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Abstract: The commonly-used large-scale knowledge bases have been facing challenges in open
domain question answering tasks which are caused by the loose knowledge association and weak
structural logic of triplet-based knowledge. To find a way out of this dilemma, this work proposes
a novel metaknowledge enhanced approach for open domain question answering. We design an
automatic approach to extract metaknowledge and build a metaknowledge network from Wiki
documents. For the purpose of representing the directional weighted graph with hierarchical and
semantic features, we present an original graph encoder GE4MK to model the metaknowledge
network. Then, a metaknowledge enhanced graph reasoning model MEGr-Net is proposed for
question answering, which aggregates both relational and neighboring interactions comparing with
R-GCN and GAT. Experiments have proved the improvement of metaknowledge over main-stream
triplet-based knowledge. We have found that the graph reasoning models and pre-trained language
models also have influences on the metaknowledge enhanced question answering approaches.

Keywords: metaknowledge; graph modeling; question answering; graph neural networks; knowledge
graph

1. Introduction

With the rapid development of the artificial intelligence, the voice interaction devices
are now becoming a significant application of the Internet, and the major Internet enter-
prises have all launched their own intelligent voice interaction devices. Intelligent voice
interaction has already been used as a new generation of Internet portal after the search
engine. It has also begun to enter a variety of application fields, such as mobile phones,
smart homes, industrial control systems, etc. The prospect of intelligent voice interaction
devices is extremely broad.

As a pivotal infrastructure of the Metaverse, the future voice interaction devices must
not only support simple information retrieval tasks, but also have the capabilities of answer-
ing questions with complex semanteme and logicality, whereas current voice interaction
devices are not able to deal with the complex application scenarios like open domain
question answering.

Open domain Question Answering (QA) is a type of language task that asks mod-
els to answer the factoid questions described in natural language. Recently, large-scale
Knowledge Bases (KBs), such as DBpedia [1], FreeBase [2], and YAGO [3], have proven
to be effectively applied on the open domain QA tasks, while the idea of this kind of
triplet-based knowledge is an adaptive variation of a complex network, which inherits its
long-tail effect in the QA tasks due to triplets’ sparsity and lack of logical association [4].

Obviously, the simplified triplet-based knowledge is not exactly the same as the knowl-
edge in human beings’ perception. Knowledge in human minds is a complex of hierarchical,
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structured, and systematized elements which has strongly logical or topological associa-
tions, especially presented in structure or sequence, while the very knowledge that exists
in commonly-used knowledge bases is simplified and presented as entity-relation triplets.

While most of the existing works focus on triplet-based KBs, a more general definition
about KBs and a various usages of KBs such as conceptual graph [5] and event evolutionary
graph [6] have been proposed to improve the QA approaches and other task performance
from different perspectives.

However, just like the taxonomy construction manufactured within the conceptual
graph, the content of the documents and webs was hopefully to be explicitly represented
through metadata in order to enable contents-guided search and other downstream tasks.
However, the knowledge in the real world could hardly be strictly partitioned into the hand-
craft-built or evolutional taxonomy [5] with accurate levels and divisions hierarchically.
Since the taxonomy construction is tough, cumbersome and new knowledge always led
to new partitioning and reconstruction problems, it is intuitively vital to consider another
flexible presentation for the hierarchical knowledge.

To match human’s natural intuition of knowledge, different from the strictly de-
signed and partitioned conceptual graph, our previous work [7] introduces the concept of
metaknowledge [8] into knowledge engineering research. Similar to the metadata, meta-
knowledge is a kind of graph data. It is a structural representation of knowledge and
knowledge with fine-grained and hierarchical characteristics, but the knowledge triplets
are weighted directional in hierarchy based on the structured information given by the
original sources.

Firmly based on the open domain QA task, in this work, we have: (1) designed an
automatic approach for generating metaknowledge and building metaknowledge network
from Wiki documents; (2) proposed an original graph encoder GE4MK for modeling
the metaknowledge (network) to the weighted directional graph with hierarchical and
semantic features; (3) presented a graph reasoning model MEGr-Net for a metaknowledge
enhanced open domain QA; and (4) carried out experiments for verifying the improvement
of our metaknowledge-based open domain QA approach with triplet-based approaches.

2. Related Work
2.1. Knowledge Base Question Answering (KBQA)

The goal of KBQA is to use large-scale knowledge bases to answer questions de-
scribed in natural language (natural questions), and the primary task is to understand and
extract the actual semantic connotation from natural questions, then retrieve entities or
relations in knowledge bases as the answers. Presently, there are two pipelines in KBQA:
the Semantic-Parsing-based (SP-based) pipeline and the Information-Retrieval-based (IR-
based) pipeline [4,9]. The early-days SP-based approaches mainly rely on hand-craft-
established rules [10] and supervised learning [11]. Recently, the convolutional neural
network [12], attention mechanism [13], graph2seq model [14], and reinforcement-learning-
based approaches [15,16] are also used in SP-based KBQA.

With the rapid development of knowledge representation learning, the IR-based
approaches have now become the mainstream in KBQA [17–20]. These approaches extract
information from questions, retrieve the information in knowledge bases (knowledge
graphs), and then use graph reasoning models to decide which entities or relations are
the answers. Basically, the steps of the IR-based approaches are: (1) Getting the seed
entities from the given natural question, retrieving seed entities in the knowledge base and
then building a question subgraph, in which the entities and relations are all semantically
associated with the seed entities. (2) Representing the given question with question
encoder, which analyzes semantic features in the question and outputs a commanding
vector (question embedding) for reasoning. (3) Reasoning with embedding of the given
question and the question subgraph obtained in steps (1) and (2), and then getting the
probability of whether it is the answer for each entity in the question subgraph. (4) Ranking
the probability sequence and deciding the most-likely answer entity.
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Meanwhile, it has been quite unsatisfying when using triplet-based KBs alone in com-
plex KBQA tasks like multi-hop question answering, and the problem that triplet-based
knowledge lacks structural logicality has become apparent. In order to make up for the ca-
pacity limitation of the existing KBs, a common practice is to introduce heterogeneous data
like documents to enrich the semantic information, which is referred to as Document-based
Question Answering (DbQA). Ref. [21] proposes a question answering model combining
FreeBase and Wikipedia documents. In order to improve the QA effectiveness in the case
of insufficient capacity of knowledge base, Ref. [22] proposes an early-fusion approach
to link the entities of knowledge base with the text in the document. In the multi-hop
QA task, Ref. [23] carries out multi-grained document modeling, constructs hierarchical
graph, and demonstrates graph reasoning and answer prediction through the Machine
Reading Comprehension (MRC) method. In the field of Visual Question Answering (VQA),
Ref. [24] designs a model which uses adversarial learning with bidirectional attention to
solve the VQA problem. Ref. [25] proposes the MESAN model, which is a multi-modal
explicit sparse attention network, to solve the problem of attention distraction.

The inspiration of the above works is that the defects of the knowledge base can be
made up for by improving the semantic parsing ability and introducing heterogeneous data
represented by documents, with the intention of continuously improving the effectiveness
of question answering.

2.2. Graph Neural Networks for Graph Embedding

The purpose of graph embedding is to represent the nodes, edges or subgraphs of a
graph as low-dimensional vectors through neural networks. Classical graph embedding
approaches are based on graph representation learning include DeepWalk, node2vec and
LINE, etc. Recently, Graph Neural Networks (GNNs) have become the new tools for
graph embedding. Ref. [26] proposes the Graph Convolutional Network (GCN) model
and applies it to the self-supervised node classification task. On the basis of GCN, Ref. [27]
models the complex relational data in the knowledge graph and puts forward the R-GCN
(relational GCN) model, which uses two different parameters matrices for vertices and
edges (relations). Inspired by the attention mechanism in Transformers [28], Ref. [29]
proposes the Graph Attention Network (GAT) to comprehensively consider the influence
of neighboring vertices on graph embedding.

The approaches for embedding relational graph proposed in R-GCN and the multi-
heads attention mechanism in GAT provide enlightenment on how to realize the representa-
tion of graph data with complex relations and semantic information such as metaknowledge
and metaknowledge networks.

3. Approach

Since the metaknowledge is different from the triplet-based knowledge, this work
proposes an approach (Figure 1) to make metaknowledge available for question answer-
ing. (1) Metaknowledge generating: for each question, we use the Wiki retriever from
DrQA [21] to get the top five relevant Wiki docs of the given question, then we design
a novel metaknowledge extractor to generate metaknowledge from those documents.
(2) Metaknowledge network construction and question subgraph retrieval: we use the
question-entity link proposed in Ref. [12] to get the entities relevant to the question. We
design a way to build semantic associations between metaknowledge extracted from docs.
Then, we do subgraph retrieval to reduce the scale of data. (3) Metaknowledge encoding:
we design a graph encoder for metaknowledge to transform the text-described metaknowl-
edge into matrices for the further computation. (4) Graph reasoning: we propose a graph
reasoning model MEGr-Net which turns the question answering into a node classification
task, that is, for each vertex in the question subgraph, the MEGr-Net will decide whether
the vertex is the right answer or not.
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Figure 1. An overview of our approach. There are basically four steps for our approach: (1) generating metaknowledge;
(2) building a metaknowledge network; (3) graph modeling and encoding; and (4) graph reasoning.

Essentially, metaknowledge is a special type of hierarchical graph; it generally has
two different types of vertices and edges: (1) Hierarchical vertices and edges. The hi-
erarchical vertices include multiple levels of section titles in documents, denoted as VH ,
and the hierarchical edges represent a special relation Hierarchical Belonging, denoted as EH .
(2) Semantic vertices and edges, which are actually the entities and relations extracted from
documents, denoted as VS and ES.

Thus, the metaknowledge extracted from document i is denoted as:

Mi = {VHi ∪VSi, EHi ∪ ESi}. (1)

Meanwhile,

VL
Hi

EHi−−→ VL−1
Hi , VL

Si
EHi−−→ VL

Hi, vL
Sij

ESi−→ vL
Sik, (2)

where
EHi−−→ VHi denotes the hierarchical belonging relation in the document structure, L

denotes the hierarchical level of the vertices, vL
Sij, vL

Sik ∈ VL
Si.

3.1. Generating Metaknowledge

Giving a question q described in natural language, this work uses a Wiki retriever
proposed in DrQA [21] to get the top 5 relevant Wiki documents Dq = {D1, · · · , D5}.
For each document Di, we use open source NLP models to extract the entities and relations
(referred to as metaknowledge semantic elements in this work) in paragraphs.

In this work, we transform the HTML script of each Wiki document web page into
hierarchical XML files by parsing the HTML labels, such as <h1>, <h2>, <h3>, <div
id=”toc”...>, <p>, which represent the title, section titles, summary, or paragraphs
(referred to as metaknowledge hierarchical elements in Ref. [7]).

Suppose Wiki document Di = {Pi, Ci}, where Pi =
{

pi1, pi2, · · · , pi|Pi |

}
denotes the

paragraphs set in the document Di (|Pi| is the total number of paragraphs);
Ci =

{
ci1, ci2, · · · , ci|Ci |

}
denotes the hierarchical elements, then each paragraph pij(j ∈ |Pi|)

hierarchically belongs to their upper hierarchical elements cik(k ∈ |Ci|) (e.g., section ti-
tles). Furthermore, this work extracts entities and relations paragraph by paragraph
using Stanza [30] and OpenNRE [31], then links the metaknowledge semantic elements to
hierarchical elements with a document structure (Figure 2).
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Figure 2. An example of metaknowledge extracted from Wiki documents. The number on the arrows indicates the
hierarchical levels of the relations, which are also the weight of edges.

Each document metaknowledge is saved as a JSON file converted from Python dictio-
nary (denoted as metaknowledge dictionary), the data structure is shown in Listing 1.

Listing 1. Denotations of keys in metaknowledge dictionary.

Dict:{
|-"Entities":{
| |-"0":{
| | |-"ENT_ID":’ENT_1’
| | |-"type":’title’
| | |-"content":’2001: A Space Odyssey’
| | |-"weight":-1
| | |-"title":’2001: A Space Odyssey’
| | |-"up_ID":’ENT_1’}
| |- ...
| |-"30":{
| |-"ENT_ID":’ENT_31’
| |-"type":’PERSON’
| |-"content":’Stanley Kubrick’
| |-"weight":2
| |-"title":’2001: A Space Odyssey’
| |-"up_ID":’ENT_25’}}
|
|-"Relations":{

|-"0":{
| |-"REL_ID":’REL_1’
| |-"head_ID":’ENT_5’
| |-"tail_ID":’ENT_1’
| |-"type":’Hierarchical Belongs’
| |-"weight":-1}
|- ...
|-"16":{

|-"REL_ID":’REL_17’
|-"head_ID":’ENT_25’
|-"tail_ID":’ENT_18’
|-"type":’performer’
|-"weight":2}}}

The weights of hierarchical vertices and edges are set as negative, which are the
opposite number of their level, for instance, weights of the 1st-level hierarchical vertices
are −1, and the 2nd-level vertices are −2. In contrast, the semantic vertices and edges are
set as positive, which are the exact level of the hierarchical vertices they belong to.

The denotations of keys in metaknowledge dictionary are shown in Table 1.
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Table 1. Denotations of keys in metaknowledge dictionary.

Entities Relations

ENT_ID
type

content
weight
title
up_id

Entity ID
Entity Type

Entity Textual Content
Entity Weight

Document Title
Upper Hierarchical Entity ID

REL_ID
type

head_ID
tail_ID
weight

Relation ID
Relation Type

Head Entity ID
Tail Entity ID

Relation Weight

3.2. Building Metaknowledge Network

For documents D = {D1, D2, · · · , DN}, the semantic association between Di and
Dj is denoted as Rij, then the metaknowledge network built on D is denoted as N =

∪i,j∈N

{
Mi

Rij←→ Mj

}
. When building a metaknowledge network from document meta-

knowledge, to avoid the loss of hierarchy caused by semantic entity fusion, this work only
establishes semantic association between hierarchical vertices.

Supposing that vH1 ∈ M1, vH2 ∈ M2 are two semantically associated hierarchical
vertices in document metaknowledge M1 and M2, their textual embedding vectors are:

embH1 = LM(textvH1 + texttitle1), embH2 = LM(textvH2 + texttitle2). (3)

where LM(·) denotes the pre-trained language models (PLMs), such as BERT [32],
RoBERTa [33], XLNet [34], etc.

Then, we use cosine similarity to calculate the semantic association between two
hierarchical vertices:

IF cosinesim(embH1, embH2) > tolerance, THEN vH1
rH1H2←−−→ vH2. (4)

To decide the appropriate tolerance threshold, we uses BERT as the PLM. Taking
“South Africa” as the keyword, this work retrieves 10 relevant Wiki documents using
Wikipedia Search. Through hand-craft selection, 78 groups of associated metaknowledge
hierarchical vertices are picked up. The cosine similarity of semantic embedding in each
group is encoded by BERT. Then, the statistical results of this test are shown in Figure 3.

Figure 3. Test to decide metaknowledge association tolerance.

Figure 3 indicates that the cosine similarity between associated hierarchical vertices is
basically in the range of [0.7, 0.9]; therefore, this work adopts tolerance = 0.7.

Meanwhile, we use S-MART (https://github.com/kkteru/r-gcn (accessed on 9 De-
cember 2021)) to obtain relevant entities to q, called seed entities Sq =

{
s1, · · · , s|Sq |

}
.

Then, a retrieval starts in order to find the directly connected semantic vertices VSq and

https://github.com/kkteru/r-gcn
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hierarchical vertices VHq, and the latter extends to the top level hierarchical vertex (see also
Knowledge Retriever in Figure 1). Then, we get the question subgraph Gq:

Gq =
{
Vq,Rq

}
,Vq =

{
Sq, VSq, VHq

}
,

si
rSij←→ vSj, sL

i
rHij←−→ vL

Hj
rHjk←−→ vL−1

Hk ← · · · → v0
H0, si ∈ Sq, vhj,k ∈ VHq.

(5)

3.3. Metaknowledge Encoding

In this work, we propose a Graph Encoder for Metaknowledge (GE4MK) to en-
code the text-described document metaknowledge. For document metaknowledge Mi =
{VHi ∪VSi, EHi ∪ ESi}, the features of each vertex vj ∈ VHi ∪ VSi could be divided into
three parts: (1) the semantic features of vj itself, including its textual content vcj and its
entity type vtj; (2) the hierarchical features of vj itself, including the semantic features
vuj of the upper hierarchical vertex that vj belongs to, and the title’s semantic features
tj; (3) the semantic features rj1, rj2, · · · , rjk of relations between vj and its k nearest 1-hop
neighboring vertices.

Consequently, the vertex features hj of vj can be described as:

hj =
[

fs
(
vcj, vuj, ti

)
|| ft(vtj)|| fr

(
rj1, rj2, · · · , rjk

)]
, (6)

where
vcj = LM(textcj), vuj = LM(textuj), ti = LM(texttitle), (7)

The output of these PLMs is a λ-dimensional dense semantic vector. The fs in
Equation (3) indicates a 2-layer MLP, which transforms the concatenation of [vcj, vuj, ti]

from R3λ to R3D, D indicates the dimension of feature space which is manually set de-
pending on the using PLM; for instance, in this work, we set D = 1000. ft : R|τ| → RD/2

and fr : Rk|R| → RkD are linear transformations, where |τ| = 9 in Stanza and |R| = 80 in
OpenNREWiki80.

For the convenience of calculation, we use matrices to describe all the vertices and
edges (also the entities and relations) features in the document metaknowledge Mi, so the
isolated vertices features (ignoring its neighbors) are:

Vi =


vic1 viu1 ti
vic2 viu2 ti

...
vicn

...
viun

...
ti

, (8)

and the type features of vertices are:

Ti =
[
vit1 vit2 · · · vitn

]>. (9)

Meanwhile, the relation type features are denoted as:

ri =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

rn1 rn2 · · · rnn

, (10)

where rxy = #RelationType, x, y ∈ [1, n]; for vertex (entity) x, if y is one of the k nearest
one-hop neighbors, then #RelationType indicates the type number in |R| of the relation
between vertices x and y; otherwise, #RelationType = 0.

Therefore, for all the vertices Vi = {VHi ∪VSi} in Mi, their features are:

Hi =
[
h1 h2 · · · hn

]>
= concat( fs(Vi), ft(Ti), fr(ri)), (11)
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where concat(·) indicates concatenation by column, and fr indicates a linear transformation
from Rn to RD/2 in Equation (8).

When considering the semantic information in relations, we define the Semantic
Relation Matrix of Mi as:

Ri = LM




text(r11)
text(r12)

...
text(rnn)




n2×D

. (12)

Using Ai to indicate the adjacency matrix of Mi, then:

(Ai)n×n (Hi)n×4D (Ri)n2×D = GENC(Mi), (13)

where GENC(·) denotes GE4MK, and Ri only includes semantic relation, not hierarchical
relations. Then, we use GE4MK to encode Gq from text-described data to matrices:(

Aq
)

n×n

(
Hq
)

n×4D

(
Rq
)

n2×D = GENC
(
Gq
)
, (14)

3.4. Graph Reasoning: MEGr-Net

Inspired by R-GCN[rgcn] and GAT[gat], according to the complex semantic and
hierarchical relations, this work proposes a graph-attention-based model MEG-Net (Meta-
knoledge Enhanced Graph reasoning Network) in order to perform reasoning on the
question subgraph Gq (Figure 4).

(a) (b)

Figure 4. The attention mechanism of MEGr-Net. (a) Self-attention; (b) attention aggregation.

Relational Graph Attention Layer (R-GAL) is the basic part of MEGr-Net, and the out-
put is the vertex state features under k-heads attention influence. We denote the total num-
ber of vertices as N = |Vq|, the vertex features input to R-GAL as H = {h1, h2, · · · , hN}, hi ∈
RF (F is the dimension of vertex state space), and the relations as R = [~r11,~r12, · · · ,~r1N , · · · ,
~rN1, · · · ,~rNN ]N2×Fr

,~rij ∈ RFr (Fr is the dimension of edge state space).
We firstly consider the interaction between vertex vi and its k−neighbors (attention

heads). The semantic relation matrix Rq from GENC(Gq) is transformed into relation
features matrix Rk:

Rk = del



~r11 ~r12 · · · ~r1N
~r21 ~r22 · · · ~r2N

...
...

. . .
...

~rN1 ~rN2 · · · ~rNN


N×NFr

 =


~r1n1

1
· · · ~r1nk

1
...

. . .
...

~rNn1
N
· · · ~rNnk

N

 =
(
~riKi

)
N×kFr

, (15)



Sensors 2021, 21, 8439 9 of 17

where del(·) indicates deleting all the empty relations, Ki =
{

n1
i , · · · , nk

i

}
indicate the

k−neighbors of vi.

The attention mechanism is denoted as att : RF
′
×RF

′
→ R; then, we calculate the

attention coefficients:

α̂ij = att
(
W0hi, W0hj

)
+ att

(
Wr~riKi , Wr~rjKj

)
, (16)

where W0 ∈ RF×F
′

is the vertex weight matrix, and Wr ∈ RFr×F
′

is the edge weight matrix.
These two matrices realize the parallel computation of linear transformation on each
vertex. α̂ij indicates the interaction of the relation between vertex vi and its neighbor vj,
as well as itself (self-attention). In MEGr-Net, the masked-attention mechanism is used to
distribute the attention interaction to the k−neighbors Ne(i) of vi, so the masked-attention
coefficient is:

αij = softmax(α̂ij) =
exp (α̂ij)

∑k∈Ne(i) exp (α̂ik)
. (17)

The MEGr-Net sets the attention mechanism as a single-layer feed forward network
(FFN) with parameters a ∈ R2F′ and LeakyReLU activate function, then:

αij =
exp (FFN(α̂ij))

∑k∈Ne(i) exp (FFN(α̂ik))

=
exp (LeakyReLU(a>

[
W0hi, W0hj

]
+ a>

[
Wr~riKi , Wr~rjKj

]
))

∑k∈Ne(i) exp (LeakyReLU(a>[W0hi, W0hk] + a>
[
Wr~riKi , Wr~rkKk

]
))

.

(18)

Next, updating the vertex features of vi:

h
′
i = σ

 ∑
j∈Ne{i}

αij
(
W0hj + Wr~rij

), (19)

where σ(·)is a nonlinear function, and we use the ELU in MEGr-Net.
When considering the multi-heads attention, we have:

h
′
i =

K
||

k=1
σ

 ∑
j∈Ne{i}

αk
ij

(
Wk

0hj + Wk
r~rij

), (20)

where
K
||

k=1
indicates the concatenation of k vertex features of vi under its k-neighbors

attention interaction.
In the last R-GAL, we calculate the average features instead of concatenating, and use

the logistic sigmoid to normalize the output features into [0, 1] as the probability pi that
indicates vertex vi is the answer entity:

h
′
i = σ

 1
K

K

∑
k=1

∑
j∈Ne{i}

αk
ij

(
Wk

0hj + Wk
r~rij

), (21)

pi = sigmoid
(

h
′
i

)
. (22)

For the efficiency of computation, we use matrices in MEGr-Net to describe the whole
progress: First, the vertex features matrix H of question subgraph Gq is multiplied by the
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vertex weight matrix W0 for state space transformation. Then, an all-combination is used
to concatenate W0hi and W0hj in Equation (16):

allc(W0H) = (w0hi)N2×F =

[
w0h1
w0h1

· · ·
· · ·

w0h1
w0hN

· · ·
· · ·

w0hN
w0h1

· · ·
· · ·

w0hN
w0hN

]>
. (23)

We do the same operation to Rk:

allc(WrRk) =
(
wr~riKi

)
N2×F

=

[
wr~r1K1
wr~r1K1

· · ·
· · ·

wr~r1K1
wr~r1KN

· · ·
· · ·

wr~rNKN
wr~r1K1

· · ·
· · ·

wr~rNKN
wr~rNKN

]>
.

(24)

Then, the attention coefficient vector:

α = soft max
(

FFN
(

a>(allc(W0H) + allc(WrRk))
))

. (25)

Updating the vertices’ state:

H
′
=

K
||

k=1
σ
(

αk
(

Wk
0H + Wk

r Rk

))
, (26)

and aggregating:

H
′
= σ

 1
K

K

∑
k=1

∑
j∈Ne{i}

αk
(

Wk
0H + Wk

r Rk

). (27)

Finally, the logistic sigmoid:

p = sigmoid(H
′
). (28)

The vector p indicates the probability that each node in the question subgraph is
the correct answer. In other words, the MEGr-Net turns question reasoning into a node
classification task, and it picks the vertex whose probability is the highest as the most
probable answer.

4. Experiments

To verify the effectiveness of metaknowledge network in open domain question
answering, this section carries out experiments on a subset of WebQuestionsSP, analyzes
the experimental variables including: (1) triplet-based knowledge and metaknowledge,
(2) various graph reasoning models, and (3) several pre-trained language models.

4.1. Datasets and Set-Ups

This work uses the open domain natural language question answering dataset We-
bQuestionsSP [35] for experimental analysis, which includes 4737 questions in natural
language. At present, there is no well-established large-scale metaknowledge base and
metaknowledge network, so we have to build it from scratch by the approach designed in
Sections 3.1 and 3.2. For the fact that the entities and relations extracted by open source
NLP models naturally have quality disadvantages, the metaknowledge network we build
in this work has an innate weakness when comparing with the finely-built large-scale
knowledge bases such as FreeBase and WikiData. Consequently, to make hierarchical meta-
knowledge and non-hierarchical triplet-based knowledge comparable on the same track,
considering the data quality limitation, we adopt the general approach in the construction
of knowledge graph, that is, deleting all hierarchical nodes and relationships, retaining
only semantic entities and relations in metaknowledge and integrating them to form a
non-hierarchical triplet-based knowledge network.
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Meanwhile, the process of extracting metaknowledge from Wiki documents, construct-
ing a metaknowledge network, retrieving and encoding question subgraphs takes a big
amount of time and computing resources. For example, in the previous experiment, it
took an average of 2 h for 4 × 11 GB VRAM GPU and 2 × 12 Core, 24 Threads CPU to
build a metaknowledge network from five Wiki documents relevant to a question and
complete subgraph retrieval and its encoding. Considering the data quality and hardware,
this section scaled down the dataset to 2.5% of WebQuestionsSP, that is, 250 questions in
natural language. In addition, it was divided into 150 for the training set, 50 for the cross
validation set and 50 for the test set. In this section, it is referred to as WebQuestionsMbQA.
The training parameters of MEGr-Net are shown in Table 2.

Table 2. The training parameters of MEGr-Net.

Parameters Values

Epochs 200
Learning Rate 5 × 10−3

Attention Heads k 8
Dimension of Entity Features F′ 1000

Dimension of Relation Features F′r 500
Hidden Units 1000

The semantic encoder LM(·) is deployed on Server #1. The metaknowledge genera-
tion, metaknowledge network construction framework and MEGr-Net are deployed on
Server #2 (see also Appendix A). A Tesla V100 GPU (with 32 GB VRAM) is used for training,
which takes 13.5 d (325 h).

This work takes the average accuracy (avg. Acc.) as the evaluation index.

4.2. Experimental Control Groups

This section analyzes the impact of different experimental variables on MbQA from
the following three aspects:

• Hierarchical metaknowledge and non-hierarchical triplet-based knowledge. This
is the focus of this section, that is, what improvement hierarchical metaknowledge can
make on open domain question answering compared with non-hierarchical triplet-
based knowledge—in other words, whether metaknowledge and metaknowledge
network have superiority in open domain QA tasks. As described in Section 3.1,
considering the extraction quality of open domain entities and relationships by open
source NLP models, this section uses the same data and extraction models to build a
metaknowledge network (referred to as MK-Net in the experiment) and triplet knowl-
edge base (referred to as Tri-KB) by the metaknowledge structure proposed in the
beginning of Section 3 and the general triplet-based knowledge structure, respectively.

• Graph reasoning model. MEGr-Net, based on GAT, essentially achieves an improve-
ment of graph data with complex relationships, like metaknowledge. Meanwhile,
it partially adopts the relationship processing approach in R-GCN. Therefore, this
section takes GAT and R-GCN as test baselines and compares them with MEGr-
Net. To explain the impact of (meta)knowledge extraction quality on the results,
this section introduces the results of DrQA [21] and GRAFT-Net [22] on the entire
WebQuestionsSP as a reference.

• Pre-trained language models (PLMs). The input of MEGr-Net is the question sub-
graph Gq encoded by GE4MK, and its semantic features mainly come from the text
embedding vector encoded by the PLM LM(·) in GE4MK. Therefore, different PLMs
may exert different impact on the semantic feature richness of the problem subgraph.
This section takes BERTBASE as the baseline and RoBERTa [33] and ALBERT [36] as
the control groups.
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4.3. Results and Analysis

The results on control group #1 on WebQuestionsMbQA are shown in Table 3. The re-
sults show that, with the same data quality, the hierarchical metaknowledge achieves
better results than non-hierarchical triplet knowledge in open domain question answering
(+16.9% Tri-KB).

Table 3. Results on Control Group #1.

(Meta) Knowledge Network IH-Acc #.

Tri-KB 0.483
MK-Net 0.652

# The WebQuestionsMbQA dataset which we use in the experiment is part of the whole WebquestionsSP, so we use
average In-House Accuracy (IH-Acc.) for avg. Acc.

The results on control group #2 are shown in Table 4. For GAT, the relationship matrix
Rk in MEGr-Net and the relationship weight matrix Wr in R-GAL are removed in this
section. Modifications have been made to R-GCN for the tasks in this section.

Table 4. Results on Control Group #2.

Graph Reasoning Models Acc.

Baselines GAT (MK-Net) 0.608 (IH †)
R-GCN # (MK-Net) 0.601 (IH)

MEGr-Net (MK-Net) 0.652 (IH)
DrQA ? (doc only) 0.215

GRAFT-Net ? (KB+doc) 0.687
# Model from https://github.com/kkteru/r-gcn (accessed on 9 December 2021). ? The data are cited from [22],
respectfully. † IH indicates that the experiments are based on the dataset WebQuestionsMbQA, and if not annotated
that indicates that the experiments are based on the dataset WebQuestionsSP.

As can be seen from the results, MEGr-Net achieves better performance than the
baselines in the reasoning of hierarchical graph data with complex semantic relationships,
such as a metaknowledge network (+4.4%GAT, +5.1%R-GCN). Meanwhile, compared with
GRAFT-Net, which uses the complete FreeBase as the knowledge base and integrates the
document (doc) and KB features, MEGr-Net still lags behind, indicating that it still needs to
be improved in MbQA, especially in the integration with MRC method (see also Section 4).

The results on control group #3 are shown in Table 5 (see Appendix B for the source
of the pre-training parameter file of the pre-training language model). From the results,
the PLMs (ALBERTXXLAERGE, RoBERTaLARGE) with large-scale parameters perform better,
indicating that the larger the PLMS used by the graph encoder, the finer the fine tuning
and the richer the semantic features of the question subgraph, the better performance will
be achieved in MbQA.

Table 5. Results on Control Group #3.

MEGr-Net PLMs IH-Acc.

Baseline

+BERTBASE 0.652
+ALBERTBASE 0.646
+BERTLARGE 0.670

+RoBERTaLARGE 0.692
+ALBERTXXLARGE 0.708

As shown in Figure 5, the combination of MEGr-Net and ALBERTXXLARGE achieved
the best results (+5.6% MEGr-Net+BERTBASE) and gained better performance than GRAFT-
Net using LSTM [lstm] as a text encoder, which proves that PLMS based on Transform-
ers [28] is better than LSTM in MbQA.

https://github.com/kkteru/r-gcn
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Figure 5. Results of graph reasoning models and PLMs in MbQA.

Generally, the metaknowledge network with document directory hierarchy can sig-
nificantly improve the existing methods in KBQA, which is basically consistent with the
view that titles play a positive role in question answering in [22]. Meanwhile, finer PLMs
can improve the semantic feature representations of question subgraphs and achieve better
results in question answering. This is also consistent with the view and experimental
results in [37].

5. Discussion

From the overall results of this work, metaknowledge basically solves the problems
of triplet-based knowledge with weak structural logic, and provides a new idea for the
theoretical and practical research of knowledge engineering. Meanwhile, it must also be
noted that, as a relatively new research field, there are still some urgent problems that need
to be solved in the future work.

5.1. Metaknowledge and Metaknowledge Network Modeling

The metaknowledge and metaknowledge network modeled by the single dimen-
sion network in this work (Sections 3.2 and 3.3) is a compromising strategy to reduce
the complexity of the model under the current realistic conditions of mainstream GNN
models. In fact, according to the our concept, the metaknowledge network should be a
multi-dimensional hyper-graph with hierarchical structure (Figure 6). The metaknowledge
network expressed by that type of graph model includes two dimensions: hierarchical
dimension and semantic dimension. The hierarchical dimension is in the outer layer, which
includes all hierarchical nodes and relationships; the semantic dimension is in the inner
layer, which includes all semantic nodes and relationships subordinate to the hierarchical
nodes. Ref. [38] proposes an embedding framework MINES for multi-dimensional net-
works with hierarchical structure, which uses a hierarchical structure for multi-dimensional
network embedding; Ref. [37] proposes an open domain question answering method based
on hyper-edge fusion. These documents show the feasibility of graph reasoning on the
metaknowledge network expressed by the hierarchical multi-dimensional hyper-graph.
This metaknowledge modeling method needs to be further studied and explored.
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Figure 6. Metaknowledge that modeled by multi-dimensional hyper-graph with hierarchical structure.

5.2. MbQA and Graph Reasoning

Limited by the extraction effect of open-source NLP models, MbQA has insufficient
advantages over KBQA. At least under the existing conditions, there is still a huge gap
between the metaknowledge network and mutual large-scale knowledge bases such as
freebase from the perspective of data quality. Therefore, MbQA may be more suitable
for in-domain QA tasks (such as question answering on laws and regulations). The fine-
tuned NLP models will significantly improve the extraction quality of metaknowledge
semantic elements. At the same time, the structural logic of metaknowledge network
makes it have the ability to deal with complex relationships. Therefore, the role of the
metaknowledge network in multi-hop QA tasks is also a direction worthy of research.
In terms of graph reasoning models for question answering tasks, MEGr-net relies on the
hierarchical features contained in metaknowledge to supplement the short board relying
only on semantic features (KBQA). On this basis, documents [22] and pre-trained language
models [39] can continue to be integrated into graph reasoning to select the best from the
best and enhance the effect of MbQA.

In general, the metaknowledge enhanced question answering is a brand-new method
for solving the problem caused by triplet-based knowledge, and it improves the capability
of current knowledge bases (which are also the knowledge engines of intelligent voice
interaction devices). In the foreseeable future, this method could be the antidote to help
intelligent voice devices get rid of the problems that they are not so good when answer-
ing complex questions asked by users, and make great progress in the interaction with
human users.

6. Conclusions

Facing the problems in current open domain QA tasks caused by the loose knowl-
edge association and weak structural logic of triplet-based knowledge, this work makes
pivotal innovations on metaknowledge enhance question answering: (1) Metaknowledge
extraction and metaknowledge network construction, where we present the approach
of generating metaknowledge and building metaknowledge network from Wiki docu-
ments automatically. (2) Metaknowledge and metaknowledge network modeling, where
we generally consider several different kinds of features from reasoning performance
related aspects including semantic features such as textual content, entity type, relations,
and along with hierarchical features. (3) MEGr-Net, which is proposed for question an-
swering, which aggregates both relational and neighboring interactions compared with
R-GCN and GAT. Experiments have proved the improvement of metaknowledge over
main-stream triplet-based knowledge. We have found that the graph reasoning models
and pre-trained language models also have influences on the metaknowledge enhanced
question answering approaches.
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Appendix A. Experimental Environments of Hardware and Software

Table A1. Hardware and software environments of Server#1.

Server #1: Providing BERT Embedding Service

Hard-ware Env.
CPU 2 × Intel Xeon E5-2678 v3 (48) @ 3.300 GHz
RAM 32 GB
GPU 4 × NVIDIA GV102 (11 GB VRAM)

Software Env.

OS Ubuntu 18.04.5 LTS
Python Python 3.6.5: Anaconda
PyTorch 1.6.0 (for GPU)
TensorFlow 1.15.0 (for GPU)

Table A2. Hardware and software environments of Server#2.

Server #2: Main Experimental Environment

Hard-ware Env.
CPU 2 × Intel Xeon Silver 4210R (40) @ 3.200 GHz
RAM 256 GB
GPU 4 × NVIDIA Tesla V100S (32 GB VRAM, using 1)

Software Env.

OS Ubuntu 20.04.2 LTS
Python Python 3.7.7: Anaconda
PyTorch 1.9.0 (for GPU)
TensorFlow 1.15.0 (for GPU)

Appendix B. PLMs Used in This Work

1. BERTBASE: https://huggingface.co/bert-base-uncased/tree/main (accessed on 9
December 2021).

2. BERTLARGE: https:///huggingface.co/bert-large-uncased/tree/main (accessed on 9
December 2021).

3. RoBERTaLARGE: https://huggingface.co/roberta-large/tree/main (accessed on 9
December 2021).

4. ALBERTBASE: https://huggingface.co/albert-base-v2/tree/main (accessed on 9 De-
cember 2021).

5. ALBERTXXLARGE: https://huggingface.co/albert-xxlarge-v2/tree/main (accessed
on 9 December 2021).
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