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ABSTRACT

A lack of high-throughput techniques for making
titrated, gene-specific changes in expression limits
our understanding of the relationship between gene
expression and cell phenotype. Here, we present a
generalizable approach for quantifying growth rate
as a function of titrated changes in gene expression
level. The approach works by performing CRISPRi
with a series of mutated single guide RNAs (sgR-
NAs) that modulate gene expression. To evaluate
sgRNA mutation strategies, we constructed a li-
brary of 5927 sgRNAs targeting 88 genes in Es-
cherichia coli MG1655 and measured the effects on
growth rate. We found that a compounding muta-
tional strategy, through which mutations are incre-
mentally added to the sgRNA, presented a straight-
forward way to generate a monotonic and gradated
relationship between mutation number and growth
rate effect. We also implemented molecular barcod-
ing to detect and correct for mutations that ‘escape’
the CRISPRi targeting machinery; this strategy un-
masked deleterious growth rate effects obscured by
the standard approach of ignoring escapers. Finally,
we performed controlled environmental variations
and observed that many gene-by-environment inter-
actions go completely undetected at the limit of max-
imum knockdown, but instead manifest at intermedi-
ate expression perturbation strengths. Overall, our
work provides an experimental platform for quanti-
fying the phenotypic response to gene expression
variation.

INTRODUCTION

Gene expression changes provide a critical mechanism by
which cells adapt to environmental challenges, evolve new

metabolic function, and regulate growth rate. The rela-
tionship between gene expression level and cellular growth
rate is complex: it is often nonlinear, sometimes non-
monotonic, and depends on both the environmental context
and genetic background (1–5). Nonetheless, many genome-
scale screens compress this complexity into a single per-
turbation per gene, often at the limit of extreme knock-
down or complete knockout (6–11). This methodological
limitation obscures the expression-dependency of genetic
and environmental interactions. It also reduces the utility
of high-throughput screening data in constructing and test-
ing quantitative models of cell growth rate. Development of
new tools for high-throughput titration of gene expression
and precise quantification of the corresponding effects on
growth rate is essential to study, model, and engineer this
fundamental relationship.

Existing methods for titrating gene expression have pro-
vided many insights but are limited in both throughput and
generality. Chemically inducible promoters, mutated pro-
moter libraries, and alternative ribosomal binding site li-
braries have all been used to gradate gene expression or
downstream protein abundance (2,12–16). However, these
methods require either moving the genes of interest to a
plasmid, or chromosomal insertion of the promoter or RBS
upstream of the gene of interest. This consequently limits
throughput. Moreover, many of these approaches are dif-
ficult to extend to combinations of genes (e.g. to measure
pairwise or higher-order genetic interactions), and not all
are amenable to high-throughput measurements of growth
rate by next generation sequencing.

Interestingly, recent work has shown that modulation of
gene expression can be achieved using CRISPR interfer-
ence (CRISPRi) (17–20). The CRISPRi system uses single
guide RNAs (sgRNAs) and a catalytically dead DNA en-
donuclease (dCas9) to target and transcriptionally repress
specific genes (21,22). Bikard and colleagues showed that
adding a series of mutations to the CRISPRi sgRNA ho-
mology region can titrate the expression of chromosoma-
lly encoded fluorescent proteins, seemingly by tuning the
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rate at which RNA polymerase ‘kicks out’ the bound dCas9
(17,18). In contrast to other approaches for titrating gene
expression, CRISPRi can be used in any model system
that will express the dCas9 and sgRNA constructs. By se-
quencing the sgRNA array––a linear stretch of a few hun-
dred base pairs––we can determine the gene(s) targeted for
knockdown. As a consequence, next generation sequenc-
ing can be used to track the relative frequency (and thus
growth rate) of each sgRNA variant in libraries of 10–104

distinct knockdowns. This approach is sometimes referred
to as CRISPRiSeq (23–25).

In this work, we combined titratable CRISPRi sgR-
NAs with CRISPRiSeq to create a general, high through-
put approach for titrating gene expression and quantify-
ing the effects on Escherichia coli bacterial growth rate.
Through the testing of multiple sgRNA library designs,
we defined a straightforward mutation strategy that pro-
duces near-monotonic titrations of growth rate effect while
maintaining a compact library size. Our method incor-
porates a molecular barcoding approach for detecting
CRISPRi ‘escapers’––mutated cell populations that evade
the CRISPRi machinery. With this approach, we quanti-
fied the growth rate effects of CRISPRi titration curves
in both glucose and glycerol carbon sources under tur-
bidostat growth conditions. We found 37% more gene-by-
environment interactions using CRISPRi titration curves
than with the standard approach of a single (maximal-
strength) knockdown per gene. Taken together, our work
provides a straightforward experimental strategy to quan-
titatively characterize growth rate dependencies on gene
knockdown, and reveals a more complete picture of gene-
by-environment interactions.

MATERIALS AND METHODS

Gene selection for titrated expression perturbations

We selected 88 genes from diverse cellular processes as a
test set for developing and evaluating our approach (Fig-
ure 1A and Supplementary Table S1). Of these genes, 13
were selected from one-carbon folate metabolism and 11
genes were selected from glycolysis. The remaining 64 genes
were selected based on the following criteria: (i) the gene
was required for growth in MOPS minimal media contain-
ing glucose according to (26) (either the knockout cannot
be made, or the knockout does not surpass an optical den-
sity at 600 nm (OD600) of 0.01 over 24 h), (ii) the gene
product had an estimated copy number per cell based on
previous work by Schmidt et al. (27), (iii) the gene was
annotated in the bacterial Clusters of Orthologous Genes
(COGs) Database (28), and (iv) the gene had a chromo-
somal YFP-fusion available (29). Ninety-six E. coli genes
met these criteria. This list was further reduced to 64 genes
by (i) removing any genes that were previously selected
from glycolysis and folate metabolism and (ii) subsampling
from nine diverse COG defined biological process: carbo-
hydrate metabolism and transport, coenzyme metabolism,
amino acids metabolism and transport, DNA replica-
tion and repair, nucleotide metabolism and transport,
translation, cell wall and membrane, cell cycle, and lipid
metabolism.

CRISPRi sgRNA library design

For each of the 88 genes, we attempted to design three par-
ent sgRNAs (referred to as SG1, SG2, and SG3, Figure 1B).
Each parent sgRNA contained a twenty base pair target-
ing region that was 100% homologous to the non-template
strand of the target gene and adjacent to a Protospacer ad-
jacent motif (PAM) site of motif CCN. SG1 and SG2 were
selected to be located within the first 150 bp of the gene and
as close to the translation start site as possible without over-
lapping. SG3 was selected to be at least 200 base pairs from
the translation start site but as close to the 200 base pair
mark as possible. All parent sgRNAs had to meet the fol-
lowing criteria: (i) >45% GC content and <80% GC con-
tent, (ii) no poly-T repeat longer than four, and (iii) low off
target binding potential as determined by BLASTn.

All parent sgRNAs were checked for potential off-target
binding by BLASTn against the E. coli MG1655 genome
(taxid:511145). Parent sgRNAs with more than 75% ho-
mology to another chromosomal location were further an-
alyzed for off target potential. If any of the following cri-
teria were met, the sgRNA was redesigned: (i) the sgRNA
had 100% homology to more than one place in the chromo-
some; (ii) the sgRNA had greater than 90% homology to the
off target binding location and was adjacent to a PAM site;
(iii) the sgRNA had >75% homology but <90% homology
to an off-target binding site, region 1 of the sgRNA (the
eight base pairs immediately proximal to the PAM binding
site and most sensitive to mutation) had no mismatches, and
the off target binding site was adjacent to a PAM site. For
78 of the 88 genes, three viable parent sgRNA could be de-
signed within these constraints and all genes except nadE,
pykF, and pyrH had at least two parent sgRNAs designed.

From this set of parent sgRNAs, 31–66 mutated sgR-
NAs were designed to titrate the expression of each gene.
(Supplementary Table S1). To achieve this, parent sgRNAs
SG1 and SG3 were mutated in three different ways (Fig-
ure 1B). First, we chose single positions to mutate based
on prior findings that mutations closer to the PAM site (in
the ‘seed region’) have severe effects on knockdown strength
and those more distal exhibit titrated effects on knock-
down (17,20). As such, positions −1, −2, −5, −8, and −10
through −20 where all mutated individually. Second, we
used a strategy by Bikard et al. that showed that serially
adding a single mutations at position −20 and proceeding
with single mismatches to position −7 also had gradated
effects on fluorescent protein expression (17,18). These are
called compounding mutations. Lastly, we chose to include
five double mismatches at positions −2/−12, −12/−14,
−15/−17, −11/−18, and −13/−19. Mutations were always
made to the complement base. SG2 was not mutated but
was used as a separate control for CRISPRi knockdown,
under the expectation that SG1 and SG2 should show sim-
ilar growth rate effects. Negative control sgRNAs expected
to have little effect on gene expression were also included
in the library (Supplementary Table S1). These comprise 45
sgRNAs with random 20 bp homology regions.

sgRNA library construction and assembly

All sgRNAs were synthesized by Twist Biosciences as an
oligo pool. Synthesized sgRNA oligos contained a pro-
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moter, homology region, loop, and terminator as described
by Qi et al. (20,21). The oligo pool was amplified using
primerGG F and primerGG R according to the standard
protocol from Twist Biosciences using Kapa DNA poly-
merase (Supplementary Table S2, Thermo, #NC0636151).
Initial denaturation was at 95◦C for 3 min, amplification
denaturation was at 98◦C for 20 s, PCR annealing was at
58◦C for 15 s, elongation was at 72◦C for 15 s, and fi-
nal elongation was at 72◦C for 1 min. Eleven PCR ampli-
fication cycles were performed. The primers added flank-
ing BsaI sites that were used to insert the sgRNA library
into six low copy number expression plasmids. These plas-
mids were modified versions of the pCRISPR plasmid (Ad-
dgene #42875, (30)) constructed by removing the origi-
nal gRNA spacer sequences by restriction digest and re-
placing them with a small DNA sequence containing two
BsaI sites for golden gate cloning. We also added a 6 bp
DNA barcode downstream of the sgRNA on the plasmid,
to allow for internal replicate measurements during the ex-
periment. The 6N barcode sequences were CTTTCA, AT-
CATG, GCATGG, GTATGA, AGTCTA, and CCTAGT.
The complete sgRNA library was inserted into all six ex-
pression vectors by Golden Gate Cloning to yield six inter-
nal replicate populations.

Golden Gate Cloning was performed as described by
Hawkins et al. with a few adjustments (21). Each reac-
tion consisted of 75 ng of expression vector, 6 ng of am-
plified sgRNA library insert, 2 �l T4 10× ligase buffer, 1 �l
T4 ligase (2000 U/�l, NEB, #M0202M), 1 �l BsaI (NEB,
#R0535S), and MB H2O to 20 �l. The Golden Gate reac-
tion was performed for 25 repeated cycles of 37◦C (2 min),
16◦C (3 min) in the 2720 Thermal Cycler (Applied Biosys-
tems). The reaction was completed at 50◦C for 10 min fol-
lowed by 80◦C for 20 min. Negative control reactions had
sgRNA library inserts with BsaI sites that were not com-
patible with complete Golden Gate assembly, and therefore
resulted in linear DNA fragments.

Golden gate reactions were cleaned up using the Zymo
Clean & Concentrate kit (Zymo Research, #D4014), and
1 �l of each reaction was transformed into XL1 Blue elec-
trocompetent cells. Transformations were recovered in SOB
for 1 h at 37◦C shaking 220 rpm. 10 �l of transformant was
diluted 1/10 in SOB and 50 �l was plated on LB 35 �g/ml
Kanamycin plates to estimate efficiency. The remainder of
the transformation was back diluted using LB, Kanamycin
was added to 35 �g/ml, and grown overnight at 37◦C shak-
ing. Total colony forming units for each expression vec-
tor was at least 7.5-fold greater than library size suggesting
good library representation. Plasmids from overnight cul-
tures were purified using a Gene-Jet kit (Thermo, K0503)
and different barcoded expression vectors were combined in
equimolar ratio. The assembled library was transformed (as
above) into electrocompetent MG1655 E. coli with dCas9 in
the HK022 attB site (a gift from the Bikard lab) hence re-
ferred to as gAM-513. Total CFU was 36.8 million which is
6000× above total library size.

Pooled library growth rate assay and next generation se-
quencing

After transformation, the gAM-513 overnight culture was
washed 2 times with 1 ml M9 minimal media pH 6.5, 0.4%

glucose, and 35 �g/ml Kanamycin (hence referred to as M9-
glucose). gAM-513 was resuspended into 1 ml M9-glucose,
back diluted 1:50 into 8 ml M9-glucose, and grown at 37◦C
shaking. After 12 h of outgrowth and adaptation to M9
media, the culture was back diluted to OD600 = 0.05 and
grown in the turbidostat for an adaptation period of 8 h
(Figure 1C). Our turbidostat was constructed in house fol-
lowing the design of Toprak et al. (31,32). The turbidostat
clamped optical density to OD600 = 0.15, with tempera-
ture set to 37◦C throughout the experiment. After turbido-
stat adaptation, 50 ng/ml anhydrotetracycline (ATc) was
added to induce CRISPRi expression. After 3 h of ATc in-
duction, a 1 mL culture time point was taken, spun down
(3000 × g, 5 min), decanted, and the pellet was stored at
−20◦C for downstream sequencing (time point 0 hours).
Time points were taken every two hours for 14 additional
hours (with the exception of the 8 hour time point, which
was omitted), and processed and stored in a similar man-
ner (Figure 1C). The experiment in glycerol was conducted
identically, except that 0.4% glucose was replaced with 0.2%
glycerol as the carbon source in the M9 minimal media.

For each time point, the sgRNA containing region was
amplified by PCR and deep sequenced (Figure 1D). DNA
was extracted from time points by addition of 100 �l MB
H2O, lysis at 95◦C for 3 min, centrifugation at 20 000 × g
to remove lysate, and decanting into a new eppendorf tube.
sgRNA regions where amplified using custom TruSeq F
and TruSeq R primers (Supplementary Table S2). Amplifi-
cation was performed using Q5 high fidelity hot-start poly-
merase (NEB # M0493L) in the following master mix op-
timized for specific amplification of target fragment: 5 �l
10× Q5 buffer, 5 �l 50% glycerol, 0.5 �l 10 mM dNTPs,
1.25 �l 10 �M F primer, 1.25 �l 10 �M R primer, 10.5 �l
MB H2O, 1 �l template, and 0.5 �l Q5 polymerase (Sup-
plementary Table S2). The PCR was run for 7 cycles under
standard conditions with annealing at 61◦C. TruSeq PCR
reactions were then amplified using i5/i7 primers to pro-
vide unique sequencing indices to each time point. The i5/i7
reaction was performed under identical conditions for 20
cycles. Amplified DNA from i5/i7 reaction was quantified
using the picogreen assay (Thermo #P7589) and then time
points were mixed in equal ratio. The mixed time points
were gel purified in a 1% agarose TAE gel with EtBr as the
stain, and the DNA was purified using the Zymo Gel DNA
Recovery Kit (Zymo, #D4008). DNA quality was deter-
mined by 260/230 and 260/280 nanodrop ratios and quan-
tified using the Qubit 3 (Thermo). Quantified DNA was sent
to GeneWiz for Illumina HiSeq Sequencing, using a 300 cy-
cle paired end run.

Fitting relative growth rates

Paired end reads contained in fastq files were first merged
using USEARCH v11 (33,34). Then, custom Python2.7
analysis code was used to process the resulting fastq
files (available on github: https://github.com/reynoldsk/
titratableCRISPRi). For every time point, the presence of
each unique sgRNA was counted (Figure 1E, Supplemen-
tary Tables S3 and S4). In order to be counted, the sgRNA
binding region sequence had to: (i) exactly match a sequence
in the designed library and (ii) each base pair in the sequence
had to have a Q-score > 30 (P-value < 0.001). In addi-
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tional to being counted by sgRNA identity, reads were fur-
ther subdivided by barcode into six replicate populations.
Here, and throughout the manuscript, we refer to these six
replicate populations as internal replicates.

Allele frequency was calculated by normalizing sgRNA
(nsg) counts by negative control (non-targeting sgRNA)
counts (nnc) at each time point (t) and at the first time
point (t = 0). The negC sgRNA used for normalization
was selected from the center of the scrambled negC growth
sgRNA distribution. This was negC rand 42.

frequency ( f ) = log2

(
nsg

nnc

)
t
− log2

(
nsg

nnc

)
t=0

Relative growth rates were calculated by fitting a linear re-
gression between the log frequencies for each sgRNA across
time points 0, 2, 4, 6, 10, 12, and 14 (Supplementary Tables
S5 and S6). In this mathematical definition, negC rand 42
(wildtype) has a growth rate of zero. Before fitting, the time
axis was rescaled to the number of generations by multi-
plying time (in hours) by the growth rate for the mixed
population culture in the turbidostat. This was particularly
important to enable comparisons between the glucose and
glycerol environmental conditions. The mixed population
growth rate under turbidostat conditions in glucose was
0.94 doublings h−1, in glycerol the growth rate was 0.53
doublings h−1. Importantly, the growth rate calculation was
across all time points unless the total NGS counts for a
given point dropped below 10, in which case that point was
added to the fit, but no additional points were used. To en-
sure high data quality, fits with an R2 < 0.70 were removed
from the analysis. However, R2 decreases significantly near
slope = 0, so fits with a growth rate effect between −0.05
and 0.05 were not R2 filtered. Next, the q-test with a 95%
confidence interval (CI) was used to filter out single internal
replicates that deviated in growth rate from the remaining
internal replicates. Lastly, sgRNAs without at least three in-
ternal replicate measurements after filtering were removed.
The remaining replicates were averaged and the standard
deviation and standard error of the mean were calculated
using standard procedures.

To examine the time dependency of CRISPRi knock-
down (Figure 2), we fit relative growth rates between two
time points (t = 0 and one later time point) or all the time
points. For this analysis, we did not impose a R2 or repli-
cate filter, and the sequencing depth filter was set to greater
than or equal to 10 sequencing counts. To assess the im-
pact of escaper-correction on growth rate (in Figure 2E),
we also calculated relative growth rates for all genes after
pooling the counts across all six barcodes (i.e. across all six
internal replicates), and considering only t = 0 and 14 h.
The goal of this analysis was to mimic more standard anal-
yses of relative enrichment. When fitting these growth rates,
we did not impose a sequencing depth filter on the mini-
mum number of counts per sgRNA. Relative growth rate ef-
fects in Supplementary Figure S1 were measured in a differ-
ent CRISPRiSeq growth rate assay over a more limited set
of sgRNAs and using three different replicate populations
in different vials. These were incorporated into expression
vectors without internal replicate barcode additions. These
growth rates were used for consistency with qPCR measure-

ments, which were also performed using the not barcoded
plasmid.

After fitting relative growth rates, we rescaled them to a
more intuitive scale, so that 0 indicates the maximum fit-
ness defect (no growth) and 1 indicates wildtype-like (negC)
sgRNA growth (Figure 3). To do this we selected a par-
ent sgRNA that had an extremely severe effect on growth
rate that also had six replicate measurements as an empir-
ically observed growth rate ‘floor’. This was the gyrB SG2
parent sgRNA, which had a growth rate of −1.23 in M9-
glucose. We added the absolute value of this growth rate to
all variants and then divided by the absolute value of this
growth rate. This rescaled negC sgRNA 42 to one and the
gyrB SG2 parent sgRNA to zero.

Calculating the number of resolvable growth effects

To test different sgRNA mutation strategies, we calculated
the number of statistically resolvable effects on growth per
gene. We restricted this analysis to genes with both SG1
and SG3 titrating sgRNAs as well as at least one parent
sgRNA that had a normalized growth rate effect of <0.75.
The number of resolvable growth rate effects was calcu-
lated using Welch’s t-test and a sequential goodness of fit
(SGoF) multiple hypothesis testing correction (35). First,
Welch’s t-tests were performed for all possible pairs of sgR-
NAs targeting a given gene with an alpha (P-value) cutoff
of 0.05. Significance values for all genes were pooled, and
the SGoF multiple hypothesis testing correction was ap-
plied to control for family-wise error rate (metatest alpha =
0.05). Following SGoF, sgRNAs were separated by target
gene and rank-ordered by their effect on growth rate. We
determined the maximum number of resolvable effects on
growth within each gene by finding the largest list of sgR-
NAs with mutually distinguishable effects on growth rate.
Dynamic range and variance were maximized when there
were multiple combinations of sgRNAs with the same num-
ber of resolvable effects. This analysis was performed sep-
arately for all compounding mutation sgRNAs, all single
mutation sgRNAs, and all sgRNAs. We also used this strat-
egy to calculate number of resolvable effects in the compact
library (Figure 4D).

Quantifying gene-by-environment growth effects

Growth rate fitting and filtering was performed identically
for measurements in glycerol and glucose conditions ex-
cept only time points 0, 2, 6, 10, 14 were sequenced for
the glycerol condition. We then used logistic fit parame-
ters to compare effects between glycerol and glucose car-
bon sources. Focusing on the SG1 compounding mutation
series, we fit a 4-parameter logistic function relating the
number of sgRNA mutations to growth rate for each of
the internal replicates, given a particular gene/environment
combination. This resulted in parameters for the mini-
mum (min) and maximum (max) growth rates, a Hill co-
efficient (Hill), and number of mutations at which the
growth rate is half maximal (IG-50) (Figure 5, Supplemen-
tary Figures S8–S10). Fits were performed using the SciPy
optimize.least squares function with following constraints.
First, the sgRNA with the fewest mutations (yet a still-
measurable growth rate) was required to have a normalized
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relative growth rate of less than or equal to 0.75 in at least
one of the two environments. Second, each replicate had to
have at least eight sgRNAs with measured growth rate ef-
fects to be fit. Third, knockdown of a few genes had no
effect on growth in one environment; therefore, the IG-50
and Hill coefficients could not be fit. To identify these, we
averaged the growth effects of the three sgRNAs with the
fewest number of mutations (called meanL) and also aver-
aged effects of the three the sgRNAs with the most muta-
tions (called meanH). If the differences between these two
averages was less than 0.05, we reported the min param-
eter as meanL, the max parameter as meanH, and both
the Hill coefficient and IG-50 were left empty. Fourth, the
least square algorithm requires a starting guess for each pa-
rameter. For these we guessed 6, 1, meanL, and meanH for
IG-50, Hill, min, and max parameters respectively. Finally,
we bounded the min, max and IG-50 parameters. Min and
Max had to be between 0 and 1.15 and IG-50 had to be
between 0 and 14. Bounds for the Hill coefficient were not
justified by measurement parameters. For every gene, the
median value of each fit parameter was used for plotting
logistic curves in figures.

Calculating gene-by-environment interactions

Gene-by-environment interactions were determined by
comparing the difference in logistic fit parameters for
each gene between environmental conditions. For a given
gene/environment combination, we obtained up to six esti-
mates for each logistic fit parameter (IG-50, Hill, min, and
max), because we fit each internal replicate (plasmid bar-
code) separately. Welch’s t-test was then used to evaluate
the likelihood that a given parameter has the same mean
in both environments; we took P-value < 0.05 as an initial
threshold for significance. For genes which showed a sig-
moidal titration curve in one condition and no titration in
the other (e.g. pfkA), we assigned P-values of zero to both
the IG50 and Hill coefficient parameters, following the logic
that these are clearly significant differences. Following P-
value calculation, multiple hypothesis testing for each pa-
rameter was corrected using SGoF (metatest alpha = 0.05)
(35).

Quantifying changes in gene expression with qPCR

CRISPRi effects on gene expression were quantified using
qPCR. For these experiments, sgRNAs were expressed from
plasmids that did not contain the replicate barcoding region
or next-generation sequencing primer sites used in growth
rate experiments. CRISPRi stains were grown in M9 mini-
mal media and dCas9 was induced with 50 ng/ml ATc for
3–6 h before qPCR measurements. For each gene, dCas9
induction time was the same across all sgRNAs. After in-
duction time, cells were immediately lysed with PureZOL
reagent (BioRad, Cat#7326890) and RNA was extracted
following the standard BioRad procedure with glycogen as
an RNA carrier. qPCR was performed using the Luna Uni-
versal Syber reaction kit (NEB) in the a CFX384 Real-Time
System. Every reaction was performed in technical tripli-
cate. As done previously, the hcaT gene was used as a nor-
malization control (36). Changes in mRNA concentration

were calculated using the ��Ct method, see Supplemen-
tary Table S2 for primer sequences.

RESULTS

Titratable sgRNA library design and construction

Our overall goal was to titrate the knockdown of specific
genes by using mutated sgRNAs to produce small (but ex-
perimentally resolvable) stepwise changes in gene expres-
sion and growth rate. Bikard et al. previously showed that
fluorescent protein abundance could be titrated by a series
of sgRNAs with compounding mutations: complement mu-
tations sequentially added to an sgRNA, beginning distal to
the protospacer adjacent motif (PAM, Figure 1B). Taking
this as a starting point, we constructed four series of com-
pounding mutation sgRNAs targeting the essential genes
dapA dapB, serC, and purC. Then, for all 44 of these sgR-
NAs, we measured the resulting CRISPRi effect on both
growth rate and transcript abundance (by qPCR, Supple-
mentary Figure S1). For dapB, the mutations produced
titrated effects on both expression level and growth rate as
desired (Supplementary Figure S1B and F). However, for
the remaining three genes, the relationship was more step-
like: at a particular number of mutations in the sgRNA
(ranging between 10 and 12) transcript abundance dramat-
ically changed from near wildtype to low abundance (10–
20% of wildtype levels). Thus, we sought to examine how
sgRNA mutations and location might be combined to sys-
tematically generate sgRNA series with titrated effects on
both expression and growth.

We selected 88 genes important to E. coli growth as tar-
gets for testing mutational strategies and developing our
approach (Figure 1A). Of these, 76 were previously re-
ported essential in minimal media based on extremely lim-
ited growth or a complete inability to construct the knock-
out strain (26). The remaining 12 genes were selected to
complete the genes encoding two central metabolic path-
ways: glycolysis and one-carbon folate metabolism. Overall,
the selected genes represent 10 diverse cellular processes, are
dispersed across the chromosome, and sample four orders
of magnitude in protein copy number per cell (Figure 1A
and Supplementary Figure S2) (27,28).

For each gene, we then constructed a series of 34–69
sgRNAs (Figure 1B). We began with three unique parent
sgRNA constructs. Parent sgRNAs have no mutations to
the sgRNA homology region and target the non-template
strand. Parent SG1 and SG2 were designed to target the
gene sequence as close as possible to the start codon with-
out binding to overlapping regions. SG2 was intended to
control for off-target binding effects in SG1, by identifying
cases where the effects of SG1 and SG2 greatly diverge. SG3
was designed to bind at least 200 base pairs downstream of
the start codon; we estimated these sgRNAs would yield
intermediate knockdown effects because the efficiency of
CRISPRi repression decreases with increasing distance to
the start codon of the gene (17,19,20). Each sgRNA ho-
mology region was checked for potential off-target binding
sites using a BLASTn search against the MG1655 E. coli
genome. In ten cases, SG1, SG2 or SG3 could not be con-
structed because all possible sgRNAs targeting that region
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Figure 1. An overview of the titratable CRISPRi experiment. (A) Target genes for CRISPRi were selected from nine different cellular processes as defined
by Clusters of Orthologous Groups functional annotations (28). (B) Three parent sgRNAs were designed per gene (labeled SG1, SG2, SG3). SG1 and
SG2 were designed to be as close as possible to the translation start site without targeting overlapping sequences. SG3 was designed to be at least 200 base
pairs downstream. SG1 and SG3 were then mutated according to three different mutational strategies: compounding, single or double mutations. Red
indicates selected mutation sites. All mutations were made to the complementary base pair. (C) The CRISPRiSeq growth rate assay. The CRISPRi sgRNA
plasmid library was transformed into MG1655 E. coli with a chromosomally-encoded, anhydrotetracycline (ATc) inducible dCas9. After transformation
and overnight growth, cells were washed into minimal media and adapted to turbidostat conditions. ATc was added to induce CRISPRi, and culture time
points were collected every two hours for next-generation sequencing. (D) To measure sgRNA frequencies over time, PCR was used to amplify the sgRNA
containing region of the expression vector and add adaptors for NGS. This region includes a six nucleotide barcode that is used to track internal replicates
and detect constructs with anomalous growth. (E) Frequency was calculated relative to a non-targeting (negC) sgRNA and time point zero hours. We
performed a linear fit for the change in log(relative frequency) over time for each sgRNA relative to the negC sgRNA. The slope of this fit was relative
growth rate. Relative growth rates were rescaled so that negC (wildtype-like growth) is 1 and no growth is 0 (methods).

of the gene had potential off target binding sites; all three
sgRNAs were identified for 78 of the 88 genes.

Both SG1 and SG3 were then further modified to gener-
ate a library of single, double, and compounding sgRNA
mutant expression constructs (Figure 1B, Supplementary
Table S1). Fourteen compounding sgRNAs were designed
as in Bikard and colleagues by the sequential addition of
complement mutations starting distal to the PAM (17,18).
For the single mutations, eight positions from −20 to −13 of
the sgRNA were selected following previous evidence that
mutations at these sites might yield a range of effects on
expression (and thus growth) (17,18,20). Additionally, we
mutated positions −12, −11, −10, −8, −5, −2, and −1 to
sample more severe disruptions to CRISPRi activity. Dou-
ble mutations were similarly weighted towards mutations in
the −20 to −13 range. The selected double mutations were

at positions −19/−13, −18/−11, −17/−15, −14/−12, and
−12/−2. All mutations were made to the complement DNA
nucleotide to limit the potential for off-target binding. Ad-
ditionally, 45 randomly scrambled sgRNA homology re-
gions were included as non-targeting controls. Following li-
brary assembly, deep sequencing showed good coverage for
nearly all 5927 constructs (Supplementary Figure S3 and
methods).

Growth rate measurements by deep sequencing with error-
correcting barcodes

Following the thinking that reduced expression of essen-
tial genes should decrease growth rate, we measured the
effect of CRISPRi knockdown on growth as a proxy for
changes in expression. While this strategy does not inform
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Figure 2. Time dependency of CRISPRi growth rate effects and escaper correction. (A) Schematic of the time dependent growth rate calculations. Time
dependent effects of CRISPRi knockdown were calculated by linearly fitting the relationship between time point zero and every other time point indi-
vidually. Colors are used to highlight the different fits used. (B) Heatmap of time dependent growth rate calculations calculated as described in A. Time
dependent growth effects were clustered hierarchically along the time axis. (C) Growth effects over time for example genes from different clusters. The
black time point is a linear fit using all the time points. The blue points indicate the growth at a given time point using only T0 and that time point to
calculate growth rate. Error bars are SEM calculated from internal replicates. (D) Linear growth rate fits across all time points and internal replicates for
the genes in (C). The slope of the line is relative growth rate. Different colored points relate to each of the six different internal replicate measurements. (E)
Correlation plot comparing relative growth rates estimated by either using all time points and internal barcodes for escaper correction (x-axis), or a single
time point (t = 14 h) and no internal barcodes. (F) Comparison of SEM across internal replicates with and without escaper correction.

on gene expression directly, it has two advantages. First,
growth rates can be measured with a throughput and reso-
lution that is more difficult to establish for gene expression
measurements. Secondly, given that our ultimate goal is to
study growth-expression relationships, we wish to bias our
sgRNA designs towards those producing measurable (e.g.
non-lethal) but varied growth rate effects. While we expect
changes in growth rate to imply changes in expression level,
the reverse need not be true.

To measure the growth rate effect for every sgRNA, we
used a modified version of CRISPRiSeq (23–25). The gen-
eral strategy behind CRISPRiSeq is to transform a pooled
sgRNA library into a selection strain (here E. coli MG1655
containing a chromosomally-encoded dCas9), perform se-
lection, and use next generation sequencing to estimate the
frequency of each sgRNA construct in the population, both
before and after selection (Figure 1C–E). We modified this
general method to include three technical improvements.
First, rather than growing transformed cell populations as
a bulk culture, we grew the cells in a turbidostat. This de-
vice maintains the culture at a fixed optical density (OD) by
sensing the OD and adjusting media dilution rate accord-

ingly. This ensures that the culture remains in exponential
phase throughout the experiment and allows for controlled
environmental variation.

Secondly, rather than sequencing a single post-selection
time point, we collected samples every 2 h over the course
of 17 h, yielding a trajectory of relative allele frequency over
time (Figure 1C, Supplementary Tables S3 and S4). Given
the dynamics of dCas9 induction, mRNA degradation, pro-
tein dilution, and protein degradation, we reasoned that the
growth rate effects of knockdown likely exhibit time de-
pendence. To examine this, we fit relative growth rates be-
tween time point zero and every other time point for all
SG1 parent sgRNAs (Figure 2A). Our rationale was that
this would mimic the common practice of sequencing only
a single post-selection time point, and provide a snapshot
of what our experiment would look like at alternative end-
points. These were compared to the growth rate fit across
all collected time points. Relative growth rates near zero in-
dicate sgRNAs with an effect similar to the non-targeting
control, while negative growth rates indicate deleterious ef-
fects on growth rate. We observed variation in the inferred
growth rates across early time points for some, but not all,
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genes (Figure 2B). For instance, murl knockdown increased
growth rate at early time points then decreased growth rate
at later time points. In contrast, knockdown effects of aroE
were nearly constant throughout the experiment (Figure 2C
and D). After time point 10 hours, the measured growth
rate stabilized for 87% of the 71 genes for which growth
rate could be calculated at time point 10, 12, and 14 hours
(Figure 2B–D). Thus, in the remaining analysis, we fit a sin-
gle relative growth rate for each sgRNA as the slope over
all seven time points (Supplementary Tables S5 and S6).
We rationalized that this would help correct for any ran-
dom fluctuations between time points and would reflect the
stabilized growth rate attained at later times. However, we
observed a few responses in which growth rate initially de-
creased (as expected for essential genes) then later increased
(e.g. nrdA, Figure 2C and D). We suspected that such tra-
jectories might reflect so-called ‘escapers’: loss-of-function
mutations in either the sgRNA or dCas9 that reduce gene
knockdown.

This brings us to the third methodological improve-
ment of our approach. To facilitate detection of such es-
caper or suppressor mutants, we included an additional
DNA barcode for error detection and correction during li-
brary cloning (Figure 1D). Specifically, we constructed the
sgRNA library six times, in six plasmid backbones, each of
which contains a unique DNA barcode. We refer to these
six barcoded plasmids as internal replicates. By analyzing
growth rate across all six internal replicates, we can detect
and remove replicate constructs with anomalous growth.
For example, in the growth rate trajectories for nrdA, we
observed that one of the six barcodes (indicated by the
cyan replicate) exhibits a relative growth rate similar to the
non-targeting control (Figure 2D). Replicates like this were
detected and removed during data processing by filtering
on growth rate fit quality (R2), and using a q-test, pro-
ducing escaper-corrected growth rates (Supplementary Fig-
ure S4A–C, Materials and Methods). In total, this removes
∼1% of the ∼36 000 replicate measurements.

Many sequencing-based CRISPRi experiments ignore es-
capers (under the assumption that they are rare and or neg-
ligibly impact population growth rates), and take only a sin-
gle time point. While this requires less sequencing depth,
and simplifies experimental design, we wondered how it
might impact the estimated growth rates. To investigate this,
we compared relative growth rates estimated from our se-
quencing data by either: (i) using escaper correction and
including all seven time points or (ii) not applying escaper
correction and considering only a single time point (t = 14
h). In the second case, growth rates were either the same
or higher, indicating that in some cases escapers can ob-
scure growth defects associated with gene knockdown (Fig-
ure 2E and Supplementary Figure S4B). Growth rate over-
estimation due to inferred escapers was especially severe for
the slowest growing mutations. Overall, we identified 301
CRISPRi knockdowns (5% of the sgRNAs) wherein growth
was significantly higher in the absence of escaper correction.
Indeed, for one data point (SG3 targeting serS, mutation
at −11), we observed a greater than 9-fold increase in the
estimated growth rate when escapers were ignored. Remov-
ing escapers also improves the overall measurement error, as
expected (Figure 2F). This indicates that both escaper cor-

rection and multiple time points are important to ensuring
accurate relative growth rate measurements.

After removal of poorly fit relative growth rates (Sup-
plementary Figure S4C and D), we observed that inter-
nal replicates were highly correlated (R2 = 0.8). Following
escaper correction, the median measurement error across
replicates was 9.7% (Supplementary Figure S5). Consis-
tent with expectation, the growth rate effects for the SG1
and SG2 parent guides––both located near the start codon
of the gene––were highly correlated, suggesting that off-
target effects for particular sgRNAs do not play an outsized
role (Supplementary Figure S5F). We also confirmed that
the growth rate measurements inferred by sequencing of a
mixed population were well-correlated to those measured
by optical density over time in a plate reader for a sample of
28 sgRNAs (Supplementary Figure S5H). Taken together,
these findings indicate that our CRISPRiSeq approach is
yielding accurate, precise growth rate measurements with
excellent throughput.

The relationship between sgRNA location, sgRNA muta-
tions, and the growth rate effect of gene knockdown

Next we wished to examine growth rate effects across the en-
tire library. To facilitate this, we normalized all growth rates
to a scale from zero (lethality) to one (wild-type like growth,
methods) and plotted the results as a heatmap (Figure 3).
We expected that parent sgRNAs (SG1, SG2, and SG3)
targeting essential genes should result in large, measurable
growth rate defects upon dCas9 induction––provided that
transcription is effectively repressed. Consistent with this,
we observed that the SG1 parent guides had an average
normalized growth rate of 0.62 upon knockdown (Supple-
mentary Figure S6A). As anticipated, SG3 parent guides
were associated with more moderate effects on growth than
SG1 parent guides, but still displayed an average normal-
ized growth rate of 0.7 (Supplementary Figures S5G and
S6B). The exception to the overall pattern of deleterious
growth rate effects were 18 genes for which none of the par-
ent sgRNAs decreased growth rate below 0.75. Twelve of
these were previously reported essential in MOPS minimal
media (ftsK, nadE, ribB, ispE, ispF, ispG, ispA, tyrA, mukF,
tadA, pyrH, and topA) (26). For five of these genes (ribB,
ispA, mukF, tadA, and topA), we verified that both the SG1
and SG3 parent sgRNAs yielded modest-to-no growth rate
defect by independent measurements in a plate reader, and
confirmed that both parent guides resulted in an expression
knockdown by qPCR (Supplementary Figure S7). Other
groups have also noted a range of growth rate defects as-
sociated with CRISPRi knockdown of essential genes (25).
Potential (and non-exclusive) explanations for this include:
(i) near-complete knockdown (approaching gene deletion)
is necessary to produce a growth rate defect, (ii) the gene
is required for exiting stationary phase but is not essential
for exponential growth, (iii) the knockdown has polar ef-
fects and represses multiple downstream genes (i.e. within
an operon), leading to a growth rescue or (iv) the original re-
port of essentiality was somehow an experimental artifact.
Notwithstanding, we observed that at least one of the par-
ent sgRNAs yielded robust growth rate defects for 70 of the
88 genes in our test set. From this, we concluded that the
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Figure 3. Heatmap of normalized growth rates for all sgRNAs in this study. Data was renormalized so that wildtype-like growth is 1 and no growth is 0
(methods). sgRNA design strategies are indicated at the top of the figure. Each box indicates a nucleotide in the sgRNA homology region. White boxes
indicate a mutation to the complement nucleotide. Black boxes indicate that position is not mutated. Gene names are listed on the y-axis. Black gene
names are essential based on previous reporting from the Keio collection, blue are nonessential. Grey squares indicate no data was collected for that
specific sgRNA either because it could not be designed, it was not correctly synthesized, or data did not pass quality filters (Supplementary Figure S3).
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majority of designed parent sgRNAs were working to ef-
fectively repress transcription.

Next, we examined the relationship between mutations
to the sgRNA homology region and the growth rate effect
of CRISPRi knockdown. While the mean growth rate ef-
fect for all sgRNAs in the library was deleterious (mean
= 0.77), we observed a broad distribution of effect size
(standard deviation = 0.22. Supplementary Figure S6C),
indicating that our mutational approach was working to
create sgRNAs with varied and subtle effects. We found
that the compounding mutation sgRNA series exhibited a
more intuitive relationship between mismatches and growth
rates in comparison to the single mutation sgRNA series
(Figures 3, 4A and B). The normalized growth rates for
the compounding series varied in a near-monotonic fash-
ion as mutations were added with increasing proximity to
the PAM. In contrast, single and double mutations to the
sgRNA showed less straightforward relationships to growth
rate. For example, single mutations at position −1 and
−2––mutations in the seed region that were expected to
be extremely deleterious to CRISPRi activity––displayed a
wide range of gene-dependent effects on normalized growth
rate. Consistent with other reports, this suggests that many
factors––including mutation location, mutation identity,
sgRNA position, and even sequence context––all play a
role in shaping knockdown effect (18,37,38). However, the
compounding sgRNAs generally had a more intuitive and
monotonic relationship with growth rate. Based on this, we
sought to devise a simple and general set of empirical rules
for generating libraries of titrating sgRNAs.

A compact library design for titrating growth rate and expres-
sion

Originally, we designed 69 sgRNAs per gene to titrate gene
expression. We wondered if a similar degree of titration
could be achieved using significantly fewer compounding
mutation sgRNAs. A compact library like this would be less
expensive to synthesize, reduce sequencing depth require-
ments, and improve combinatorial scaling for future exper-
iments targeting pairs (or more) of genes. So, given our data,
how might we subsample the SG1 and SG3 guides to ac-
complish this? To define such a strategy, we considered 69
genes where at least one parent sgRNA (SG1, SG2 or SG3)
yielded a normalized growth rate of 0.75 or less, with the
rationale that these genes show strong growth defects upon
knockdown. We then calculated the number of statistically
resolvable growth rate effects per gene associated with each
mutation strategy (either compounding or single mutations,
Figure 4C). Across all sgRNAs (single, double, and com-
pounding mutations of SG1, SG2, and SG3), we observe
6–13 resolvable steps per gene, with an average of 10 (Fig-
ure 4D). Considering single mutations only (32 sgRNAs),
we observe 3–11 steps; similarly for the compounding muta-
tion series (30 sgRNAs), we observe 4–10 steps (Figure 4D).
Thus, the compounding mutation series capture a large pro-
portion of the variation in growth rate with less than half of
the total sgRNAs.

Given these findings, and considering the more intuitive
relationship between compounding mutations and growth
rate, we decided to focus on the compounding sgRNA se-

ries for compact library design. To select sgRNA mutations,
we then examined the distribution of growth rate effects
across all 69 genes for the compounding mutations at each
position (Supplementary Figure S6D). Compounding mis-
matches at positions 4–10 aligned with the largest variation
in growth rates. Accordingly, a library based on SG1 and
SG3 that incorporates these seven mismatches plus the on-
target guides (16 sgRNAs per gene) efficiently captures re-
solvable changes in growth rate in our data set (Figure 4E
and F). In this compact library we see an average of five
resolvable steps over 16 sgRNAs, indicating that ∼31% of
the sgRNA library yields resolvable effects. For compari-
son, we observed an average of seven resolvable steps over
the complete set of 30 compounding sgRNAs (∼23%), and
an average of 10 resolvable steps over all 69 single, double,
and compounding mutation sgRNAs (∼14%). Thus, sub-
sampling specific compounding mutations at positions 4–
10 provides a simple strategy for creating compact titrated
sgRNA libraries. Extending this approach genome wide in
E. coli would require ∼105 sgRNAs; a scale readily accessi-
ble both by library construction and CRISPRiSeq technol-
ogy. This approach now enables genome wide studies of the
relationship between gene expression and growth rate.

Mapping gene-by-environment interactions as a function of
expression level

The environment plays a key role in modulating the
relationship between gene expression and growth rate.
Quantifying this effect is critical to understand how cells
adapt to environmental stress, and can be used to dis-
cover and assign protein function (6,11). Because our
experiments were performed in a multiplexed turbido-
stat, it was relatively straightforward to introduce well
controlled environmental perturbations. We chose carbon
source variation––changing between 0.4% glucose and 0.2%
glycerol in M9 minimal media––as a well-characterized en-
vironmental perturbation for assessing the ability of titrated
CRISPRiSeq to detect gene-by-environment interactions.

We repeated the CRISPRiSeq experiment with the com-
plete library of sgRNAs under glycerol conditions at a
subset of time points, and compared the resulting rela-
tive growth rates to those measured in glucose. To account
for the overall slower growth rate in glycerol, we used the
growth rate measured for the mixed population in the tur-
bidostat (0.5 doublings h−1 in glycerol, 0.94 doublings h−1

in glucose) to rescale the time axis to units of generations
(methods). Overall the relative growth rate effects were well
correlated after this rescaling (R2 = 0.70) (Figure 5A). Con-
sistent with known biology, we observed that knockdown of
glycolytic genes which do not participate in gluconeogene-
sis (pfkA and fbaA) had severe growth effects in glucose but
not glycerol (Figure 5B and Supplementary Figure S8). In
addition, we observed relatively minor variations in growth
effect between carbon sources for nine other enzymes (pgi,
tpiA, gapA, pgk, gpmA, gpmM, eno, pykA, and pykF) that
participate in both glycolysis and gluconeogenesis (Figure
5A). We note that the pyruvate kinase genes, pykA and
pykF, play an important role in pyruvate production in
both carbon sources, consistent with our observations, even
though they are often considered as glycolysis genes (39,40).
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Figure 4. Design of a compact sgRNA library. (A) Relationship between the number of compounding mutations and normalized relative growth rate for
three representative genes. Cartoons along the x-axis indicate the location of mutations. (B) Relationship between single mutations and normalized relative
growth rate for the three genes shown in (A). (C) Example of statistically resolvable growth rate effects calculated over all sgRNAs targeting folA (the gene
encoding DHFR). Statistically resolvable growth effects were calculated by rank ordering sgRNAs by mean growth rate effect and using t-tests with multiple
hypothesis testing correction to identify significant steps (methods). (D) Histogram of the number of statistically resolvable normalized growth rates for
single, compounding, and all designed sgRNAs. Cyan indicates single mutations, orange are compounding mutations, and purple are all mutations. (E)
Histogram of the number of resolvable steps per gene when restricting the sgRNA library to 16 sgRNAs, comprising the on-target SG1 and SG3 sgRNAs
plus mutations of these at positions 4–10. On average, genes showed five resolvable growth effects for this compact library. (F) Dot plot of resolvable steps
for individual genes from the 16 sgRNA compact library (as in E). The x-axis contains the resolvable growth effects per gene. The y-axis displays genes
rank ordered by their corresponding minimum normalized growth effect. Alternating cyan and black are only used to help the reader visualize the data.
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Figure 5. Comparison of sgRNA growth rate effects under glucose and glycerol carbon sources. (A) Correlation between glucose and glycerol normalized
growth rates. Purple corresponds to fbaA and pfkA, two enzymes that are expected to have strong effects on growth rate in glucose but not glycerol. Teal
corresponds to the remaining nine genes in glycolysis that are not expected to have differential effects. Black corresponds to all other non-glycolysis genes
in our dataset. (B) Example fit of the 4-parameter logistic equation using phosphofructokinase isozyme 1 (pfkA). Blue points and associated line are from
glycerol. Black points and line are from glucose. Fit parameters are medians from fitting all six internal replicates individually. Min, max, IG-50, and hill
parameters are marked for reference. (C) 4-parameter logistic fit error (cost function) from SciPy Optimize fitting algorithm for all logistic fits and internal
replicates. Error corresponds with size of residuals. At least 8 points per replicate were required to fit logistic parameters. Logistic fits were made in at least
one environment for 63/88 genes. (D) Number of logistic parameters showing a significant difference between glucose and glycerol conditions per gene.
(E) Venn diagram of gene-by-environment interactions identified using the min parameter (blue), or any of the other parameters (green). (F) 4-parameter
logistic fits for the holB gene in glucose (black) vs. glycerol (blue). The holB gene has significant differences in the IG-50 and max parameters.

From these results, we concluded that CRISPRi knock-
downs yielded comparable effects on gene expression in
both environments, and that changes in growth rate between
environments reflect gene-by-environment interactions.

While many high-throughput studies of gene-by-
environment interactions focus on the growth rate effect
of a single gene knockout or severe knockdown, titratable
CRISPRi yields multiple measurements of growth rate
under both environments. We thought that such titration
curves might provide additional information beyond
the limiting case of gene deletion, potentially exposing
other types of interactions. To examine this, we focused
on the compounding mutational series of SG1. We fit
a 4-parameter logistic function describing the relation-
ship between the number of compounding mutations
and relative growth rate (Figure 5B). This fitting was
performed for individual replicate measurements of 63
genes; these genes met the criteria that: (i) the sgRNA
with the fewest mismatches showed a growth rate of less

than 0.75 in at least one of the two environments and
(ii) there were at least three replicates with 8 growth rate
measurements (or more) per gene in both environments
(methods). The resulting cost function indicated that the
logistic fits provided a reasonable description of the data
(Figure 5C). To find new gene-by-environment interactions
that could not be identified using a single knockdown or
knockout per gene, we looked for genes with no statis-
tically significant difference in the minimal growth rate
(‘min’ parameter), but significant differences in the IG-50,
Hill, or max parameters (Supplementary Figure S8 and
methods). Importantly, logistic fit parameters can only
be compared between carbon sources for the same gene
because parent sgRNAs targeting different genes may not
have the same effects on gene expression. We identified
significant changes in the logistic fit parameters between
environments using Welch’s t-test with sequential goodness
of fit (SGoF) multiple hypothesis testing correction (35). In
many cases, the environment modulates only one or two of
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the four logistic fit parameters (Figure 5D). Based on this
analysis, we found 14 gene-by-environment interactions
(37% of the total) that would not have been identified using
a single knockdown per gene (Figure 5E, Supplementary
Figures S9 and S10). Thus, our approach reveals a far more
expansive set of environmental interactions than screening
with knockouts alone.

As an example, consider holB, an essential gene that en-
codes the �’ subunit of DNA polymerase III loading com-
plex (Figure 5F). For this gene we did not detect a gene-
by-environment interaction at the limit of minimum growth
rate (maximum knockout effect). However, intermediate
growth rate effects were much less severe in glycerol, leading
to a significant difference in the IG-50. Thus, while holB is
essential in both glucose and glycerol, it is coupled to the
environment at intermediate expression levels. This gene-
by-environment interaction is idiosyncratic across the DNA
replication machinery: considering all eight DNA replica-
tion genes in our dataset, five showed an environmental in-
teraction, with three of these only detectable using parame-
ters other than minimal growth rate (Supplementary Figure
S9). In addition to environmental interactions for genes in
glycolysis and DNA replication, we also observed interac-
tions with genes in numerous other cellular processes, in-
cluding purine metabolism and peptidoglycan biosynthesis
(Supplementary Figure S10). Taken together, this indicates
that our data can pinpoint individual genes within diverse
pathways that contribute to growth in a specific environ-
ment.

DISCUSSION

In this work, we combined CRISPRiSeq with mutated sgR-
NAs to create a new approach for titrating gene expres-
sion and quantifying the resulting growth rate effects. By
incorporating molecular barcodes for error correction and
sampling multiple time points for growth rate estimation,
our method unmasked deleterious effects of gene knock-
down that would typically remain undetected. Moreover,
we found that titrated variations in gene expression can
expose a large number of additional gene-by-environment
interactions missed by considering only a single maximal
knockdown point. Given recent advances in highly paral-
lelizable continuous culture devices (32,41), we imagine ap-
plying titratable CRISPRi to construct high-dimensional
landscapes of growth rate given titrated perturbations in
both gene expression and environment.

In addition to our work, several other recent studies have
described high throughput approaches for generating inter-
mediate perturbations in gene expression or activity. To-
gether, these methods present an emerging suite of strate-
gies for mapping the relationship between expression, cat-
alytic activity, and growth rate in varied model organisms.
For example, in E. coli, CRISPR-enabled trackable genome
engineering (CREATE) combines sgRNAs with homolo-
gous repair cassettes to introduce mutations at nucleotide
resolution on the scale of ∼104 mutations (42). This ap-
proach can be used to engineer promoter libraries, explore
the effects of mutation across a protein, or even intro-
duce mutations across an entire pathway (43). However it is
somewhat limited by editing efficiency (reported near 75%),

and the resulting possibility of unedited WT escapers that
can contribute to growth. In yeast, Bowman et al. recently
showed that libraries of sgRNAs tiled across the promoter
region can be combined with dCas9 fusions to Mxi1 (induc-
tion of heterochromatin formation) or VPR (recruitment
of the mediator complex) to yield titrated down- and up-
regulation of expression (44). In human cells, another re-
cent study presented a strategy similar to our own, in which
sgRNA knockdown strength was titrated using single and
double mutations in the homology region in human cells
(37). The authors measured growth phenotypes for mutated
sgRNAs targeting genes in both Jurkat and K562 cells un-
der a single environmental condition, confirming that titrat-
able CRISPRi is readily generalized across organisms and
cell types. Based on these data, a Convolutional Neural Net
(CNN) regression model was trained to relate the sgRNA
homology region sequence to growth rate phenotype. While
this model presents an alternative approach to design com-
pact sgRNA libraries, we suggest that compounding mu-
tations present a more straightforward and robust strategy
for creating gene expression titration curves. We also antic-
ipate that all of these approaches could be enhanced using
the barcoding and escaper correction techniques described
here.

High throughput screens of gene essentiality, genetic
interactions, and gene-by-environmental effects are often
implemented with single genetic perturbations (e.g. total
knockouts of the genes of interest) out of sheer technical ne-
cessity. Such screens form a cornerstone of modern genetics,
and are highly productive in assigning membership of genes
to biological processes and annotating genes of unknown
function (6,11,45). However, these binary perturbations to
gene activity limit our ability to construct quantitative, pre-
dictive models. Titratable CRISPRi now provides a path
to more deeply characterize expression-to-phenotype rela-
tionships, and construct continuous models relating expres-
sion to cellular phenotype. By combining pairs (or more)
of sgRNAs targeting different genes, one might examine
the dependence of epistatic relationships, such as synthetic
lethality, on knockdown strength. We envision that our ap-
proach can be applied to optimize or tune biochemical path-
ways, uncover new therapeutic targets, and understand how
variation in expression influences drug resistance. Perhaps
most fundamentally, these experiments now provide a plat-
form for training and deeply testing predictive models of
cell growth given variation in gene expression levels.

DATA AVAILABILITY

All codes for sgRNA design and next generation sequencing
data analysis are available on github: https://github.com/
reynoldsk/titratableCRISPRi. The codes are implemented
in Python, provided as Jupyter notebooks, and are sufficient
to recreate all figures in this work. The sgRNA read counts
and associated calculated growth rates are supplied as sup-
plemental tables.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

https://github.com/reynoldsk/titratableCRISPRi
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa1073#supplementary-data
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