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Abstract

In our daily lives timing of our actions plays an essential role when we navigate the complex

everyday environment. It is an open question though how the representations of the tempo-

ral structure of the world influence our behavior. Here we propose a probabilistic model with

an explicit representation of state durations which may provide novel insights in how the

brain predicts upcoming changes. We illustrate several properties of the behavioral model

using a standard reversal learning design and compare its task performance to standard

reinforcement learning models. Furthermore, using experimental data, we demonstrate

how the model can be applied to identify participants’ beliefs about the latent temporal task

structure. We found that roughly one quarter of participants seem to have learned the latent

temporal structure and used it to anticipate changes, whereas the remaining participants’

behavior did not show signs of anticipatory responses, suggesting a lack of precise temporal

expectations. We expect that the introduced behavioral model will allow, in future studies,

for a systematic investigation of how participants learn the underlying temporal structure of

task environments and how these representations shape behavior.

Author summary

Although time perception and timed behavior are essential for our everyday experience, it

is still unclear how the human brain represents the underlying temporal regularities of

our dynamic environment. These regularities and their representations in the brain are

important to generate well-timed behavior. When deciding on the sequence of actions to

complete most of our everyday tasks like cooking, driving, or even brushing our teeth, it is

essential to represent and keep track of the durations of different parts of the tasks. Here

we introduce a behavioral model of decision making in environments in which a change

is at least partially predictable by the time it took since the last change. We show that

human participants are using such predictions in the so-called reversal learning task,

which simulates abrupt but not immediately obvious changes of the environment. We

find that some but not all participants harness previously experienced regularities in these

changes to anticipate when the next change is going to happen. We expect that a wide

range of similar questions of how humans and other animals use temporal expectations to
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make their decisions in a dynamic environment can be addressed using the new model-

ling approach.

Introduction

Our ability to represent time and to generate complex actions and plans based on this repre-

sentation are central to all aspects of our behavior. Knowing when to act, precisely, is clearly

crucial for our survival [1, 2]. Thus, it is not surprising that the question of how we perceive

and represent time gains an increasing interest in neurosciences [3–5]. However, in compari-

son to our understanding of spatial cognition, the neural basis of time perception is still poorly

understood [6]. Here, we address the question of how the brain, in principle, can use knowl-

edge about a hidden temporal structure of a task when making decisions.

Traditionally, the question how we learn the structure of the world and use these represen-

tations for decision making, has been investigated from the perspective of reinforcement learn-

ing [7, 8]. The focus of these investigations has been on how learning is driven by prediction

errors [9], defined as a mismatch between expected and observed outcomes of one’s actions.

More recent studies on human behavior in dynamic environments [10–13] have demonstrated

that the relative precision of one’s prior beliefs and current sensory information weights pre-

diction error signals [14–21]. These findings indicate that humans update their beliefs about

the structure of the world akin to a rational (Bayesian) agent [22, 23]. This suggests that one

can approximately describe human behavior using the methodology of probabilistic inference.

The key advantage of the probabilistic inference framework over the standard reinforcement

learning modelling approach is that one can embed the knowledge about the structure of the

world and the uncertainty about that knowledge within a generative model that describes the

known rules that shape the dynamics of the world.

A potential limitation of previous approaches—both probabilistic and reinforcement learn-

ing based—is that they do not take into account the underlying temporal structure of the task.

Recently a series of studies have demonstrated the relevance of learned temporal associations

on attention, perception, and sensory integration [24–27]. Experimental paradigms employed

in this studies utilized observable temporal structure within trial. Similarly, in [28, 29] authors

demonstrate that learning of the underlying temporal structure of the task is used by human

participants (or animal subjects) to anticipate the moment in time at which rules are most

likely to change. In contrast to the experimental design which use within trial temporal struc-

ture, here participants were exposed to a hidden temporal structure across trials.

Motivated by these findings, we propose a way to extend current probabilistic models of

behavior, aimed at describing decision making in dynamic environments, to incorporate an

explicit representation of the underlying temporal structure in the form of prior beliefs about

state durations. In particular we will focus on the case when the state durations are not directly

observable, but inferred across multiple trials using observable changes in action outcomes.

The two essential components of the proposed behavioral model are (i) the update of beliefs

about states and duration derived using approximate inference under hidden semi-Markov

models [30, 31] and (ii) the update of beliefs about actions, that is the planning process, cast as

an inference problem [32–34].

As a test bed for illustrating the key properties of the model and for demonstrating its appli-

cability to experimental studies we adopted a probabilistic reversal learning task [35]. This task

and its variants have been frequently used in human and animal studies to investigate key

properties of flexible behavioral adaptation in dynamic environments [29, 36–38]. In a typical
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setup participants first learn to associate a particular choice with a reward, followed by a

sequence of reversals of reward contingencies. The interesting question is typically how fast

participants adapt their choices to these new contingencies. In the work here, we address the

question, whether participants actually use the underlying temporal task structure to predict

the moment of the reversal so that behavior is adapted faster as compared to the case when the

reversal is unexpected.

Using the reversal learning task, we first demonstrate using simulations that we can link

sub-optimal behavior in changing environments to a misrepresentation of the underlying tem-

poral structure of the changes. Subsequently, when fitting the behavioral model to experimen-

tal data, we relate the measured behavior of each participant to model parameters that define

the beliefs about the temporal structure of reversals. Strikingly, our results suggest a heteroge-

neous distribution of the task representation across participants where some participants cor-

rectly inferred the latent temporal structure of the task, whereas others did not. We discuss

potential reasons for this finding and how the presented approach enables systematic investi-

gations of how participants learn the underlying temporal structure of task environments and

how these representations shape behavior.

Materials and methods

In what follows we will first introduce the reversal learning task which we used here as a test

bed for illustrating behavioral properties of the proposed model and its applicability to experi-

mental data. Afterwards, we will briefly describe a classical reinforcement learning approach

for modeling behavior in a reversal learning task, and later introduce the procedure for deriv-

ing the probabilistic behavioral model based on a special type of hidden semi-Markov models.

Finally, we will describe in detail the analysis steps used for fitting behavioral models to data,

and performing model comparison.

Ethics statement

All participants provided written informed consent and were paid on an hourly basis. The

Medical Faculty of Leipzig University approved the study.

Reversal learning

A probabilistic reversal learning task is typically structured as follows. An agent is presented

with two choices A and B where each choice is associated with a probability of receiving a

reward or punishment. For example, initially choice A has high probability pH and choice B

low probability pL of getting a reward. Importantly, after several trials the reward contingencies

switch, such that choice B now corresponds to the high reward probability choice. Participants

are not informed about the switch and they have to infer that a change occurred and adapt

their behavior. Here we used a multiple reversals design in which reversals occur several times

during the experiment. Furthermore, the reversals occur at predefined trial numbers and are

independent of participant’s performance. This reversal schedule was successfully used in past

studies in healthy as well as patient samples and is well suited to detect inter-individual differ-

ences in behavioral adaptation [39, 40].

For the model-based analysis, we used a subset of behavioral data—consisting of 22 healthy

participants—from a previously published fMRI study [39]. In the experimental task partici-

pants were deciding between two cards shown on a screen, each showing a different stimulus

(a geometric shape, e.g. rectangle, triangle, etc.) as shown in Fig 1A. The reward probabilities

associated with the two choice options were anti-correlated on all trials: whenever reward

probability of choice A was high (pH = 0.8) the reward probability of choice B was low

Inference under explicit representation of temporal structure in changing environments
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(pL = 0.2), and vice versa. Note that pH = 1 − pL on all trials. Reward contingencies change as

follows: they were stable for the first 55 trials, afterwards they changed four times after 15 or 20

trials, and remained stable for the last 35 trials, see Fig 1B. In total, the experimental block con-

sisted of 160 trials.

The location of each stimulus on the screen (right or left side) was randomized over trials.

After each choice the stimulus was highlighted and depicted for 1.5 s minus the reaction

time. The feedback in form of reward (won 10 Eurocents) or punishment (lost 10 Eurocents)

was shown for 0.5 s. If no response occurred during the decision window, the message “too

slow” was presented, and no outcome was delivered. During the inter-trial interval, a fixation

cross was presented for a variable duration (jittered and exponentially distributed; range

1–12.5 s).

All 22 participants underwent a training session during which they had the opportunity to

learn the statistics of the rewards associated with high and low reward probability choices. The

set of stimuli used in the training phase differed from the one used during the testing phase.

The participants were instructed that they could either win or lose 10 cents on each trial, and

that they will be paid the total amount of money they gained during the testing phase at the

end of the experiment. Each participant performed 20 training trials without any reversal of

reward contingencies. Before the start of the testing phase participants were told that reward

probabilities might change over the course of the experiment. No other information about

reversals or the correlation of choices and outcomes was provided. Thus, the participants had

Fig 1. Reversal learning task. A: Exemplary trial sequence of experimental reversal learning task. Participants were

instructed to choose the card that they thought would lead to a monetary reward. After they chose one of the two cards,

the corresponding card was highlighted and feedback was displayed. The feedback consisted of either a 10 Eurocents coin

for a win outcome, or a crossed 10 Eurocents for a loss outcome. B: The time series of the underlying reward probability

of one of the two stimuli. The reward probability of the more rewarding stimuli at any time step was set to 0.8 and a

punishment probability to 0.2 (and vice versa for the other stimulus). Reward contingencies remained stable for the first

55 trials (pre-reversal phase) and for the last 35 trials (post-reversal phase). In between, reward contingencies changed

four times (reversal phase).

https://doi.org/10.1371/journal.pcbi.1006707.g001
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no explicitly instructed knowledge about the anti-correlated task structure before the

experiment.

Reinforcement learning models

Classical Rescorla-Wagner model. A classical approach to modeling the probabilistic

multiple-reversals learning task is using the Rescorla-Wagner (RW) model [41, 42]. The rea-

soning of this approach is that agents tend to value those choices which on average lead to

more rewarding outcomes in the past. This reasoning can be formalized as follows

Vct
tþ1 ¼ Vct

t þ aðot � Vct
t Þ ð1Þ

where ct 2 [A, B] denotes a choice at trial t, ot 2 {−1, 1} denotes the outcome of that choice

(loss or gain), and Vct
t is the current value associated with each choice. Importantly, the choice

values Vct
t are updated after each trial proportionally to the prediction error Dt ¼ ot � Vct

t

weighted by a constant learning rate α.

Dual update Rescorla-Wagner model. As the experimental design imposes anti-correla-

tion between high and low reward probability (pH = 1 − pL), an extended version of Eq (1) was

proposed in [39, 40] which incorporates fictive learning signals [43]. The extension is based

on the assumption that agents update, in parallel, values of both choices. The value of the exe-

cuted choice is updated as before, whereas the value of the alternative (non-executed) choice is

updated as if the outcome for that choice was the opposite to the observed one. We can formal-

ize this with the following update rules

Vct
tþ1 ¼ Vct

t þ aðot � Vct
t Þ

VP̂ct
tþ1 ¼ VP̂ct

t þ ka � ot � VP̂ct
t

� � ð2Þ

where P̂ denotes the permutation operator such that if ct = A, then P̂ct ¼ B (and vice versa). In

addition, κ denotes the coupling strength of the fictive prediction error.

Probabilistic model

To derive the probabilistic model of behavior we start by defining a generative model of the

task that formalizes an agent’s beliefs about the structure and the dynamics of the task environ-

ment. The update rules are then obtained using (approximate) Bayesian inference.

The assumption here is that participants learn to represent the latent task structure. This

structure consists of hidden states which define two possible configurations of the environ-

ment: in one configuration stimulus A corresponds to a high reward choice, in the second,

stimulus B corresponds to a high reward choice. Note that the notion of state used here differs

from what is typically used in reinforcement learning models, in which states are cues that are

associated with values over time. Here, the states are hidden and not directly observable. Fur-

thermore, they capture a context, which defines how two stimuli (option cues) are related to

actions and outcomes of those actions.

Importantly, the task environment transits from one state to another in a probabilistic man-

ner. Here we will consider two assumptions about the dynamics of state transition probabili-

ties: (i) the state transition probability is constant and independent of the moment of the

previous change, as is the case under hidden Markov models (HMM) [44]; (ii) the state transi-

tion probability is time dependent and linked to the moment of the last change, which we will

represent using hidden semi-Markov models (HSMM) [31, 45]. As the HMM corresponds to

Inference under explicit representation of temporal structure in changing environments
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a special case of HSMM, in which state transition probabilities are constant, it is sufficient to

define the behavioral model based on the HSMM assumption.

In what follows we will define the components of the generative model (observation likeli-

hood and state dynamics) and derive the corresponding update rules.

Observation likelihood. The observation likelihood defines the probability of observing

reward or punishment in any of the two possible states st 2 {¬R, R} depending of the choice

ct 2 {A, B} that an agent makes at a given trial t. Note that we have used ¬R to denote an initial

non-reversal state (e.g., stimulus A is linked to a high reward probability), and R for a reversal

state with switched reward contingencies. We define the observation likelihood as

pðotj~r; st; ctÞ ¼
rð1þotÞ=2
ct

ð1 � rct Þ
ð1� otÞ=2

; if st ¼ :R;

r
ð1þotÞ=2

P̂ct
ð1 � rP̂ctÞ

ð1� otÞ=2
; if st ¼ R;

8
><

>:
; ð3Þ

where the P̂ again corresponds to the permutation operator (e.g. P̂A ¼ B). Note that the choice

dependent reward probabilities (ρA and ρB) are treated as random variables. Hence they are

initially unknown to the agent and learned during the course of the experiment.

State dynamics

To formalize the presence of sequential reversals, that is, transitions from one task configura-

tion to another, we define the state transition probability as

pðstþ1jstÞ ¼
1 � d; if st ¼ stþ1

d; if st 6¼ stþ1

(

ð4Þ

where δ denotes probability of transiting between distinct hidden states (e.g. from st−1 = ¬R to

st = R. This representation of the state transition process corresponds to a standard HMM pre-

viously used in reversal learning tasks [29, 38, 46–48].

Note that under this formulation of the state transition matrix the agent implicitly assumes

that the interval (the elapsed number of trials) between two reversals follows a geometric distri-

bution. Hence, the probability that any between reversal interval is of length d is given as

pðdÞ ¼ ð1 � dÞd� 1
d; where d 2 f1; 2; 3; . . .g ð5Þ

with an expected dwelling time in each task configuration (mean interval length) set to m ¼ 1

d
.

To derive agents with arbitrary beliefs about between reversal intervals we will use a special

type of hidden semi-Markov models, the so-called explicit duration hidden Markov models

(ED-HMM) [49, 50]. This will allow us to identify individual differences in the beliefs about

the temporal task structure and to investigate what impact these beliefs might have on an

agent’s performance.

State durations

The ED-HMM embeds the generative model with the representation of state durations, that is,

the state dwelling time dt (the time spent in each state, ¬R or R). In other words, an agent will

be able to form expectations about the number of trials between consecutive reversals.

Under the ED-HMM we define the state transition matrix as follows

pðstjst� 1; dt� 1Þ ¼
I2; if dt� 1 > 1;

J2 � I2; if dt� 1 ¼ 1;

(

ð6Þ

Inference under explicit representation of temporal structure in changing environments
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where I2 denotes the 2 × 2 identity matrix and J2 denotes the 2 × 2 all-ones matrix. The above

relations describe a simple deterministic process for which the current state st remains

unchanged as long as dt−1 > 1 and switches to alternative state (e.g. if st−1 = A then st = B) with

probability one when dt−1 = 1.

The transitions between state durations follow a deterministic countdown (dt = dt−1 − 1) as

long as dt−1 > 1; once dt−1 = 1 the subsequent value dt is sampled from the prior over state

durations p0(dt), that is, from the beliefs over between reversal interval. We can write this for-

mally in the form of the transition probability as

pðdtjdt� 1Þ ¼
ddt ;dt� 1 � 1; if dt� 1 > 1;

p0ðdtÞ; if dt� 1 ¼ 1:

(

ð7Þ

In Fig 2 we illustrate conditional dependencies between states, durations, reward probabilities,

and outcomes in the form of a a graphical model.

Although, the semi-Markov formalisms allows for defining state dependent prior beliefs

p0(dt|st), here, to reduce model complexity, we have assumed that the priors are independent

of the current state, thus we set p0(dt|st) = p0(dt) for any st 2 {¬R, R}.

In practice, prior beliefs about state durations p0(dt) can have an arbitrary form, however

for the purpose of inferring the participants’ representation of between reversal intervals we

will use a parametric distribution, specifically the negative binomial NB distribution defined as

p0 dtð Þ ¼ NBðdt; d; rÞ ¼
dt þ r � 2

dt � 1

� �

ð1 � dÞ
dt � 1

d
r
; ð8Þ

where δ 2 [0, 1] and r> 0.

The NB distribution has several convenient properties. First, in the case r = 1 we obtain

the geometric distribution (see Eq (5)), hence we recover the HMM model described above.

Fig 2. Graphical representation of the generative model and model summary. Left: We illustrate here the conditional dependence of state durations,

states, reward probabilities, and outcomes. Note that the choices ct are treated as observables within the generative model. Right: summary of the hidden

state variables, observations, and the notation used for defining prior expectations and posterior beliefs over hidden states.

https://doi.org/10.1371/journal.pcbi.1006707.g002

Inference under explicit representation of temporal structure in changing environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006707 January 31, 2019 7 / 31

https://doi.org/10.1371/journal.pcbi.1006707.g002
https://doi.org/10.1371/journal.pcbi.1006707


Second, for r> 1 the NB distribution exhibits a nonzero mode which shifts towards the

expected value m ¼
rþdð1� rÞ

d
as a function of a decreasing variance s ¼

ð1� dÞr
d2 , which is illustrated

in Fig 3. Hence, the parameters of the negative binomial distribution will allow us to quantify

an agent’s specific belief in the regularity of reversals. The lower the variance σ, the more an

agent believes that reversals occur at regular intervals.

Importantly, the variance of prior beliefs p0(d) has direct effects on the temporal expecta-

tion profile (that a reversal will occur at some future trial τ). In Fig 4 we show the dependence

of the expected reversal probability δτ on the variance σ, and under fixed mean μ = 20 of prior

beliefs about the between-reversals interval. The expected reversal probability δτ is defined as

dt ¼ pðst ¼ Rjst� 1 ¼ :RÞ

¼
X

d;s

pðst ¼ Rjst� 1 ¼ :R; s1 ¼ s; d1 ¼ dÞp0ðdÞpðsÞ;
ð9Þ

where τ> 1, and p(s = ¬R) = 1. Hence, δτ corresponds to the transition probability (from non-

reversal state ¬R into reversal state R) at some future trial τ starting from the non-reversal state

s1 = ¬R. Note that for prior beliefs p0(d) with large variance (σ = μ(μ − 1)), we get a constant

transition probability, which corresponds to the HMM formulation of the state transition

probability. In contrast, for prior beliefs with low variance (σ = μ) one obtains a trial dependent

transition probability with values alternating between the low and high probabilities in a peri-

odic manner. This temporal dependence of the transition probability will affect the inference

process. The agent will become insensitive to subsequent reversals occurring few trials after

the initial reversal, and highly sensitive to reversals occurring twenty to thirty trials after the

initial reversal.

Fig 3. Specific cases of the negative binomial distribution. We illustrate here the dependence of the shape (and the mode) of the negative binomial

distribution for different values of the variance σ. Note that when the variance σ equals its mean μ (blue), the distribution peaks around its expected

value. As the variance increases (green) the mode shifts toward zero. The limiting case of the geometric distribution (red) corresponds to r = 1, that is,

σ = μ(μ − 1). For all three cases we fixed the mean interval length at μ = 20.

https://doi.org/10.1371/journal.pcbi.1006707.g003
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Inference

For model inversion we use a variational inference scheme [51–53] which allows us to derive

the update rules for the inference process akin to the ones presented in Eq (2).

After making a choice ct and observing outcome ot at trial t, the agent updates its beliefs

over reward probabilities~r, states st, and durations dt following Bayes’ rule

�pð~r; st; dtÞ / pðotj~r; st; ctÞ~pð~rÞ~pðdtjstÞ~pðstÞ ð10Þ

where we used the following notation ~pðxÞ ¼ pðxjot� 1:1; ct� 1:1Þ, and �pðxÞ ¼ pðxjot:1; ct:1Þ—for

x 2 f~r; st; dtg—to denote prior and posterior beliefs, respectively, at time step t.
If we express prior beliefs as

~pðst ¼ :RÞ ¼ ~yt;

~pðdt ¼ djstÞ ¼ pstd ;

~pð~rÞ ¼
Y

c2fA;Bg

Bðrc; a
c
t� 1
; bct� 1
Þ;

ð11Þ

where B(x; a, b) denotes a beta distribution, we can define the approximate posterior in similar

form

�pð~r; st; dtÞ � qð~rÞqðdtjstÞqðstÞ; ð12Þ

Fig 4. Expected transition probability at future trial τ. Estimate of the transition probability δτ (see Eq (9)) at a future trial τ conditioned upon a

reversal at τ = 1 and known initial state set at s1 = ¬R. Each curve corresponds to estimates of the transition probability obtained from prior beliefs p0(d)

shown in Fig 3. Note that for the low variance case (blue, σ = μ), the temporal profile of transition probability has clearly defined periods of low and high

transition probability. As the variance increases (green) the variability of the temporal profile decreases, until it finally becomes constant in the case of

the geometrically distributed prior beliefs (red, σ = μ(μ − 1)). For all three cases we fixed the mean interval length at μ = 20.

https://doi.org/10.1371/journal.pcbi.1006707.g004
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where we use the following parametrization of the factors of the approximate posterior

qðst ¼ :RÞ ¼ yt;

qðdt ¼ djstÞ ¼ �pstd ;

qð~rÞ ¼
Y

c2fA;Bg

Bðrc; a
c
t ; b

c
tÞ:

ð13Þ

The prior expectation at the next trial t + 1 depends on the current posterior q(st, dt) via the

sum product rule

~pðstþ1; dtþ1Þ ¼
X

dt ;st

pðstþ1; dtþ1jst; dtÞqðst; dtÞ: ð14Þ

The update of the agent’s beliefs about reward contingencies for each choice ρ, current state

st, and the number of trials until the next reversal dt is completely defined by the update rules

of the sufficient statistics of the posterior, namely parameters θt, a
ct
t , and bctt . We will obtain the

update rules for these parameters using variational inference. The parameters of the approxi-

mate posterior can be found as minimizers of the variational free energy defined as

F½q� ¼ DKLðqjj�pÞ � ln �pðotÞ

¼
X

st ;dt

Z

d~rq ~rð Þqðst; dtÞln
qð~rÞqðst; dtÞ

pðotj~r; st; ctÞ~pð~r; st; dtÞ
:

ð15Þ

The posterior beliefs q that minimize the free energy F can be obtained using the following

relations

qð~rÞ / ~pðrÞehln pðot j~r ;st ;ctÞiqðst Þ ;

qðst; dtÞ / ~pðst; dtÞe
hln pðot j~r t ;st ;ctÞiqð~r t Þ :

ð16Þ

To obtain update rules similar to the delta learning rules of the RW model we simplified the

above iterative procedure needed to estimate the posterior parameters. To break the cyclic

update we will assume that one can first update beliefs about q(st, dt) by setting

hln pðotj~r; st; ctÞiqð~rÞ � ln ~pðotjst; ctÞ

and then use the obtained posterior beliefs about states and durations to estimate the reward

probabilities qð~rÞ.
Using this simplification we obtain the following update rules

�pstd ¼ pstd ;

yt ¼
~yt

~yt þ eln
pðot jst¼R;ct Þ
pðot jst¼:R;ct Þ 1 � ~yt

� � ;
ð17Þ

where ~yt ¼ ð1 � yt� 1ÞpRd¼0
þ yt� 1ð1 � p:Rd¼0

Þ. Note that the conditional posterior q(dt|st) corre-

sponds to the conditional prior ~pðdtjstÞ, as �pstd ¼ pstd , hence it remains constant during the

update of beliefs. However, the prior expectations (at the next time step) about state duration

will be linked to the inference process via the state-duration transition matrix (see Eqs (6) and

(7)).
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Subsequently, we update the beliefs about the choice reward contingencies as

actt ¼ actt� 1 þ yt�ot;

bctt ¼ bctt� 1 þ ytð1 � �otÞ;

aP̂ �ctt ¼ aP�ctt� 1 þ ð1 � ytÞ�ot;

bP̂ �ctt ¼ bP�ctt� 1 þ ð1 � ytÞð1 � �otÞ;

ð18Þ

where �ot ¼
otþ1

2
(�ot 2 f0; 1g).

To demonstrate the relation of the above update rules to the ones of the DU-RW model, we

transform the shape parameters (actt , and bctt ) of the posterior beta distribution into the mean

m
ct
t and the samples size n

ct
t as

nxt ¼ axt þ bxt ;

mxt ¼
axt
nxt
;

ð19Þ

where x 2 fct; P̂ � ctg. Expressing the expected reward probability μt as a function of the

expected value Vt, that is, as mxt ¼
Vx
t þ1

2
, we get the following set of update equations

Vct
t ¼ Vct

t� 1 þ a
ct
t ðot � Vct

t� 1Þ

VP̂ �ct
t ¼ VP̂ �ct

t� 1 þ kta
P̂ �ct
t ðot � VP̂ �ct

t Þ

ð20Þ

where axt ¼
yt
nxt

, and kt ¼
1� yt
yt

.

Although in form similar to the DU-RW learning rules, a notable difference is that the fic-

tive prediction error is of the same sign as the actual prediction error. The reason for this is

that under the generative model the fictive learning signals are a product of the agent’s uncer-

tainty about the current state of the world, that is, the current configuration of reward contin-

gencies and not the uncertainty about the anti-correlation of reward contingencies on

different choices. This alternative representation could be introduced into the generative

model by introducing beliefs about a dependence between high and low reward probabilities.

However, we will leave this extension for future work as it increases model complexity and

does not contribute to our analysis of how temporal representations influence behavior.

Responses

Here we will describe the response model, which defines the mapping from the agent’s beliefs

to responses, based on the active inference framework [54]. We will demonstrate how a

response likelihood that is often used in reinforcement learning models (in the form of a soft-

max transform) can be derived within this framework. We do this for didactic purposes to

show how one can formally relate active inference to a well-known reinforcement learning

account.

The core concept of active inference is that agents generate behavior that is most likely to

minimize the expected free energy, that is, that tends to maximise, at the same time, the extrin-

sic and the epistemic value of agents’ choices [55]. The expected free energy can be defined as

Gc
t ¼ Eqðot jcÞ

� UðotÞ � DKLðqðxjot; cÞjj~pðxÞÞ½ �; ð21Þ

where x ¼ ð~r; st; dtÞ, U(ot) denotes the utility of future outcomes (reward or punishment), and
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DKL denotes the Kullback-Leibler divergence between the posterior (conditioned on possible

future outcome and action) and prior expectations at the time step t. Note that we have

assumed that the behavior is characterized by planning only a single time step into the future.

Importantly, the response model maintains the causal structure of the task, where at trial t an

agent first makes a choice ct and only afterward observes an outcome ot.
The first term on the right hand side of Eq (21) is typically denoted as the extrinsic value of

an action (policy) whereas the second term is denoted as epistemic value or information gain.

If we express the utility U as

UðotÞ ¼ lot;

where ot 2 {−1, 1}, and λ> 0, the extrinsic value becomes

hUiq ¼ l ~Vc
t ;

~Vc
t ¼ ~ytVc

t� 1
þ ð1 � ~ytÞVP̂ �c

t� 1
:

In practice, for sufficiently large λ the behavior will be fully driven by the extrinsic value, as

each independent observation ot carries little information about the underlying hidden states

(a sequence of observations is required to identify the precise past moment of a reversal). In

other words, each individual choice leads to a small information gain. Thus, we will assume

that the expected free energy can be approximated as

Gc
t � � l

~Vc
t :

The optimal action (choice) corresponds to the one that minimizes the expected free

energy, thus

ct ¼ argmin
c

Gc
t ¼ argmax

c

~Vc
t :

Still, for describing participants’ behavior we have to assume that the action selection pro-

cess is corrupted by external sources of noise; e.g. mental processes irrelevant for the task at

hand. Therefore, we will soften the requirement of minimizing the expected free energy using

the softmax transform, which is typically used to define the response likelihood [56, 57]. The

choice probability then becomes

pðct ¼ cjot� 1:1Þ ¼
e� b ~Vc

tþln p0ðcÞ

P
ue� b

~Vu
t þln p0ðuÞ

; ð22Þ

where β denotes the response precision and p0(c) the response bias. These two parameters are

the free parameters of the response model and allow us to capture participants’ deviation from

optimal behavior when fitting models to the data.

Finally, in the case of the DU-RW model, we will use the same form of the response likeli-

hood as above, with the difference that the choice value ~Vc
t ¼ Vc

t .

Model fitting and model comparison

When fitting models to behavior we have focused our analysis on either the DU-RW or the

ED-HMM model, where we have used in both cases a hierarchical prior over free model

parameters (see below for details). We will not consider the SU-RW and HMM models in

model comparison as they represent special cases of the DU-RW and the ED-HMM model,

respectively, which are obtained in the limit of κ! 0, in the case of the DU-RW model, and

r! 1 in the case of the ED-HMM model. Hence, we can easily recover these special cases
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from the estimates of the posterior distributions of the free model parameters, which are sum-

marized in Table 1.

Note that the parameters nA
0

and nB
0

of the ED-HMM model (see Eq (19)), which define the

initial number of observations, have been fixed to values which reflect that participants under-

went a 20 trials long training session. Hence, setting nA
0
¼ nB

0
¼ 10 reflects our assumption that

participants selected both options in equal amounts during the training session.

To estimate the posterior distribution over free model parameters we have used the above

defined response model as observation likelihood of the behavioral model. Hence, the likeli-

hood of behavior (the sequence of a participant’s responses) is defined as

pðcnT:1
jonT:1

;L;mÞ ¼
YT

t¼1

pðcnt jo
n
t� 1:1

;L;mÞ; ð23Þ

where cnT:1
denotes the sequence of responses of the nth participant (n 2 {1, . . ., 22}), onT:1

denotes the sequence of observations (wins or losses) that the nth participant made, Λ denotes

the set of free model parameters, and m 2 {1, 2} denotes the corresponding behavioral model.

To define the prior distribution over model parameters we have used the so-called horse-

shoe prior as a weakly informative hierarchical prior. If we denote the ith model parameter

(where i 2 {1, . . ., 6}) of the nth participant as l
n
i , the horseshoe prior is defined as

pðlni ; tiÞ ¼ Cþðlni ; 0; tiÞCþðti; 0; 1Þ ð24Þ

where C+(x; 0, γ) denotes a half-Cauchy distribution with scale parameter γ. Hence, the full

hierarchical prior for the model m can be expressed as

pðl; tjmÞ ¼
Y22

n¼1

Y6

i¼1

Cþðlni ; 0; tiÞC
þðti; 0; 1Þ: ð25Þ

Note that τi acts as a hyper-prior, which plays the role of regulating the prior scale, for the cor-

responding free parameter, over the whole group. As l
n
i is a positive definite variable, we have

used specific transforms to relate each l
n
i parameter to the corresponding model parameter

(see Table 1).

Table 1. Free parameters, their transform, and interpretation for the two behavioral models. The model parameters are grouped based on whether they shape the infer-

ence (learning) or the behavioral responses. Note that the DU-RW and ED-HMM share the same mapping from beliefs into responses (see Eq (22)).

Model Parameter Transform Interpretation

DU-RW α l1

1þl1

learning rate

κ l2

1þl2

coupling strength

VA
0

, VB
0

l3 � 1

l3þ1
,

1� l4

1þl4

initial choice values

ED-HMM δ l1

1þl1

rate of prior beliefs

r 1 + λ2 shape of prior beliefs

mA
0

, mB
0

l3

1þl3
, 1

1þl4

initial expectations

response β l5

1þl5

response precision

p0(c = A) l6

1þl6

response bias

https://doi.org/10.1371/journal.pcbi.1006707.t001
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The posterior probability over model parameters can be obtain from the Bayes rule as fol-

lows

pðl; tjC;O;mÞ /
Y22

n¼1

pðcnT:1
jonT:1

; l;mÞpðl; tjmÞ; ð26Þ

where C ¼ fc1
T:1
; . . . ; c22

T:1
g, and O ¼ fo1

T:1
; . . . ; o22

T:1
g. However, the exact posterior distribution

of the model parameters and their hyper-priors is analytically intractable, hence we have

applied the variational mean-field approximation, in which one assumes that the posterior is

fully factorized

pðl; tjC;O;mÞ �
Y

i

Y

n

qðlni jmÞqðtijmÞ: ð27Þ

The full hierarchical model was implemented in the probabilistic programing library PyMC3

[58]. The PyMC3 library provides an interface to multiple state-of-the-art inference schemes.

In our specific case, for estimating the approximate posterior distribution over model parame-

ters, we have used the PyMC3 implementation of the automatic differentiation variational

inference (ADVI) [59]. ADVI is a stochastic black-box variational inference scheme which

returns an approximate estimate of the posterior distribution in a fully factorized form.

To attribute participants’ behavior to a specific behavioral model we have assumed that

models can be treated as random effects (variables), that is, the attribution of a model to partic-

ipants’ behavior can differ across participants [60]. Furthremore, we have based Bayesian

model comparison on the posterior predictive model evidence [61] instead of the full model

evidence, that is marginal likelihood. The motivation for basing model comparison on the pos-

terior predictive model evidence comes from the fact that the posterior predictive model evi-

dence is less sensitive to a prior specification of free model parameters: the approximate

estimate of the predictive evidence is based on the samples from the posterior distribution

which is already constrained by the subset of the behavioral data. This procedure provides for

a more robust model comparison and testing results as it resolves some issues arising when

using weakly-informative or misspecified prior probabilities [61]. The posterior predictive

model evidence is defined as a marginal expectation of the subset of behavioral responses CT:k

condition on the behavioral responses up to the kth trial (Ck:1) and the full set of outcomes pre-

sented to participants (O). Formally, we can define the posterior predictive model evidence as

pðCT:kjCk:1;O;mÞ ¼
Y

n

pðcnT:kjCk:1;O;mÞ

pðcnT:kjCk:1;O;mÞ ¼
Z

dl
YT

t¼k

pðcnt jo
n
t� 1:1

; l
n
;mÞqðlnjmÞ

�
1

N

XN

l¼1

YT

t¼k

pðcnt jo
n
t� 1:1

; l
n
l ;mÞ

ð28Þ

where qðlnjmÞ ¼
Q

iqðl
n
i jmÞ, and N = 104. Note that to estimate the posterior predictive

model evidence we have first estimated the approximate posterior over free model parameters

on a reduced data set consisting of the pre-reversal and reversal phases (k = 125). Then, we

generated N samples from the posterior distribution to estimate the posterior predictive model

evidence on the remaining part of behavioral data CT:k which covers only the post-reversal

phase (see Fig 1).
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We then used the posterior predictive model evidence as the likelihood of the random effect

model proposed in [60]. The goal here is to identify the posterior probability that each of the

two behavioral models can generate the same sequence of behavioral response as participants.

Here we have defined the random effect model as the following mixture model

pðCT:k; p; gjCk:1; ÔÞ ¼ p CT:kjCk:1; Ô; p
� �

pðpjgÞpðgÞ; ð29Þ

where

pðCT:kjCk:1; Ô; pÞ ¼
Y22

n¼1

X2

mn¼1

pðcnT:kjCk:1;O;mnÞpðmnjpÞ

pðmnjpÞ ¼
Y2

l¼1

p
dmn ;l
l ;

pðpjgÞ ¼
1

B
1

g
;
1

g

� �
Y2

l¼1

p
1
g� 1

l

pðgÞ ¼ Cþðg; 0; 1Þ

ð30Þ

Similar to the role of the hyperpriors on the parameters of the behavioral model, γ plays here

the role of a regularization parameter that allows for data driven constraints of the random

effects assumption. If the marginal posterior probability over γ shrinks towards zero, this

implies that data supports a null hypothesis which states that all models are present in the

population with the same frequency and any differences we observe are purely chance driven

[60].

As above, the random effects model selection was implemented in PyMC3, where the esti-

mation of the posterior was performed using the PyMC3 implementation of the ADVI proce-

dure. A fully factorized approximate posterior

pðp; gjC;OÞ � qðgÞqðpÞ ð31Þ

provides us with an estimate of the posterior model probability q(π). The posterior model

probability can then be used to identify group level posterior estimate over possible model fre-

quencies in the group of participants and the participant specific posterior model probability.

Results

Simulating behavior

To illustrate how the agent’s performance depends on the agent’s prior beliefs over the

between reversal interval p0(d) we will start by comparing two special cases of the ED-HMM

based behavioral model using synthetic data. In the first case, we will fix the variance σ of the

prior beliefs p0(d) to σ = μ(1 − μ), which we named irregular reversal interval (IRI) agent. In

the second case, we will fix the variance to σ = μ, which we named regular reversal interval

(RRI) agent. In addition, we will compare the performance of the two probabilistic behavioral

models to the single (SU) and dual update (DU) Rescorla-Wagner (RW) models introduced in

Eqs (1) and (2), respectively.

To illustrate the behavioral difference of different computational models we have modified

the experimental setup and introduced two conditions in which reversals occur either at regu-

lar or irregular intervals, as shown in Fig 5. These two conditions allow us to make clear
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distinction between different behavioral models with respect to their behavior in the presence

or absence of regularities.

In all simulated experiments we fixed the number of trials to T = 160 and the number of

experimental blocks to n = 1000. Hence, each simulated agent repeated the experiment n
times, where at the beginning of each experiment the free model parameters (besides mean

and variance) of the ED-HMM based agents (IRI and RRI) were set to the following values

~aA
0
¼ 8; ~bA

0
¼ 2;

~aB
0
¼ 2; ~bB

0
¼ 8;

VA
0
¼ 0; VB

0
¼ 0;

~pðd1Þ ¼ p0ðd1Þ:

ð32Þ

In other words, simulated agents have a loose initial knowledge of the underlying reward prob-

abilities, but do not know the initial configuration of the task (whether the environment is ini-

tially in the reversal or the no-reversal state).

Fig 6 shows the dependence of the agent’s performance on its prior beliefs about the

between reversal interval in two different environments. We have defined the performance as

the fraction of correct choices (the choice associated with the higher reward probability). The

irregular environment corresponds to the interval duration drawn from the geometric distri-

bution with mean μ = 20 and variance σ = μ(μ − 1), and the semi-regular environment corre-

sponds to interval durations drawn from the negative binomial distribution with mean μ = 20

and variance σ = μ, as illustrated previously in Fig 5.

Fig 5. Example of a reversal schedule for simulated data. In the condition with irregular reversals, the between reversal intervals were sampled from a

geometric distribution (top right plot), whereas in the condition with (semi)regular reversals, the intervals were sampled from the negative binomial

distribution with variance σ = 20 (bottom right plot). In both cases the mean interval duration is set to μ = 20.

https://doi.org/10.1371/journal.pcbi.1006707.g005
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The IRI agent exhibits stable performance levels independent on the environment or a

belief misspecification (incorrect mean interval duration, or incorrect variability around the

mean). In contrast, the performance of the RRI model strongly depends on the correctness of

the prior beliefs. These results make the rather intuitive point that if one is unfamiliar with the

temporal structure of the environment, assigning high uncertainty to the expected state dura-

tion (as is the case for the IRI agent) ensures reasonably high levels of performance. However,

if the environment changes at regular intervals, it is worthwhile to build an accurate represen-

tation of the temporal structure, as the performance levels can drastically increase (in this

example from 81% to 87% of median performance levels).

Fig 7 shows the comparison of the performance distribution between four models; the

probabilistic agents IRI and RRI, and the two reinforcement learning based agents with single

update (SU-RW) and dual update (DU-RW) learning rules. The free model parameters (α and

κ, see Table 1) of the SU-RW and DU-RW agents were fixed to those values that maximize the

average performance levels in each environment. Importantly, when comparing the perfor-

mance distribution of the DU-RW agent to the performance distribution of the IRI agent we

find similar average performance per trial which is stable across environments. This finding

Fig 6. Performance as a function of the expected interval duration for ED-HMM based agents. The shaded regions show the performance quartiles

estimated over n = 1000 simulated experiments, in two different task environments. Left: In the first environment, reversals occur at irregular intervals.

The irregular reversal interval (IRI) agent (red) corresponds to the case where prior beliefs over interval duration follow a geometric distribution (see Eq

(5)), with mean μ and variance σ = μ(μ − 1). This agent expects reversals at irregular intervals. The regular reversal agent (RRI) (blue) corresponds to the

prior beliefs in the form of the negative binomial distribution, with mean μ and variance σ = μ. This agent expects reversals at (semi)regular intervals.

The true distribution of between reversal intervals in both conditions is depicted in Fig 5. Right: Same as left plot but the environment has semi-regular

intervals encoded by μ = 20 and σ = 20. As expected, we find that the RRI agent is highly sensitive to the misspecification of the expected interval

duration μ and variability of interval durations in different conditions, while the IRI agent shows a much better performance in the irregular

environment. The lower row shows the average probability of making a correct choice relative to the point of reversal, denoted by the vertical black

dashed line.

https://doi.org/10.1371/journal.pcbi.1006707.g006
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suggests that in spite of subtle differences in learning rules (see Eqs (2) and (20)) the two agents

generate very similar behavior.

To investigate the accuracy of the procedure for model comparison which we described in

Model fitting and model comparison, we have simulated behavior of the ED-HMM based and

the reinforcement learning based agents on the experimental task, and applied the same model

inversion procedure which we used for the analysis of behavioral data below. In Fig 8A we

show the average performance per trial for each agent type estimated over n = 1000 repetitions

of the experimental task. Fig 8B shows the probability of assigning behavior of each type of

agents to the correct model type. The confusion matrix was estimated over n = 100 simulated

experimental blocks, where in half of the experimental blocks ED-HMM based agents (IRI and

RRI) were used to generate behavioral responses and in the other half of the experimental

blocks the reinforcement learning agents (SU-RW and DU-RW) were used to generate behav-

ioral responses. The rather high mixing probability of the confusion matrix suggests that the

model comparison will have difficulties distinguishing properly between the models. Never-

theless, adjusting the experimental design to contain larger number of trials, that is, more data

points for estimating posterior and model evidence, is likely to make model comparison more

accurate.

Fig 7. Performance distributions of all four behavioral models in two different environments. Here we compare the performance distributions of

four different agents: irregular reversal interval (IRI) agent, regular reversal interval (RRI) agent, single-update Rescorla-Wagner(SU-RW) agent (Eq

(1)) and dual-update Rescorla-Wagner (DU-RW) agent (Eq (2)). The free model parameters were fixed as follows (see main text for more details): (IRI)

μ = 20, and σ = μ(μ − 1); (RRI) μ = 20, and σ = μ; (SU-RW) α = .25 and κ = 0; (DU-RW) α = .25 and κ = 1. Interestingly, the results show that the

DU-RW agent achieves similar performance levels in both environments, with average responses closely following that of the IRI agent (see lower row).

In contrast, the SU-RW agent shows only medium level performance in both environments with a significant increase of performance with irregular

reversals. As in Fig 6, the RRI agent performs best, among all agents, when exposed to semi-regular reversals, but has the worst performance, among all

agents, when exposed to irregular reversals.

https://doi.org/10.1371/journal.pcbi.1006707.g007
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Data analysis

Here we will present model comparisons and model fitting based on the behavioral data of 22

participants. As the SU-RW model was shown in previous studies to provide a worse account

for behavior than the DU-RW model [40], we do not expect the SU-RW model to explain the

behavioral data better than the other models. Moreover, as our simulations indicate that the

HMM and DU-RW models provide for comparable response patterns (see Fig 7), we will use

only the DU-RW model as a reference model, as this model was used in a previous study based

on the same data [39].

To circumvent a potential sensitivity of the model evidence to the specification of the prior

distribution for the free model parameters, we have based our analysis on the posterior predic-

tive model evidence (see Model fitting and model comparison for details). As the posterior

predictive model evidence is estimated from the posterior distribution, rather than the prior

(see Eq (28)), it is more robust to mis-specification of the prior, given a sufficient amount of

data in the predictive sample. Hence, to estimate the posterior predictive evidence we have

split the behavioral data for each participant into two sets. The first set, containing the initial

125 trials, that is the pre-reversal phase and the reversal phase of the experiment (see Fig 1), we

used for estimating posterior distributions of free model parameters (see Table 1). Note that as

this set contains all but the last reversal, it should provide sufficient information to constrain

the posterior model parameters. The reversal phase of the experiment is the only period which

participants can use to shape their beliefs about the time structure of reversals.

The second set, containing the last 35 trials, that is, the post-reversal phase (see Fig 1), we

used for Bayesian model comparison and model validation. Critically, as no reversals are pres-

ent in the post-reversal phase, this phase is especially suited for model selection: If participants

believe that a reversal will occur at specific moments during the post-reversal phase this belief

should be reflected in their behavior; e.g., they might change their choices in anticipation of a

reversal.

Fig 8. Agents performance on the experimental task and model comparison. A: Per trial performance (probability of making a correct choice) of

four different agent types: irregular reversal interval (IRI) agent, regular reversal interval (RRI) agent, single-update Rescorla-Wagner(SU-RW) agent

(Eq (1)) and dual-update Rescorla-Wagner (DU-RW) agent (Eq (2)). The free model parameters were fixed as follows: (IRI) μ = 20, and σ = μ(μ − 1);

(RRI) μ = 20, and σ = 120; (SU-RW) α = .25 and κ = 0; (DU-RW) α = .25 and κ = 1. The parameters were fixed in a way that all models have comparable

median performance levels (around 0.83). B: Confusion matrix showing the probability of assigning simulated behavior of different agents to the two

different types of behavioral models. Note that as in Fig 7 the IRI and DU-RW agents generate very similar average responses across the experiment.

This suggest a difficulty in distinguishing between these two type of models, which is also reflected in the confusion matrix that shows rather high

mixing probability.

https://doi.org/10.1371/journal.pcbi.1006707.g008
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In Fig 9 we show the results at both the group level and the individual level, using Bayesian

model comparison based on the posterior predictive model evidence. Although the group level

results suggest substantial evidence in favor of the DU-RW model (see Fig 9A), we can still

identify six participants for which we find higher model attribution (a participant specific pos-

terior model probability) of the ED-HMM based model (see Fig 9B). The exact values of the

predictive log model evidence (used for model comparison) and per subject model attribution

are shown in S1 Table.

We next asked the question whether there is some systematic behavioral difference between

these six and the remaining eighteen participants. Thus, we compared the averaged responses

of participants belonging to the ED-HMM group and the participants belonging to the

DU-RW group. In Fig 10 we show the choice probability averaged for each of the two groups.

Tellingly, the ED-HMM group (blue line) exhibits a sudden switch toward the alternative

choice approximately 20 trials after the start of post-reversal phase. Note that no reversals were

induced in this phase. This result suggests that participants belonging to the group for which

the ED-HMM model has higher posterior evidence behaved as if they were expecting another

reversal 20 trials after the last one. This indicates that they have used the reversal phase to infer

the reversal frequency and regularity.

If the ED-HMM model indeed captures this aspect of behavior better than the DU-RW

model, we would expect to see a similar trend in the response probabilities estimated from the

two behavioral models. For this we estimated the response probability for each participant

under each of the two models and averaged responses according to group. In Fig 11 we show

the between model comparison of the estimated response probabilities for the two groups of

participants. Although the mean response of the DU-RW model also shows a trough towards

Fig 9. Bayesian model comparison. A: Posterior distribution of the frequency of the ED-HMM based model within the studied group of participants.

The dashed line denotes the border at which both DU-RW and ED-HMM based models are equally likely. Hence, the probability mass on the right side

of the dashed line (where ED-HMM has higher frequency within the population) corresponds to the exceedance probability (ep) of the ED-HMM

based model (ep = 0.215). B: the color codes denote posterior model probability for each participant. The lighter the color the better the given model

predicts behavior of the given participant during the post-reversal phase.

https://doi.org/10.1371/journal.pcbi.1006707.g009
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Fig 10. Mean participant responses during the post-reversal phase. A: Average response across the two groups of participants, where one group (red

line) is best described by the DU-RW model, and the other group (blue line) by the ED-HMM. The shaded area marks the 90% Jeffreys interval. B:

Difference between mean group responses (black line), where the shaded area marks the 5th-95th percentile (light cyan) and the 25th-75th percentile

(dark cyan) of the group response differences obtained from 104 random allocations of participants into groups of size 6 and 16. The peak of the

response difference (at the 21st trial after the start of the post-reversal phase) lies well above the 95th percentile.

https://doi.org/10.1371/journal.pcbi.1006707.g010

Fig 11. Model based mean response probabilities during the post-reversal phase. Response probabilities estimated from the DU-RW model (left)

and ED-HMM model (right) and averaged over the two groups of participants: (blue line) The participants for which ED-HMM has higher model

attribution, and (red line) participants for which DU-RW has higher model attribution. The shaded area corresponds to the 90% confidence interval of

the group mean response probability.

https://doi.org/10.1371/journal.pcbi.1006707.g011
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the alternative choice (when conditioned on the participants in the ED-HMM group), we see

a much wider excursion in the mean response probability obtained using the ED-HMM,

explaining its higher predictive model evidence for this group of participants. Still, it is impor-

tant to note that the presence of the trough in the mean response probability of both models

suggest that the change of response probability towards the alternative choice was driven by

the specific sequence of outcomes that participants observed during this time window of the

post-reversal phase. In other words, it seems that the participants that were assigned to the

ED-HMM group were sensitive to a short sequence of negative outcomes, as if they were

expecting another reversal during the post-reversal phase.

In Fig 12 we show the posterior estimates of the expected reversal probability δτ for all par-

ticipants of the ED-HMM group. The expected reversal probability was estimated from State

durations and corresponds to the measure illustrated in Fig 4. Note that for four out of the six

participants we find the peak of the reversal probability to fall before τ = 20, that is, before the

20th trial within the post-reversal phase. For the other two we see a rather flat trajectory which

suggests that these subjects behave close to the IRI agents. Although these results seem to be in

contrast to our previous findings (that these six participants anticipated the change on the 20th

trial of the post reversal phase), the expected reversal probability does not correspond to the

expected response probability for a specific participant. The relation between these two quanti-

ties is non-linear and is also shaped by the sequence of outcomes.

Fig 12. Posterior estimate of the expected reversal probability. The participants’ specific beliefs about the probability of reversal within the post-

reversal phase, for all participants for which the ED-HMM model had higher posterior model evidence. The reversal probability is fully characterized by

two parameters δ, and r (see Eqs (8) and (9)). Each light blue line corresponds to the trajectory obtained as a single sample from the posterior estimates

over δ and r, whereas black lines correspond to the trajectory obtained from the mean posterior parameter estimates μr and μδ.

https://doi.org/10.1371/journal.pcbi.1006707.g012
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Discussion

The ability to represent complex temporal structures and to use these representations in every-

day decision-making is one of the key features of human adaptive behavior [62]. However, the

computational mechanisms that underlie these aspect of behavior are still poorly understood.

Here we proposed a novel behavioral model which utilizes an explicit representation of state

durations for making decisions. This model allowed us to investigate how beliefs about the

temporal structure of latent states in the environment influence the decision-making process.

As a demonstration of the applicability of the proposed model to behavioral data we have

used a reversal learning task, in which reversals followed a pre-specified temporal pattern. We

have illustrated several properties of the novel model, using both synthetic data for model vali-

dation and experimental data for a proof-of-concept demonstration.

Fitting the model to behavioral data allowed us to infer individual beliefs in temporal regu-

larities and identify participants who rely on the latent reversal schedule used in the experi-

mental task. Interestingly, we found that slightly more than one fourth of the participants

showed evidence of using temporal expectations when making choices during the post-rever-

sal phase of the experiment. Although the majority of participants behaved as if they did not

use any temporal regularity in the sequence of the reversals, this result is not too surprising

because participants were only exposed to five reversals during the whole experiment. We

expect that prolonged exposure to reversals would allow a larger number of participants to cor-

rectly learn the latent task structure, as it was recently demonstrated in [28].

We anticipate that the proposed model can bring novel insights into our understanding of

the interplay between the subjective representation of temporal task structure and decision

making. The relevance of accurately predicting the moments of change in our everyday lives is

reflected by the fact that humans exhibit a strong bias towards expecting timed changes in vari-

ous tasks. This behavior can even persist when exposed to a series of unpredictable events, e.g.,

during gambling [63] or trading on financial markets [64]. Hence, it may not be too surprising

that a firm prior belief in structured and predictable changes influences performance and may

lead to a reduced performance in cases when these beliefs are incorrect (see Figs 6 and 7). Such

over-confidence in temporally structured dynamics might also explain why human behavior is

found to deviate from the fully-rational Bayesian model on similar reversal learning tasks [48].

Related work

The key component of the proposed behavioral model is its conceptualization as an explicit

duration hidden Markov models ED-HMM [30], which involves an explicit representation of

the between reversal intervals as the hidden structural variable. This representation results in

an anticipation of specific moments of reversals. Such anticipation would be clearly advanta-

geous for an agent, as it enables faster behavioral adaptation in cases when reversals actually do

occur in a (semi)regular manner.

The ED-HMM belong to more general group of hidden semi-Markov models which are

often applied to the analysis of non-stationary time series [65–68]. In the context of decision

making the semi-Markov formalism allows for temporal structuring of behavioral policies

[69]. Importantly, semi-Markov dynamics was also applied to temporal difference learning to

account for dopamine activity in cases when the timing between action and reward is varied

between trials [70].

The proposed model builds upon recent approaches to model behavior in changing envi-

ronments [11, 71, 72] and can be seen as a direct extension of hidden Markov models (HMM)

which were applied to reversal learning tasks before [29, 38, 46–48]. In previous works, the

HMM were used to identify the moment of reversal, changes in the beliefs about reversal
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probability, and the most likely moment in which agents reversed their behavior. This was cru-

cial for understanding the effects of dopamine modulation on the underlying inference and

consequently behavior. Although it is out of the scope of the present paper, it is possible to per-

form backward inference with hidden semi-Markov models (HSMM), hence identifying the

most likely moments of reversal in the past. Furthermore, we will explore in the future possible

learning rules for parameters of the prior beliefs p0(d), similar to the work of [73]. Such exten-

sion would make the models also suitable for addressing questions related to changes in prior

beliefs of state durations.

In recent years, reinforcement learning models have found multiple applications in studies

relying on a reversal learning task. For example, the classical Rescorla-Wagner model [74], the

dual update extension of the Rescorla-Wagner model (as described in the present paper) [39,

40], or models separating the prediction error signals on positive and negative prediction

errors [75]. As we have shown here a reinforcement learning model generates behavior very

similar to a probabilistic counterpart in relatively simple settings of the reversal learning task.

Hence, we would expect that additional extensions of the considered dual update RW model

could make the behavior of the reinforcement learning even more similar to the probabilistic

model introduced here.

Still, we can point out several advantages of probabilistic models of behavior over reinforce-

ment learning models, in the context of decision making under uncertainty and in dynamic

environments. The probabilistic modeling approach allows for a principle way of mapping

complex knowledge about spatio-temporal task structure into a relatively simple set of learning

rules (as demonstrated here). In turn this provides clear functional interpretation of various

prediction error signals, and corresponding adaptive learning rates, which are typically diffi-

cult to derive or motivate within the context of classical reinforcement learning. Specifically,

we would say that prescribing to a probabilistic modeling approach is crucial for understand-

ing interaction between representation of temporal structure and decision making.

Interval timing

The sense of time and time representation at a neuronal level has been the focus of numerous

studies in the past [76–82]. Studies investigated how neuronal circuitry might implement a

robust internal clock [83], and how such an internal clock can be utilized to estimate time

elapsed between consequent events (e.g., between two tones). Although not described here,

behavior in such and similar tasks can be modelled using the formalism of the hidden semi-

Markov models. Estimating elapsed time between events (here, reversals) can be obtained

using a backward inference process which provides an estimate on the most likely moment of

the previous reversal. Nevertheless, it is an open question if the neural circuitry that explains

behavior related to interval timing, which involves sub-second time scales, can also be useful

to understand behavior which requires a temporal reasoning over much longer time scale.

This is of specific interest for understanding how the brain makes accurate predictions about

the expected moment of reward, and how this information is used to construct timed predic-

tion error signals [84, 85].

Variants of the reversal learning task

The reversal learning task has been shown to be especially useful for behavioral phenotyping,

e.g. in areas of executive control [86–90]; for quantifying individual proneness towards impul-

sive and compulsiveness [91]; and defining individual vulnerability towards addiction [92]

and other psychiatric disorders [35, 93, 94]. The experimental paradigms associated with a

reversal learning task can differ substantially from the design presented here (see Fig 1). For
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example, the probability of reward and punishment for different choices could be correlated to

some degree [47, 95], or the reversal schedule can be made dependent on the number of cor-

rect choices [96–98]. It is relatively straightforward to adapt the proposed model to any of

these variants. For example, when the reversal schedule depends on the number of previously

correct choices, one can make the duration transitions dependent on the belief that the previ-

ous choice was correct. This would relate state durations to the beliefs about the number of

correct choices since the last reversal. Thus, we believe that in a combination with the pro-

posed model, the reversal learning task opens a wide range of opportunities for linking anoma-

lous beliefs in the time domain to different cognitive disorders.

Relevance for understanding psychiatric disorders

Distortions in the temporal organization of cognition and behavior have been implicated, for a

long time, in a wide range of psychiatric conditions, perhaps most prominently in attention-

deficit hyperactivity disorder, autism and schizophrenia [99]. Hence, the proposed model

might help to integrate findings of patients’ aberrant behavior in simple time estimation tasks

(e.g., a deficit to reproduce durations [100–102] with their known deficits in the decision-mak-

ing domain [103], such as, in variants of the reversal learning task.

Over the recent years, the question of how people apply their knowledge about the underly-

ing structure of the environment in their decision-making has been widely investigated and

discussed. Studies have come to the rather unspecific notion that a reduction in model-based

control based on using environmental structure is ubiquitous across different psychiatric

symptoms and diagnoses [104, 105]. We believe that the model at hand could be a starting

point for developing a set of tasks particularly appropriate for refining this notion.

For example, Bayesian theoretical accounts have conceptualized addictive behavior as deci-

sion-making based on an aberrant model of the world [106]. Both animal and human studies

suggest that addicted patients might have a specific deficit to infer or simulate statistical regu-

larities in the environment [40, 107, 108]. Such deficits suggest limitations in their ability to

infer regularities, which consequently is observed as suboptimal decision-making.

Reversal learning deficits and impairments in model-based control have also been shown in

patients suffering from obsessive compulsive disorder (OCD) [109, 110]. A subgroup of OCD

patients suffers from an obsession for symmetry and organization. Similarly, obsessive com-

pulsive personality disorder (OCPD) patients show an exaggerated focus on order and symme-

try as well as rule-bound traits. Given this clinical picture, it is interesting to speculate that

beliefs about regularities in the environment might differ between OCD/OCPD patients and

controls. A reduced ability to infer and represent irregular changes in the environment might

lead to suboptimal decision-making and distress in OCD/OCPD patients in the presence of

irregular changes.

Finally, recent studies have demonstrated that schizophrenia patients may be character-

ized by an “over-dominance” of an internal model [111] (e.g., in the framework presented

here, overrating regularities in an irregular environment). When such an internal model is

detached from the external input from the world (i.e., the true regularity structure), this mis-

match might be involved in the development of psychotic states (in paranoia, delusions,

hallucinations).

Conclusion

In summary, we have presented a novel probabilistic model for understanding human decision

making behavior in changing environments. The proposed model is based on the explicit

duration hidden Markov model, which forms a special case of more general hidden semi-
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Markov models. The presented results, obtained from both simulated behavior and the model-

based analysis of behavioral data, suggest concrete applications of the proposed model in

understanding human behavior in changing environments. Most notably, it might be possible

to link the quality of the underlying representation of temporal task structure to behavior,

thereby opening new directions for cognitive phenotyping.

Supporting information

S1 Table. Model evidence and model attribution. Subject specific values of the estimated log

posterior predictive model evidence (PPLME) and the corresponding model attribution (see

Model fitting and model comparison for details).
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