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Abstract
Purpose: To assess changes in the volumes and spatial locations of tumors and surrounding organs by cone beam computed
tomography during treatment for cervical cancer. Materials and Methods: Sixteen patients with cervical cancer had intensity-
modulated radiotherapy and off-line cone beam computed tomography during chemotherapy and/or radiation therapy. The gross
tumor volume (GTV-T) and clinical target volumes (CTVs) were contoured on the planning computed tomography and weekly
cone beam computed tomography image, and changes in volumes and spatial locations were evaluated using the volume difference
method and Dice similarity coefficients. Results: The GTV-T was 79.62 cm3 at prior treatment (0f) and then 20.86 cm3 at the end
of external-beam chemoradiation. The clinical target volume changed slightly from 672.59 cm3 to 608.26 cm3, and the uterine
volume (CTV-T) changed slightly from 83.72 cm3 to 80.23 cm3. There were significant differences in GTV-T and CTV-T among
the different groups (P < .001), but the clinical target volume was not significantly different in volume (P > .05). The mean percent
volume changes ranged from 23.05% to 70.85% for GTV-T, 4.71% to 6.78% for CTV-T, and 5.84% to 9.59% for clinical target
volume, and the groups were significantly different (P < .05). The Dice similarity coefficient of GTV-T decreased during the course
of radiation therapy (P < .001). In addition, there were significant differences in GTV-T among different groups (P < .001), and
changes in GTV-T correlated with the radiotherapy (P < .001). There was a negative correlation between volume change rate
(DV) and Dice similarity coefficient in the GTV-T and organs at risk (r < 0; P < .05). Conclusion: The volume, volume change rate,
and Dice similarity coefficient of GTV-T were all correlated with increase in radiation treatment. Significant variations in tumor
regression and spatial location occurred during radiotherapy for cervical cancer. Adaptive radiotherapy approaches are needed to
improve the treatment accuracy for cervical cancer.

Keywords
cone beam computed tomography, cervical cancer, image-guided radiation therapy, Dice similarity coefficient, volume change rate

Abbreviations

CBCT, conebeam computed tomography;CT, computed tomography;CTV, clinical target volume; DSC, Dice similarity coefficient;
GTV, gross tumor volume; IMRT, intensity-modulated radiation therapy; MRI, magnetic resonance imaging; OAR, organs at risk

Received: March 19, 2016; Revised: November 9, 2016; Accepted: November 26, 2016.

Introduction

Cervical cancer is the most common female cancer worldwide.

Most patients have locally advanced disease in which the stan-

dard treatment is chemotherapy with radiation followed by

brachytherapy, and expected cure rates range from 30% to

90%, depending on the cancer stage.1,2 Recent advances in
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radiotherapy treatment planning and delivery technology

have enabled the formulation of highly accurate conformal

radiotherapy treatment plans and low damage to organs at

risk (OAR). Some studies have found that intensity-

modulated radiation therapy (IMRT) is associated with less

gastrointestinal and hematologic toxicity, relative to con-

ventional techniques.3

The IMRT has been increasingly accepted as a treatment for

gynecologic cancer. The IMRT enables highly conformal uni-

form dose delivery to target volumes (eg, the cervix, uterus,

parametrium, and pelvic lymph nodes) while reducing doses to

OAR (bowel, bladder, rectum, and bone marrow) compared to

the conventional 4-field box techniques.3,4 A retrospective

study showed that, with IMRT, late gastrointestinal toxicity

was reduced from 50% to 11% for all grades, with favorable

tumor control and survival.5 However, tumor regression and

organ motion can affect the dose received regardless of the

method of delivery. Some studies have found that the uterus

and cervix can move substantially during treatment.6-8 Due to

motion of the uterus and cervix, changes in the clinical target

volume (CTV) can influence the exposure to radiation of adja-

cent organs, such as the intestine, bladder, and rectum. There-

fore, it is necessary to evaluate these changes during

radiotherapy to reduce errors.

Image-guided radiotherapy was developed to detect anato-

mical motion and adjust radiation therapy accordingly. The

motion has 2 major components—volumetric changes in tar-

gets (ie, tumors) and positional changes of the targets and

surrounding organs. In clinical practice, we usually use center

of mass or fiducial markers to evaluate target changes and

motions.9 However, this method is not comprehensive enough,

so here, we introduce the method of Dice similarity coefficient

(DSC) and volume change rate (DV) to compare fully the space

location of 2 registration image spaces and the volumetric

changes for targets.

The purpose of the study was to use cone beam computed

tomography (CBCT) to monitor the regression of volumes and

changes in spatial location of the GTV-T, uterus (CTV-T), and

the CTV in patients with cervical cancer during IMRT.

Methods and Materials

Patients

This prospective study comprised 16 patients with cervical

cancers at stages IB2 to IIIB, based on the International Fed-

eration of Gynecology and Obstetrics classification.10 Specif-

ically, 3, 5, 2, and 6 patients had stage IB2, IIB, IIIA, and IIIB

cervical cancer, respectively. This study was approved by our

hospital institutional review board in September 2014.

Patients underwent IMRT with concurrent cisplatin-based

chemotherapy, followed by high-dose-rate intracavitary bra-

chytherapy. Each patient was given an external beam radiation

therapy dose of 48.6 Gy in 27 fractions of 1.8 Gy using 7 beams

and 6 MV photons to the planning target volume. After this

course, each patient received high-dose-rate intracavitary

implants once per week that weekly delivered 28 Gy in 4 frac-

tions. All patients received concurrent cisplatin (80 mg/m2)

every 3 weeks per cycle (total 2-4 cycles).

Distinguishing Tumors From Normal Tissue

All patients were treated with IMRT, in accordance with the

guidelines of the International Commission on Radiation Units

and Measurements 50 and 62. The CTV consisted of the regional

lymph nodes (common, internal and external iliac, obturator,

and presacral), upper vagina, parametrium, cervix, and uterus.

The CTV extended from the L4-5 interspace superiorly to 3 cm

to the midobturator foramen. The CTV was expanded 0.8 to 1.0

cm uniformly to obtain the pelvic planning target volume.

Cervix and fundus were contoured for each patient, as were

bladder, rectum, intestine, and sigmoid.11 We also contoured

the gross tumor volume (GTV) and uterus (CTV-T) to evalu-

ate the regression of the target and the movement of uterus

and CTV. The CTV should comprise GTV, cervix, uterus,

upper vagina, parametrium, and pelvic nodes (obturator, com-

mon, internal, and external iliac). We mainly used CBCT to

contour the tumor target and OAR, and magnetic resonance

imaging (MRI) and computed tomography (CT) were both

taken as only subsidiary references. In order to measure the

volume of GTV more precisely, weekly MRI images were

obtained during radiotherapy.12

Imaging and Delivery

Patients in the supine position underwent simulations with a

customized vacuum immobilization device using a CT simu-

lator (Big Bore CT, Philips Brilliance Pinnacle) with a 5-mm

slice thickness scan. To minimize organ motion, and in accor-

dance with standard practice in our department, patients drank

200 mL of water and emptied their bowels 1 hour before the

planning CT scan.

Each patient had a pelvic CT and MRI (Philips Achieva 3.0 T

X-Series MRI System) scan before radiotherapy. Each patient

also had weekly CBCT scans performed in the treatment position

throughout the course of the external-beam radiation treatment.13

The serial images were acquired at the radiotherapy dose of

9 Gy/5f, 18 Gy/10f, 27 Gy/15f, 36 Gy/20f, and 48.6 Gy/27f in

which every 5 fractions were followed by CBCT and once-

weekly pelvic MRI scans. Therefore, the total serial images

were 80 CBCTs and 80 MRIs. Each CBCT image was set at

the same window/level (800/1200). In our daily practice, each

CBCT data set was reconstructed and transferred electronically

to a Pinnacle3 treatment planning workstation. Then image

fusion was achieved by using CT–CT mutual information.

Volumetric Analysis

The CTV-T and GTV-T were separately contoured using diag-

nostic imaging information and descriptions from the physical

examination. The cervix, uterus, lymph nodes, and structures

were contoured on each CT scan using the Pinnacle software
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suite.14 We used CT–CT normalized mutual information to

proceed with fusion (Pinnacle version 9.2s), and the window/

level was 400/800. To ensure that the uterus and cervix were

accurately differentiated, the uterus volumes were calculated

independently. In addition, cervical volumes were contoured

based on T2-weighted MRI images.

Positional Analysis and Evaluation Method

To determine the change in position of the cervix during treat-

ment, DSCs were evaluated between the target and spatial

position changes.15 The DSC similarity method has been

widely used for deformation in image segmentation and regis-

tration assessment and is defined by Equation 1.

DSC ¼ V0f \ V if

ðV0f þ V if Þ=2
ð1Þ

Dice similarity coefficients range from 0 to 1, and no over-

lap indicates agreement. The volumetric changes for targets

were calculated using Equation 2.

DV if ¼
jV if � V0f j

V0f
� 100% ð2Þ

For Equations 1 and 2, V0f is the volume of the target

before radiotherapy and Vif is the volume of the nth fraction

during IMRT treatment. Greater DV values represent greater

difference.

Statistics Analysis

Paired t tests were used to compare differences in volumetric

changes of organs during treatment. Mixed effects were used to test

correlations between bladder and rectal volumes with CTV motion.

Results

Cervical Regression and Evaluation

The cervical contours and measurements of interfraction varia-

tion showed dramatic tumor regression and significant posi-

tional changes during the course of treatment (Figure 1). The

mean GTV-T volume of 79.62 cm3 (range: 42.3-180.3 cm3) at

the start of treatment (0f) was reduced to 0.86 cm3 (range: 15.9-

31.3 cm3) by the end of treatment (Table 1). On average, the

cervical volume was significant different in GTV-T at all treat-

ment points (P < .001).

The CTV and CTV-T decreased slightly over the course of

treatment. The mean CTV went from 672.59 cm3 (range:

516.3-854.3 cm3) to 608.26 cm3 (range: 470.9-853.5 cm3); The

CTV-T changed slightly from 83.72 cm3 (range: 36.9-126.2

cm3) to 80.23 cm3 (range: 28.4-123.5 cm3). There were

Figure 1. Volumetric changes in GTV-T, CTV-T, and clinical target volume (CTV) during therapy.
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significant differences in the CTV-T volume among the differ-

ent treatment points (P < .001), but the CTV did not signifi-

cantly change in volume (P > .05).

Motion of the Cervix and CTV

The location of the cervix in the pelvis varied greatly during

treatment (Tables 2 and 3). The volume change rates of GTV-T

and CTV gradually increased throughout the treatment course.

The mean volume change rate (DV) ranged from 23.05% to

70.85% for the GTV-T, 4.71% to 6.78% for the CTV-T, and

5.84% to 9.59% for the CTV (Figure 2). There were significant

differences between different treatment points (P < .05).

Positional Analyses

Changes in position of the cervix during treatment, represented

by the DSC of the GTV-T, decreased during treatment from

0.65 to 0.37. The mean DSC of the CTV went from 0.46 to 0.59

and the CTV-T went from 0.84 to 0.87. DSC5f was signifi-

cantly different from DSC15f, DSC20f, and DSC27f (P < .05)

but was not significantly different from DSC10f (P > .05; Table

3). The DSC values for CTV-T and CTV did not significantly

change during radiotherapy (P > .05).

There was a significant correlation between volume and

volume change rate (DV) of the GTV among different time

points during the radiotherapy (r < 0; P < .001). The DV of

the bladder negatively correlated with GTV-T (r ¼ �.349),

CTV (�.300), and DSC (�.344; P < .05). The DV of the

GTV-T negatively correlated with the DSC of both bladder (r

¼ �.295) and rectum (�.231; P < .05). The DV of the CTV

negatively correlated with the DSC of the bladder (r ¼ �.306),

rectum (�.357), and small intestine (�.376; P < .05). There

was no significant difference or correlation among CTV-T,

CTV, and OAR during radiotherapy (P > .05; Figure 3).

Discussion

The MRI and the integration of CT can accurately determine

the tumor and adjacent normal tissues and organs while a

clinically automatic fusion method can avoid the error

between the subjective factors and the operator. In this study,

we show that the volume and location of the cervix changed

significantly during the course of treatment. These anatomical

changes must be taken into account when planning radiation

therapy, particularly when image-based inverse planning

(image-guided radiotherapy) is used to design highly confor-

mal radiation therapy.

Tumor volume is an important prognostic factor for local

control and survival in cervical cancer. The MRI has been

reported to be more precise than any other imaging modality

for uterine tumors. It has been previously shown that tumor

volume can be measured more precisely using MRI, and tumor

regression can be accurately evaluated by sequential MRI

obtained during radiotherapy.16 In our study, there was a sig-

nificant difference in GTV-T volume during the treatment frac-

tions (P < .001). Tumor regression was obvious during the 10

fraction (10f) and 15 fraction (15f) treatments, so the best time

to change the radiotherapy plan is between the second and third

week. We found that the CTV and uterus volumes decreased

slightly over the course of treatment (Figure 2). There were

significant differences in the uterus volume among the different

treatment points (P < .001), but the CTV did not significantly

change in volume (P > .05).

Our study, based on the images of serial CT scans, showed

cervical regression and motion in patients during treatment.

Our results are consistent with the findings of other studies.

Lee et al17 documented rapid involution of the cervix during

chemotherapy/radiation therapy, based on physical examina-

tions. van de Bunt et al18 observed rapid tumor regression by

Table 1. Tumor Volumes (GTV-T, CTV-T, and CTV) During Ther-

apy (cm3).

Fraction

Mean GTV-T

(Range)

Mean CTV-T

(Range)

Mean CTV

(Range)

0f 79.62 (42.3-180.3) 83.72 (36.9-126.2) 672.59

(516.3-854.3)

5f 61.93 (29.9-149.2) 82.01 (31.3-131.3) 632.24

(491.4-803.2)

10f 45.96 (25.1-97.4) 80.65 (25.5-119.8) 625.16

(470.3-844.7)

15f 33.00 (19.9-55.1) 80.72 (27.5-120.7) 616.64

(493.6-805.3)

20f 26.41 (17.7-40.8) 81.08 (35.6-118.9) 607.92

(489.5-822.2)

27f 20.86 (15.9-31.3) 80.23 (28.4-123.5) 608.26

(470.9-853.5)

Abbreviation: CTV, clinical target volume.

Table 2. The Volume Change of Target During Therapy.

Fraction

Mean DV GTV-T

(Range)

Mean DV CTV-T

(Range)

Mean DV CTV

(Range)

5f 23.05 (8.8-46.7) 4.71 (0.4-15.2) 5.84 (0.3-13.5)

10f 40.35 (10.3-57.0) 6.08 (0.4-20.0) 7.47 (0.1-17.0)

15f 55.57 (25.2-76.6) 6.12 (0.6-25.4) 7.67 (0.4-15.0)

20f 64.06 (46.9-82.0) 5.14 (0.9-19.5) 9.52 (1.0-17.8)

27f 70.85 (54.2-87.4) 6.78 (1.5-23.1) 9.59 (0.1-16.6)

Abbreviation: CTV, clinical target volume.

Table 3. DSC Changes of GTV-T, CTV-T, and CTV.

Fraction

Mean DSC GTV-T

(Range)

Mean DSC CTV-T

(Range)

Mean DSC CTV

(Range)

5f 0.65 (0.32-0.86) 0.48 (0.0-0.92) 0.86 (0.75-0.96)

10f 0.59 (0.38-0.73) 0.59 (0.24-0.85) 0.87 (0.76-0.94)

15f 0.54 (0.31-0.67) 0.56 (0.18-0.89) 0.86 (0.75-0.95)

20f 0.48 (0.30-0.66) 0.50 (0.01-0.88) 0.85 (0.77-0.96)

27f 0.37 (0.15-0.58) 0.46 (0.04-0.77) 0.84 (0.77-0.94)

Abbreviations: CTV, clinical target volume; DSC, Dice similarity coefficient.
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Figure 3. Dice similarity coefficient (DSC) changes of GTV-T, CTV-T, clinical target volume (CTV) during therapy.

Figure 2. The volume change rates of GTV-T, CTV-T and CTV during therapy.
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MRI, after radiation treatment with 30 Gy: a 50% reduction in

tumor diameter was achieved after a median of 21 days. We

also observed an average 10% regression in CTV, similar to

that observed by van de Bunt et al19 who estimated the average

change in CTV to be 18%, based on pre- and posttreatment

MRI in 14 patients during radiotherapy.

Tumor regression during radiotherapy can cause increased

uterine activity and dramatic changes in tumor position.19,20

Most studies showed that the position of cervix shifted less

than uterus. In our study, we showed that the volume change

rate of GTV-T and CTV gradually increased with the increase

in the fraction of radiotherapy.

The DSC was only used for the evaluation of internal posi-

tional change in our study. In addition, DV was taken as refer-

ence for tumor volume change. Concretely, DSC was used to

compare volumes of interest in the reference image to the cor-

responding volumes in the moving image after deformation.

The DSC indicates the overlapping ratio between the 2 volumes

of interest. It has been shown that the use of the DSC is appro-

priate for comparing image registrations that range from 0 to 1,

the latter indicating overlap and perfect agreement,21 with MRI

studies. This suggests that DSC values >0.70 represent good

agreement.22 If the DSC is smaller, the greater the difference

in the original target space position, the less the IMRT isodose

line surrounding the target. Therefore, a change in the DSC can

be used to predict whether IMRT plans need to be modified, and

DV can be used to predict tumor volume change.

Our results show that the DSC of GTV gradually decreased

and correlated with increasing fractions of radiotherapy. There

was a significant correlation between the volume and volume

change rate (DSC) of the GTV among different time points

during the radiotherapy (P < .001). There was no significant

difference or correlation among CTV-T, CTV, and OAR dur-

ing radiotherapy. In fact, DSC was used for the evaluation of

spatial motion, and the less of DSC value, the more the change

in spatial motion. Thus, the tumor target will be inevitably

spared by IMRT.

In this study, we observed that tumor regression and spatial

location changes were the most obvious during the second and

third weeks. This was also observed in previous studies using

MRI, which suggests that the best time to modify radiation

treatment planning is in the second or third week,23 and online

adaptive radiotherapy might be necessary to manage interfrac-

tion motion and volume regression of targets.24

Conclusion

There are large variations in GTV and CTV position in patients

with cervical cancer. Dramatic tumor regression and significant

positional changes during the course of treatment were

observed. The best time to change the radiotherapy plan is at

2-3 weeks. The primary tumor volume, volume change rate,

and DSC correlate with greater treatment fractions. Therefore,

our study supports the need to develop adaptive therapy

approaches to improve therapeutic efficacy and outcomes of

radiotherapy for cervical cancer.
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Comparison of 12 deformable registration strategies in adaptive

radiation therapy for the treatment of head and neck tumors.

Radiother Oncol. 2008;89(1):1-12.

15. Dice LR. Measures of the amount of ecologic association between

species. Ecology. 1945;26(3):297-302.

16. Lim K, Chan P, Dinniwell R, et al. Cervical cancer regression

measured using weekly magnetic resonance imaging during frac-

tionated radiotherapy: radiobiologic modeling and correlation

with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70(1):

126-133.

17. Lee CM, Shrieve DC, Gaffney DK. Rapid involution and mobility

of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2004;

58(2):625-630.

18. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GA,

Jürgenliemk-Schulz IM. Conventional, conformal, and

intensity-modulated radiation therapy treatment planning of

external beam radiotherapy for cervical cancer: the impact of

tumor regression. Int J Radiat Oncol Biol Phys. 2006;64(1):

189-196.

19. van de Bunt L, Jurgenliemk-Schulz IM, de Kort GA, Roesink JM,

Tersteeg RJ, van der Heide UA. Motion and deformation of the

target volumes during IMRT for cervical cancer: what margins do

we need? Radiother Oncol. 2008;88(2):233-240.

20. Herrera FG, Callaway S, Delikgoz-Soykut E, et al. Retrospective

feasibility study of simultaneous integrated boost in cervical can-

cer using tomotherapy: the impact of organ motion and tumor

regression. Radiat Oncol. 2013;8:5.

21. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. Morpho-

metric analysis of white matter lesions in MR images: method and

validation. IEEE Trans Med Imaging. 1994;13(4):716-724.

22. Bharatha A, Hirose M, Hata N, et al. Evaluation of three-

dimensional finite element-based deformable registration of pre-

and intraoperative prostate imaging. Med Phys. 2001;28(12):

2551-2560.

23. Huang Z, Mayr N, Yuh W, et al. Predicting outcomes in cervical

cancer: a kinetic model of tumor regression during radiation ther-

apy. Cancer Res. 2010;70(2):463-470.

24. Stewart J, Lin K, Kelly V, et al. Automated weekly replanning for

intensity-modulated radiotherapy of cervical cancer. Int J Radiat

Oncol Biol Phys. 2010;78(2):350-358.

252 Technology in Cancer Research & Treatment 16(2)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


