i can

be written as a linear combination of the rows of H:

½logitðpi1Þ; . . . ; logitðpinÞ� ¼ logitðpiÞ ¼
Xd

k¼1

aikhk;

where hk is the kth row of H. Similarly, we can write:

ðpi1; . . . ; pinÞ ¼ pi ¼
exp

Xd

k¼1
aikhk

h i
1þ exp

Xd

k¼1
aikhk

h i :

The relationship between our proposed LFA approach and existing

approaches of estimating latent variables in categorical data is de-

tailed in Supplementary materials, Section S6. Specifically, it should

be noted that even though we propose calling the approach LFA, we

do not make any assumptions about the distribution of the factors

(which are often assumed to be normal). A technically more detailed

name of the method is a ‘logistic nonparametric linear latent vari-

able model for Binomial data.’

2.2 Estimation algorithms
The two models presented earlier make minimal assumptions as to

the nature of the structure. For example, in Model 1, both C and S are

permitted to be real valued. This allows us to apply a PCA-based

algorithm directly to the genotype matrix X, obtaining estimates

of ~F; ~C and ~S. In essence, ~F is estimated by forming the projection of

X=2 onto the top d principal components of X with an explicit inter-

cept for the d¼1 case. One drawback of this approach is that because

PCA is designed for continuous data, we have to take additional steps

to constrain ~F to be in the range ½0; 1�. However, we show in Results

that ~F is still an extremely accurate estimate of the allele frequencies F

for all formulations of F considered here, including the PSD model.

Algorithm 1: Estimating F from PCA:

1. Let ~li be the sample mean of row i of X. Set x�ij ¼ xij � ~l i and let

X� be the m�n matrix with (i, j) entry x�ij.

2. Perform singular value decomposition (SVD) on X� which de-

composes X� ¼ UDVT. Note that the rows of DVT are the n

row-wise principal components of X� and U are the principal

component loadings.

3. Let ~X
�
d�1 be the projection of X� on the top d – 1 eigen-vectors

of this SVD, ~X
�
d�1 ¼ U1:ðd�1ÞD1:ðd�1ÞV

T
1:ðd�1Þ.

4. Construct ~F
�

by adding ~li to row i of ~X
�
d�1 (for i ¼ 1; . . . ;n) and

multiplying the resulting matrix by 1/2. In mathematical terms,
~F
� ¼ ~C~S where

~C ¼

1

2
~l1

1

2
U1:ðd�1ÞD1:ðd�1Þ

..

.

1

2
~lm

0
BBBBBB@

1
CCCCCCA

¼

1

2
u11d1 	 	 	 1

2
u1;d�1dd�1

1

2
~l1

1

2
u21d1 	 	 	 1

2
u2;d�1dd�1

1

2
~l2

..

. ..
. ..

.

1

2
um1d1 	 	 	 1

2
um;d�1dd�1

1

2
~lm

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

~S ¼
VT

1:ðd�1Þ

11 . . . 1

 !

¼

v11 v21 	 	 	 vn1

v12 v22 	 	 	 vn2

..

. ..
. ..

.

v1;d�1 v2;d�1 	 	 	 vn;d�1

1 1 	 	 	 1

0
BBBBBBBB@

1
CCCCCCCCA
;

and di is the ith diagonal entry of D. Let ~p�ij to be the (i, j) entry

of ~F
�
.

5. Since it may be the case that some ~p�ij are such that ~p�ij < 0 or

~p�ij > 1, we truncate these. The final PCA based estimate of F is

formed as ~F where the (i, j) entry ~p ij is defined to be

~pij ¼

C if ~p�ij�C

~p�ij if C < ~p�ij < 1� C

1� C if ~p�ij
1�C

8>><
>>:

for some C * 0. An estimate of L can be formed as ~L ¼ logitð~FÞ.
Here we used C ¼ 1

2n, which is the minimum resolution of the data

given 2n alleles are observed. In summary, ~F is a projection of X

into its top principal components, scaled by 1/2, and truncated so

that all values lie in the interval (0, 1).

For Model 2, we propose a method for estimating the latent vari-

able H. Starting from the output of Algorithm 1, we apply the logit

transformation to the subset of rows that had no truncation, i.e. no
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values where ~p�ij�C or ~p�ij
1� C. We then extract the right singu-

lar vectors of this transformed subset. As long as the subset is large

enough to span the same space as the row space of L, this approach

accurately estimates the basis of H. Next, we calculate the max-

imum likelihood estimation of A parameterized by Ĥ to yield Â,

and then set L̂ ¼ ÂĤ. This involves performing a logistic regression

of each SNP’s data on Ĥ. In order to estimate the individual-specific

allele frequency matrix F, we calculate F̂ ¼ logit�1ðL̂Þ. An important

property to note is that all p̂ ij 2 ½0; 1� due to the fact that we are

modeling the natural parameter.

Algorithm 2: Estimating Logistic Factors:

1. Apply steps 1–4 of Algorithm 1 to obtain the estimate ~F
�

from

Step 4.

2. Recalling that ~p�ij is the (i, j) entry of ~F
�
, we choose some C * 0

and form

S ¼ fi : C < ~p�ij < 1� C;8j ¼ 1; :::; ng:

S identifies the rows of ~F
�

where the logit function can be

applied stably. Here we use C ¼ 1
2n.

3. Define ~FS to be the corresponding subset of rows of ~F
�
, and cal-

culate ~LS ¼ logitð~FSÞ. Let ~LS
0

be the row-wise mean centered

and standard deviation scaled matrix ~LS .

4. Perform SVD on ~LS
0

resulting in ~LS
0 ¼ TKWT. Set Ĥ to be the

d�n matrix composed of the top d – 1 right singular vectors of

the SVD of L̂S
0
stacked on the row n-vector ð1; 1; 	 	 	 ; 1Þ:

Ĥ ¼
WT

1:ðd�1Þ

1 1 	 	 	 1 1

 !

¼

w11 w21 	 	 	 wn1

w12 w22 	 	 	 wn2

..

. ..
. ..

.

w1;d�1 w2;d�1 	 	 	 wn;d�1

1 1 	 	 	 1

0
BBBBBBBB@

1
CCCCCCCCA
:

Algorithm 3: Estimating F and L from LFA:

1. Apply Algorithm 2 to X to obtain Ĥ.

2. For each SNP i, perform a logistic regression of the SNP geno-

types xi ¼ ðxi1; xi2; . . . ;xinÞ on the rows of Ĥ, specifically by

maximizing the log-likelihood

‘ðpijxi; ĤÞ ¼
Xn

j¼1

xijlog
pij

1� pij

� �
þ 2logð1� pijÞ

under the constraint that logitðpijÞ ¼
Pd

k¼1 aikĥkj. It should be

noted that an intercept is included because ĥdj ¼ 1 8j by

construction.

3. Set âij (j ¼ 1; . . . ; n) to be equal to the maximum likelihood esti-

mates from the above model fit, for each of i ¼ 1; . . . ;m. Let

L̂ ¼ ÂĤ; F̂ ¼ logit�1ðL̂Þ, and p̂ ij be the (i, j) entry of F̂:

p̂ ij ¼
exp

Xd

k¼1

âikĥkj

( )

1þ exp
Xd

k¼1

âikĥkj

( ) :

PCA-based estimation of Model 1 requires one application of

SVD and LFA requires two applications of SVD. We leverage the

fact that n� d to utilize Lanczos bidiagonalization which is an it-

erative method for computing the SVD of a matrix (Baglama and

Reichel, 2006). Lanczos bidiagonalization excels at computing a

few of the largest singular values and corresponding singular vectors

of a sparse matrix. While the sparsity of genotype matrices is fairly

low, we find that in practice using this method to perform the above

estimation algorithms is more effective than using methods that re-

quire the calculation of all the singular values and vectors. This re-

sults in a substantial reduction of the computational time needed for

the implementation of our methods.

3 Results

We applied our methods to a comprehensive set of simulation stud-

ies and to the HGDP and TGP datasets.

3.1 Simulation studies
To directly evaluate the performance of the estimation methods (see

Section 2.2), we devised a simulation study where we generated syn-

thetic genotype data with varying levels of complexity in population

structure. Genotypes were simulated based on allele frequencies sub-

ject to structure from the BN model, the PSD model, spatially struc-

ture populations and real datasets. For the first three types of

simulations, the allele frequencies were parameterized by Model 1,

while for the real-data simulations, the allele frequencies were taken

from model fits on the data themselves.

A key property to assess is how well the estimation methods cap-

ture the overall structure. One way to evaluate this is to determine

how well ~S from the PCA-based method (Algorithm 1) estimates the

true underlying S, and similarly how well Ĥ from LFA estimates the

true H. Note that even though the genotype data were generated from

the F of Model 1, we can evaluate Ĥ by converting with L ¼ logitðFÞ.
To evaluate PCA, we regressed each row of F on ~S and calculated the

average R2; similarly, for LFA we regressed each row of L on Ĥ and

calculated the average R2 value. The results are presented in Table 1.

Both methods estimate the true latent structure well.

Table 1. Accuracy in estimating linear bases for S

Scenario Mean R2

F � ~S logitðFÞ � Ĥ

TGP fit by PCA 0.9998 0.9722

TGP fit by LFA* 0.9912 0.9990

HGDP fit by PCA 0.9996 0.9614

HGDP fit by LFA* 0.9835 0.9983

BN 0.9999 0.9999

PSD a ¼ 0:01 0.9998 0.9974

PSD a ¼ 0:1 0.9998 0.9879

PSD a ¼ 0:5 0.9996 0.9827

PSD a¼ 1 0.9993 0.9844

Spatial a¼ 0.1 0.9999 0.9964

Spatial a¼ 0.25 0.9999 0.9962

Spatial a¼ 0.5 0.9999 0.9964

Spatial a¼ 1 0.9998 0.9970

Column 1 shows the scenario from which the data were simulated.

Columns 2 and 3 display the estimation accuracy of the PCA-based method

(Column 2) and LFA (Column 3). Column 2 shows the mean R2 value when

regressing the true ðpi1; pi2; . . . ; pinÞ on ~S from PCA, averaging across all

SNPs. Column 3 shows the mean R2 value when regressing the true
�

logitðpi1Þ;
logitðpi2Þ; . . . ; logitðpinÞ

�
on Ĥ from LFA, averaging across all SNPs. All esti-

mated standard errors fell between 10�6 and 10�8 so these are not shown. Note

for each scenario, R2 values are higher for the method from which the true F

matrix was generated. All but the two scenarios marked with an asterisk (*) are

from Model 1, while the two marked scenarios are from Model 2, where we

took F ¼ logit�1
L
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We specifically note that when the PSD model was utilized to

simulate structure, we were able to recover the structure S very well

(Supplementary Fig. S2) without needing to employ the computa-

tionally intensive and assumption-heavy Bayesian model fitting

techniques from Pritchard et al. (2000). In addition, it seems that the
~S largely captures the geometry of S where it may be the case that S

can be recovered with a high degree of accuracy by transforming ~S

back into the simplex. By comparing the results on the real data

(Fig. 2) with the simulated data (Supplementary Fig. S2), one is able

to visually assess how closely the assumptions of the PSD model re-

semble real datasets. When structure was simulated that differed

substantially from the assumptions of the PSD model, our estima-

tion methods were able to capture that structure just as well

(Supplementary Fig. S3). This demonstrates the flexibility of the pro-

posed approaches.

We also compared PCA and LFA to two methods of fitting the

PSD model, ADMIXTURE (Alexander et al., 2009) and

fastSTRUCTURE (Raj et al., 2014), by determining how well the

methods estimated the individual-specific allele frequencies pij. A

subset of results is shown in Table 2, and the full set of results is

shown in Supplementary Table S1. For the real data scenarios, we

simulated genotypes based on estimates of F from the four different

methods, thus giving each method an opportunity to fit its own

simulation. The methods were compared by computing three differ-

ent error metrics with respect to the oracle F: Kullback–Leibler di-

vergence, absolute error and root mean squared error

(Supplementary materials, Section S4). PCA and LFA significantly

outperformed ADMIXTURE and fastSTRUCTURE, which confirms

the intuitive understanding of the differences between the models:

the goal of Models 1 and 2 is to estimate the allele frequencies pij,

while the PSD model provides a probabilistic interpretation of the

structure by modeling them as admixture proportions.

The computational time required to perform the proposed meth-

ods was also significantly better than ADMIXTURE and

fastSTRUCTURE. Both proposed methods completed calculations on

average over 10 times faster than ADMIXTURE and

fastSTRUCTURE, with some scenarios as high as 150 times faster.

This is notable in that both ADMIXTURE and fastSTRUCTURE are

described as computationally efficient implementations of methods to

estimate the PSD model (Alexander et al., 2009; Raj et al., 2014).

3.2 Analysis of the HGDP and TGP data
We analyzed the HGDP and TGP data using the proposed methods.

The HGDP data consisted of n¼940 individuals and m¼431 345

SNPs, and the TGP data consisted of n¼1500 and m¼339 100 (see

Supplementary materials, Section S1 for details). We first applied

PCA and LFA to these datasets and made bi-plots of the top three

PCs and top three LFs (Fig. 2). It can be seen that PCA and LFA pro-

vide similar visualizations of the structure present in these data. In

addition, the structures estimated by these methods are related, but

not identical, to the population labels provided in the original stud-

ies. We next chose a dimension d for the LFA model (Model 2) for

each dataset. This was done by identifying the value of d that pro-

vides the best overall goodness of fit (Supplementary materials,

Section S2). We identified d¼15 for HGDP and d¼7 for TGP

based on this criterion.

One drawback of utilizing a PCA-based approach (Algorithm 1)

for estimating the individual-specific allele frequencies F is that we

are not guaranteed that all values of the estimates lie in ½0; 1�, so

some form of truncation is necessary. We found that 65.4% of the

SNPs in the HGDP dataset and 26.5% in the TGP dataset resulted

in at least one estimated individual-specific allele frequency <0 or

>1 before the truncation was applied. Therefore, the truncation in

forming the estimate ~F is necessary when employing Algorithm 1 to

estimate F from Model 1. On the other hand, due to the formulation

of Model 2, all estimated allele frequencies fall in the valid range

when applying LFA (Algorithms 2 and 3).

The LFA framework provides a natural computational method

for ranking SNPs according to how differentiated they are with

Fig. 2. Principal component and logistic factor biplots for the HGDP and TGP

datasets. The top three principal components from each dataset are plotted in

a pairwise fashion in the top panel. The top three logistic factors are plotted

analogously in the bottom panel. It can be seen that both approaches yield

similar visualizations of structure

Table 2. A comparison of accuracy in estimating pij parameters

where data were simulated from the PSD model for varying a

PCA LFA ADX FS

a ¼ 0:01 7:2� 10�3 7:6� 10�3 1:7� 10�1 1:7� 10�1

a ¼ 0:1 7:2� 10�3 9:3� 10�3 2:4� 10�1 2:4� 10�1

a ¼ 0:5 7:3� 10�3 9:0� 10�3 1:8� 10�1 1:8� 10�1

a ¼ 1:0 7:4� 10�3 8:4� 10�3 2:2� 10�1 2:2� 10�1

Methods used are the proposed PCA-based method (Algorithm 1) and LFA

method (Algorithms 2 and 3), and two competing methods, ADMIXTURE

(ADX) and fastSTRUCTURE (FS), that directly fit the PSD model. The values

reported are root mean squared error in the pij parameter. See Supplementary

Table S1 for more extensive comparisons
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respect to structure. Accurately ranking SNPs according to this dif-

ferentiation is a technique often used to identify genetic polymorph-

isms that are strong candidates for instances of positive selection

(Coop et al., 2009). Note that existing methods typically require one

to first assign each individual to one of K discrete subpopulations

(as done in Coop et al., 2009) which may make unnecessary assump-

tions on modern datasets such as HGDP and TGP. In order to rank

SNPs for differentiation, we calculate the deviance statistic when

performing a logistic regression of the SNPs genotypes on the logis-

tic factors. Specifically, we calculated the deviance by comparing the

models logitðpiÞ ¼ aidhd versus logitðpiÞ ¼
Pd

k¼1 aikhk, where the

former model is intercept only (i.e. d¼1, no structure).

Our application of LFA to identify SNPs with allele frequencies

differentiated according to structure can be developed further. First,

the recently proposed ‘jackstraw’ approach (Chung and Storey,

2015) provides a manner in which statistical significance can be as-

signed to these SNPs. Assigning statistical significance to the popula-

tion differentiation of SNPs has traditionally been a difficult

problem (Akey et al., 2002). Second, we found the deviance measure

tends to have more extreme values for SNPs with larger minor allele

frequencies (MAFs). Therefore, the ranking of SNPs may be made

more informative if MAF is taken into account. Third, although this

ranking is identifying differentiation and not specifically selection, it

may provide a useful starting point in understanding methods that

attempt to detect selection.

The most differentiated SNPs (Supplementary Tables S2 and S3)

reveal some noteworthy results, especially considering the flexible

approach to forming the ranking. SNPs located within or very close

to SLC24A5 were the top ranked in both HGDP and TGP. This

gene is well known to be involved in determining skin pigmentation

in humans (Lamason et al., 2005) and is hypothesized to have been

subject to positive selection (Sabeti et al., 2007). The next most

highly ranked SNPs in both studies are located in EDAR, which

plays a major role in distinguishing phenotypes (e.g. hair follicles)

among Asians. SNP rs3827760 is the second most differentiated

SNP in the TGP data, which has also been hypothesized to be under

positive selection in humans and whose causal role in the hair fol-

licle phenotype has been verified in a mouse model (Kamberov

et al., 2013). SNPs corresponding to these two genes for both studies

are plotted in increasing order of p̂ij values, revealing subtle vari-

ation within each major ancestral group in addition to coarser dif-

ferences in allele frequency (Fig. 3). Other noteworthy genes with

highly differentiated proximal SNPs include:

• FOXP1, which is a candidate gene for involvement in tumor pro-

gression and plays an important regulatory role with FOXP2

(Banham et al., 2001; Shigekawa et al., 2011);
• TBC1D1 in which genetic variation has been shown to confer

risk for severe obesity in females (Stone et al., 2006);
• KIF3C, a novel kinesin-like protein, which has been hypothe-

sized to be involved in microtubule-based transport in neuronal

cells (Sardella et al., 1998);
• KCNMA1, a recently identified susceptibility locus for obesity

(Jiao et al., 2011);
• CTNNA3 in which genetic variation has been shown to be asso-

ciated with diisocyanate-induced occupational asthma (Bernstein

et al., 2013);
• PTK6, breast tumor kinase (Brk), which is known to function in

cell-type and context-dependent processes governing normal dif-

ferentiation (Ostrander et al., 2010).

We have provided information on the 5000 most differentiated

SNPs for both TGP and HGDP as Supplementary material files.

Fig. 3. SNPs with highly differentiated allele frequencies with respect to structure. Two of the most highly different SNPs according to LFA are shown for the

HGDP and TGP datasets. For each SNP, the p̂ ij values are ordered and they are colored according reported ancestry. The horizontal bars on the sides of the plots

denote the usual allele frequency estimates formed within each ancestral group
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4 Discussion

We have investigated two latent variable models of population

structure to simultaneously estimate all individual-specific allele fre-

quencies from genome-wide genotyping data. Model 1, a direct

model of allele frequencies, can be estimated by using a modified

PCA and Model 2, a model of the logit transformation of allele fre-

quencies, is estimated through a new approach we called LFA. For

both models, the latent variables are estimated in a non-parametric

fashion, meaning we do not make any assumptions about the under-

lying structure captured by the latent variables. These models are

general in that they allow for each individual’s genotype to be gener-

ated from an allele frequency specific to that individual, which in-

cludes discretely structured populations, admixed populations and

spatially structured populations. In LFA, we construct a model of

the logit of these allele frequencies in terms of underlying factors

that capture the population structure. We have proposed a computa-

tionally efficient method to estimate this model that requires only

two applications of SVD. This approach builds on the success of

PCA in that we are able to capture population structure in terms of

a low-dimensional basis. It improves on PCA in that the latent vari-

ables we estimate can be straightforwardly incorporated into down-

stream statistical inference procedures that require well-behaved

estimates of allele frequencies. In particular, statistical inferences of

Hardy–Weinberg equilibrium, FST, and marker-trait associations are

amenable to complex population structures within our framework.

We demonstrated our proposed approach on the HGDP and

TGP datasets and several simulated datasets motivated by the

HapMap, HGDP and TGP datasets as well as the PSD model and

spatially distributed structures. It was shown that our method esti-

mates the underlying logistic factors with a high degree of accuracy.

We also showed that applying PCA to genotype data estimates a

row basis of population structure on the original allele frequency

scale to a high degree of accuracy. However, problems occur when

trying to recover estimates of individual-specific allele frequencies

because PCA is a real-valued model that does not always result in al-

lele frequency estimates lying between 0 and 1.

Although PCA has become very popular for genome-wide genotype

data, it should be stressed that PCA is fundamentally a method for

characterizing variance and special care should be taken when applying

it to estimate latent variables. The authoritative treatment of PCA

(Jolliffe, 2010) eloquently makes this point throughout the text and

considers cases where factor analysis is more appropriate than PCA

through examples reminiscent of the population structure problem.

Here, we have shown that modeling and estimating population struc-

ture can be understood from the factor analysis perspective, leading to

estimates of individual-specific allele frequencies through their natural

parameter on the logit scale. At the same time, we have avoided some

of the difficulties of traditional parametric factor analysis by maintain-

ing the relevant non-parametric properties of PCA, specifically in mak-

ing no assumptions about the underlying probability distributions of

the logistic factors that capture population structure.
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