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Abstract: The ability to control the interactions between functional biomaterials and biological systems
is of great importance for tissue engineering and regenerative medicine. However, the underlying
mechanisms defining the interplay between biomaterial properties and the human body are complex.
Therefore, a key challenge is to design biomaterials that mimic the in vivo microenvironment.
Over millions of years, nature has produced a wide variety of biological materials optimised for
distinct functions, ranging from the extracellular matrix (ECM) for structural and biochemical support
of cells to the holy lotus with special wettability for self-cleaning effects. Many of these systems found
in biology possess unique surface properties recognised to regulate cell behaviour. Integration of such
natural surface properties in biomaterials can bring about novel cell responses in vitro and provide
greater insights into the processes occurring at the cell-biomaterial interface. Using natural surfaces
as templates for bioinspired design can stimulate progress in the field of regenerative medicine,
tissue engineering and biomaterials science. This literature review aims to combine the state-of-the-art
knowledge in natural and nature-inspired surfaces, with an emphasis on material properties known
to affect cell behaviour.

Keywords: natural and nature-inspired surfaces; surface-cell interactions; biomimicry; (bio) materials;
tissue engineering; regenerative medicine

1. Introduction

Over the course of evolution, nature developed various biological materials that are optimised
to serve a wide variety of functions. For example, spiders can produce different types of silk with
varying mechanical properties to capture preys [1], honey bees build highly self-organised patterned
honeycombs for efficient habitation [2], and shells provide the primary means of protection for the
soft bodies of the animals they house [1]. Moreover, animals consist of different specialised tissues
(e.g., tendons, bones, and skin) and sponges do not need nervous, digestive, and circulatory systems
because of the pores and channels in their bodies [1]. In the plant kingdom, superhydrophobic waxes
allow self-cleaning, with particle reduction and antimicrobial effects [3]. Biomimicry or bioinspiration is
the development of novel technologies through transferring function from these biological systems and
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can solve many complex problems faced by humanity across numerous disciplines [4]. For instance,
naturally occurring proteins in animals and plants inspired scientists to promote tissue healing in
humans using nanofibre scaffolds [5]. In addition, honeycomb structures allowed engineers to create
materials with a high strength-to-weight ratio, which is useful in biomedicine for the design of 3D
porous structures for tissue engineering [6]. Furthermore, soft materials in animals such as the octopus
stimulated the development of a new type of adaptive robotics based on their highly flexible and
deformable properties [7,8].

In the field of regenerative medicine and tissue engineering, an important area of interest is the
development of functional biomaterials for directing cell fate [9–12]. In vitro tissue construction can
be hindered by a loss of phenotypic characteristics of the primary cells culture [13,14]. Additionally,
when primary cells are unavailable, differentiating stem cells towards specialised cell types through
material cues offer an interesting opportunity for regenerative therapies [15]. In vivo, controlling
immune cell behaviour is necessary to avoid foreign body reactions, which eventually can lead to
decreased performance of implanted biomaterials though material encapsulation [16]. In general,
cells respond to different physical and biochemical cues in the ECM, such as structure, stiffness,
adhesiveness, degradability, biochemical composition, and ligand adsorption [15,17–21]. Hence,
modulating the inherent properties of biomaterials plays an important role in controlling cell behaviour.
However, the mechanisms underlying the interplay between material properties and cell phenotype
are complex. This makes it difficult to identify optimal surface characteristics for both in vitro and
in vivo applications.

In the age of increased antibiotic resistance due to overuse and misuse of antibiotics [22],
the need for alternative methods to ward off bacterial contamination on medical implants is growing.
These bacterial infections have serious adverse effects on the efficacy of biomaterials in various clinical
settings [23,24]. Treatments of such infections are challenging because of the different resistance
mechanisms existing in bacteria [25]. In addition, antibiotic resistance causes clinical and societal
problems associated with high healthcare costs [26,27]. Therefore, for tissue engineering applications,
antimicrobial biomaterials gain specific interest in mitigating microbial surface colonisation besides
the focus on controlling cell behaviour. It is known that biofilm formation can be prevented via
chemical or physical modifications. Chemical approaches incorporate biocidal materials, such as
nanoparticles [28–30] and polymers [31,32], to resist microbial colonisation. Physical methods on the
other hand alter surface topographical parameters, including aspect ratio [33], roughness [34,35] and
geometry [36], to induce spatial cues that combat biofilm formation. However, despite the advancement
in the design of antimicrobial biomaterials as mentioned above, a real consensus on the ideal surface
criterion to avert bacterial infections has not been reached.

To tackle these problems, artificial high-throughput systems were developed for identifying surface
properties with a most optimal outcome [37–40]. This approach can be applied both on a structural
and chemical level. In addition, high-throughput platforms exist to screen for desirable properties in
the field of material science [41–43]. Although high-throughput platforms offer an unbiased method
for discovering optimal material properties, they have their limitations since only a restricted part of
the material design space is covered. For instance, both the surface topographical design space and
chemical diversity is immense. For surface architectures, patterns can be constructed on both nano- and
microlevel dimensions, with different heights, densities, and shapes in either an ordered or disordered
manner. For polymers, a large diversity exists in combining different monomer blends together. This is
illustrated for polyurethane, a polymer commonly used for clinical applications, of which already
hundreds of varieties exist that can evoke different cell responses [44]. Thus, a key challenge remains
in identifying suitable material properties for generating a specific biological response.

In an alternative approach, natural surface materials that through millions of years of evolution
carry specialised properties, can inspire material scientists for designing novel materials for tissue
engineering, regenerative medicine, and biomaterials applications. In this review, we provide the
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reader with an overview of natural material properties that can be harnessed for these applications
with a special emphasis on surface topography.

2. Natural Surfaces

Natural surfaces have received a tremendous amount of attention because of their special
wettability, including anisotropic wetting and superhydrophobicity [45–47]. In general, wettability is
determined via measurements of contact angles (CA) when liquid interacts with a solid surface
according to Young’s model (Figure 1, left). On natural surfaces, this wetting behaviour is highly
affected by the inherent surface roughness and topography, as already described by the Wenzel [48]
and Cassie-Baxter [49] models in the mid-1900s. In the Wenzel model, the water protrudes into the
gaps of the rough surface [48] (Figure 1, middle), whereas in the Cassie-Baxter model air is trapped in
the valleys underneath the water [49] (Figure 1, right). For theoretical background on these wettability
models some excellent works are available [50–53]. In the next section, several examples of natural
surfaces with unique surface properties are given, which are often linked to wettability.
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Figure 1. Different models describing wetting behaviour on solid substrates depending on surface
structure. Compared to an ideal solid surface (Young, left), surface roughness and topography affects
wetting behaviour either by increasing the contact area of the solid-liquid interface (Wenzel, middle)
or by introduction of a liquid–vapour interface because of trapped are underneath the water
(Cassie-Baxter, right).

2.1. Self-Cleaning, Superhydrophobic, and Ultrahigh Pinning Properties in Plants

To date, plant biodiversity is approximated at 270,000 different species worldwide [3]. Adaptation to
environmental conditions for over millions of years has resulted in a large variety of multifunctional
biological surface structures among these plants [3]. For example, a study covering 200 water repellent
plants identified diverse surface structures depending on their origin [54]. Plants have been a source of
inspiration for biomimetics for several decades. Well-known functional aspects include the reduction
of particle adhesion, self-cleaning properties and anti-pollution effects, based on the physico-chemical
surface properties of plants [55]. Such properties are created by the chemistry and structure of the
most outer layer of the plant surface, which is composed of the cuticle (Figure 2). This part varies
in roughness, topography, hierarchical structure, and chemistry among distinct plant species [56].
The cuticle, better known as the protective film covering the epidermis of plants, consists of two
main components: the cutin and the cuticular waxes. Cutin is a polyester of hydroxylated fatty acids
(C16 and C18) and glycerol [55], whereas the cuticular wax is a mixture of diverse hydrocarbon chains
and rings [55]. Generally, epidermal cells cause variation in structure at the microscale, whereas cuticle
morphologies differ at the nanoscale. The most common nanowaxes have three-dimensional structures
described as crusts, granules, plates, platelets, filaments, rods, and hollow tubules with sizes ranging
from 0.2–100 µm [56]. Examples of epidermal cell morphologies include: hemispherical, cupola,
cone-shaped, papilla, and hair [3]. As said before, the structural basis formed by these components
establishes important functional effects in plants, including superhydrophobicity. This physical
property of the leaf cuticle was first described in 1944 [57]. It was observed that changes in the surfaces
properties of the cuticle were related to alterations in the closeness of packing of hydrophilic and
hydrophobic units [57]. In nature, superhydrophobic properties play an important role in establishing
self-cleaning and anti-pollution effects [58]. Superhydrophobicity is characterised by an apparent
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Figure 2. Stratification of the outer layer of the plant surface. (A) The cuticle is connected to the cell
wall through a pectin layer. The epicuticular waxes on the cuticle establish the structural features of the
plant surface. (B) The cuticle is composed of cutin and cuticular waxes, which vary in chemical and
structural composition among different plant species. Reproduced from Ref. [59] with permission from
The Royal Society of Chemistry.

First of all, one of the most famous plants with superhydrophobic leaves is the sacred lotus
(Nelumbo nucifera) [60], which shows high water repellence and self-cleaning effects. The removal
of dust particles by water droplets that roll over the surface of the lotus leaf have led to the concept
of the “lotus-effect” [60]. Multiple studies show that the superhydrophobicity of the lotus plant is a
consequence of the micro- and nanostructure present on the surface of the upper epidermis [61,62].
The hierarchical structure consists of papillae at the microscale, while the nanoscale is characterised by
epicuticular wax tubules (h: 0.1–3 µm, w: 80–120 nm) [62] (Figure 3A).
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Figure 3. Overview of superhydrophobic plants found in nature displaying unique hierarchical
structures. SEM images depicting the distinct micro- (top) and nanostructures (bottom); papillae and
tubules of the sacred lotus (Nelumbo nucifera) (A), papillae, and cuticular folds of the red rose (Rosea rehd)
(B), ridges and papillae of the rice plant (Oryza sativa) (C). Scale bars: top 10 µm, bottom 5 µm.
Images adapted from: Vermeulen et al. [63].
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The shape of these hollow wax tubules found on the lotus plant surface is dependent on its chemical
composition, which are mainly secondary alcohols such as nonacosan-diols [64]. The structural duality
traps a thin layer of air between the papilla, resulting in high water repellence, according to the
Cassie-Baxter model [49]. Of interest, lotus leaves show lower wettability compared to other plant
species for low surface tension liquids [65]. The surface roughness on different length scales inherent
to papillose plant surfaces is key to this liquid repellence [65]. Altogether, the sacred lotus leaf
shows self-cleaning effects due to its superhydrophobic properties caused by distinct hierarchical
surface structures.

In contrast to lotus leaves, petals of red roses (Rosea rehd) possess, next to superhydrophobic
properties, ultrahigh water pinning forces [66–68]. This “petal effect” allows the immobilisation of
water droplets on rose petals, even when turned upside down [68]. Just like the lotus leaf, the properties
of the rose petal are the consequence of a dual surface structure. This hierarchical structure consists of
micropapillae (h: 7 µm, d: 16 µm) that exhibit cuticular folds (w: 730 nm) at the nanoscale (Figure 3B) [68].
The high adhesive force is due to the large contact area between the water and the rose petal’s surface as
the water droplet protrudes entirely into the nanofolds (Wenzel model [48]). Moreover, the micropapillae
control the degree of liquid–solid adhesion [66]. Summed up, the rose petal combines papillae and
nanogrooves to create a superhydrophobic surface with high pinning forces.

The rice leaf (Oryza sativa) is recognised due to its anisotropic wettability and superhydrophobic
properties [69–71]. Like the lotus leaf, water droplets roll off the surface of the rice leaf, ensuing self-cleaning
and draining processes [70]. Of interest, rice leaves can only shed water droplets along the longitudinal
direction of the leaf. Again, this behaviour originates from the multiscale surface roughness and
chemical hydrophobicity. The upper side of the rice leaf is characterised by vascular bundles forming
parallel ridges (h: 125–150 µm w: 150–175 µm) on which several micropapillae (h: 2–4 µm, d: 2–4 µm)
are displayed covered by nanowaxes (Figure 3C) [72]. The platelet shape of the wax is associated with
the aldehyde composition of the wax [73]. Besides, the leaf contains sub-cuticular features composed
of silicon oxide which have favourable effects on the mechanical and physiological properties of the
rice plant [3]. The anisotropic rolling behaviour is highly dependent on the roughness aspect ratio
and directionality of the micropapillae [74]. Overall, the anisotropic rolling properties result from the
hierarchical structure and directional microstructures of the rice leaf.

In short, the combination of surface roughness at micrometer dimensions together with varying
properties of the cuticle components at the nanometer range are the basis of the surface structure of
plants and bring about their unique properties. The many kind of cuticular waxes give rise to distinct
types of wetting behaviour as described for the sacred lotus, red rose, and rice plant. These three plants
function as examples to highlight the different types of superhydrophobicity found in plants.

Such superhydrophobic properties can be used for antimicrobial applications [75–79]. At the
moment, the hierarchical structure of the sacred lotus is utilised in the design of antifouling surfaces
with potential applications in industrial, marine and medical fields [75–77]. By mimicking the
previously described ‘lotus-effect’, researcher are able to prevent the adhesion of bacteria and algae
to these surfaces [75,76]. Of interest, titanium surfaces with copied lotus structure, which is a
commonly used material for orthopaedic implants [80], also showed antifouling effects [77]. Similarly,
the nanostructure of the taro (Colocasia esculenta) prevents fouling of bacteria and colloids [78]. Likewise,
another study reported the ability of sixteen reproduced plant surfaces to affect the spatial distribution
of Pseudomonas aeruginosa attachment [63]. Superhydrophobic characteristics of plants are also exploited
for self-cleaning and drag-reducing effects [81,82]. For example, Xiang et al. [81] fabricated a biomimetic
Salvinia molesta surface using a 3D printing approach, which imitates the floating fern’s superrepelent
capability. Similarly, the rice leaf anisotropic structure has been implemented for such properties [82].
Altogether, bioinspired design using micro- and nanostructures present on plant surfaces are useful for
antimicrobial effects.



J. Funct. Biomater. 2020, 11, 47 6 of 24

2.2. Self-Cleaning, Antifouling, and Special Wettability in Insects

According to recent estimates, the amount of insect species is estimated at 5.5 million [83].
Interestingly, the largest study on surface structures found on insect wings only covers 97 species [84].
Among those, a great diversity in surface structures and special abilities can be identified. For example,
nanopillars on cicada wings limit bacterial contamination through self-cleaning [85], scales of butterflies
induce structural colonisation [86], termites can undergo a colonisation flight due to micrasters on their
wings [87], water striders perform hydrodynamic propulsion facilitated by needle-like structures [88],
and beetles capture water from fog using arrays of bumps on their elytra [89] because of structural
adaptations made over time to cope with environmental stresses. Insect wings have especially received
attention due to their highly sophisticated structures [84]. Similar to plants, the surfaces of insects
consist of cuticular layers with different surface topography and chemistry [73]. However, contrary to
plants, the cuticle is mainly composed of chitin and protein [73]. At the end of the 20th century,
Wagner et al. [84] examined wings of 96 insect species in order to find a relationship between
the wing surface structures and their wettability and contaminability. Several morphologies were
identified, ranging from hair-like structures to plate-like scales and tooth sculptures. More recently,
the morphologies of wax crystals on the insect wing surfaces are categorised as setae, denticles,
and fractals [73].

Cicadas gain specific attention due to the irregular nanostructures present on their wings.
For example, Sun et al. [90] investigated the wettability of 15 species of cicada, identifying both
hydrophilic and hydrophobic wings depending on the size and arrangement of the protrusions
(d: 82–446 nm) (Figure 4). In general, structures with greater height and diameter but smaller spacing
exhibited hydrophobic properties. Hydrophilic wings are a result of a more disordered type of surface
patterning, giving a larger solid-liquid interface. Interestingly, some cicada wings displayed CA
values (137–146◦) associated with superhydrophobicity [90], which are related to self-cleaning [51] and
antifouling [91] mechanisms. However, other studies show that cicada limit bacterial attachment directly
due to the physical surface structure present on their wings, even independent of chemistry [85,92].
Similar as with inducing variable hydrophobicity levels, the unique scale of the topography, associated
with small pitch (165–251 nm) and spacing (9–44 nm), prevented bacterial cell adhesion [92].
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Butterflies, another species of insects, show similar anisotropic wetting behaviour as previously
described for the rice leaf [79,93]. Superhydrophobic properties together with low adhesion are
provided by microgrooves on the scale structures of butterfly wings (Figure 5A). The hierarchical
structures shows directional adhesion, making a water droplet roll off in the radial outward direction
and pin in the radial inward direction [94]. The wing is composed of scales arranged like rooftops as
shown in Figure 5B, forcing anisotropic wettability. Furthermore, the multilayers and scales in butterfly
wings also cause multilayer interference and diffraction, resulting in a broad spectrum of structural
colours. Prum et al. [86] examined the structural colours of 11 butterfly species, identifying 13 distinct
wavelengths. For all species, the scales are aligned as shingles on the upper surface of the wings.
Investigation of the anatomy and nanostructure of the wings revealed a great diversity in shape of the
scales, which affect the refractive index of the tissue. Lastly, Goodwyn et al. [95] found a link between
wing colour and wettability. Namely, translucency and hydrophobicity are both affected by scale
cover [95]. While reduced scale cover in wings increases translucency, hydrophobicity performance is
decreased. Similar as with plant surfaces, this highlights the importance of the spacing and size of
nanostructures on wettability.
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Figure 5. Structural representation of the butterfly wing. SEM images show the microgrooves on the
scale structure of the Morpho anaxibia (A) and the rooftop arrangement found on the Pontia daplidice (B).
Scale bars: bottom right. Image adapted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, J. Bionic Eng, Anisotropism of the Non-Smooth Surface of Butterfly Wing, G.
Sun et al.,© (2009) [96].

Another insect with contrasting micro- and nanostructures on its wings is the termite (Figure 6) [87,97].
Termites continuously deal with rain periods and fly from their nests during such occasions of rainfall.
Because of the changing environmental conditions and their lack of ability to fly for longer periods,
termites have evolved special wettability on their wings. Hydrophobic termites are characterised by
hairs and smaller structures on their wings termed micrasters, composed of 5–7 arms of approximately
100 nm which highly influence wetting behaviour [87]. Microdroplets on these types of wings form a
Cassie-Baxter type of interaction. Moreover, higher structures allow higher hydrophobicity of the wing
surfaces, which was also observed in cicada wings described earlier. Contrary, wings of hydrophilic
termites consist of folds and ridges with topographies arranged in a hexagonal fashion next to curved
perturbances spaced 700–1200 nm apart and 150–250 nm in height [87]. In short, surface topography
guides wetting behaviour, where micrasters support hydrophobicity and hexagonal structures lead
to hydrophilicity.
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Figure 6. Micro- and nanostructures on the termite wing. SEM analysis reveals contrasting micro-
(A) and nanostructures (B) that induce special wettability on the termite wing (Nasutitermes sp.),
including hairs and micrasters. Scale bars: bottom right. Image adapted from: © (2011) Watson et al. [87].

Water striders have the ability to walk on water, which is made possible by thousands of needle-like
structures known as setae on their legs (Figure 7) [98,99]. These setae are oriented at an angle of
inclination of approximately 20◦ with respect to the leg surface, with a length of 50 µm and a diameter
of 3 µm [98]. The roughness and hierarchical structure of the leg surface results in superhydrophobic
properties that can induce hydrodynamic propulsion to move on the water [88]. These properties
enable the water strider to survive on water even during heavy rainfall.
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Some beetles (e.g., Stenocara) situated in the Namib Desert use fog as an alternative water source
due to low rainfall [89,101]. During the morning fog, large water droplets form on the surface of the
beetle, which is composed of alternating hydrophobic and hydrophilic regions [89]. The mechanism
works by producing droplets on the hydrophilic regions of the elytra, which increase in size and roll
down to the mouth of the beetle. The microstructure consists of hemispheres (d: 10 µm) arranged in
hexagonal fashion, which shows some resemblance to the previously described structure of the lotus
leaf [89]. The hydrophobic regions are covered by wax, whereas on the hydrophilic regions wax is
absent [101]. Next to the presence of wax, rougher elytra surfaces characterised by irregularities caused
by cracks, hairs and pores also influences the wettability, showing stronger hydrophobicity [102].
For optimal fog collection, the beetle can undergo a fog-basking posture oriented head down at a
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23◦ angle [101]. Altogether, the beetle efficiently collects water from fog through a system guided by
structures found on their elytra.

Overall, insects show a great variety in surface roughness, chemistry, and topographies.
Distinct morphologies at the micro- and nanoscale give insects self-cleaning, antifouling, special wettability,
fog-collecting, and walk on water abilities as mentioned in the above described insects. These surface
characteristics of insects can be implemented in material design for different applications [82,103–106].
For instance, Zhai and colleagues [106] successfully fabricated a surface that mimics the water
collecting behaviour of the beetles in the Namib desert by copying the structure seen on their elytra.
Possible applications of such a surface include coatings for controlled drug release and microfluidic
devices. Surface structures found on insect wings can also be used for the design of antifouling
surfaces [63,82,103–105]. For example, nanopatterns, ranging from hexagonal arrays of nanopillars [104]
to diamond nanocones [105], inspired by the cuticles found on insect wings, display such properties.
Likewise, replicated superhydrophobic dragonfly and cicada wings show resistance to biofouling [103].
Similarly, bactericidal activity of black silicon is based on high aspect ratio nanoprotrusions also seen
in the dragonfly [107]. A comparable effect on the attachment of Pseudomonas aeruginosa was observed
on ten replicated insect surfaces [63]. Lastly, the scale structure of the butterfly wing has been used
for low-drag and self-cleaning purposes [82]. These examples demonstrate that the unique surface
characteristics of insect wings have applications in several fields.

2.3. Special Wettability, Low Drag, and Structural Absorption in Vertebrates

The gecko has not only generated interest because of its remarkable solid-solid adhesion to
vertical surfaces [108], but also due to its liquid–solid superhydrophobicity and high adhesive forces
towards water droplets [109]. The ability of the gecko to walk on vertical surfaces is facilitated by a
system consisting of setae (30–130 µm) covered by spatulae (200–500 nm) (Figure 8A) [110]. The high
density of the spatulae enables high adhesion strength, while the setae provide initial attachment
force. This hierarchical adhesive structure is able to adapt to different substrates depending on
their surface roughness [108]. As the adhesive system of the gecko is facilitated by Van der Waals
interactions, increased surface density results in greater adhesive forces [111]. The spatulae must
be able to contact the substrate to achieve maximum adhesion strengths. Therefore, greater surface
roughness values of the spatulae allow greater contact area that enhances adhesion [108]. In addition,
the asymmetric nature of the setae structure allows quick attachment and detachment at necessary
angles to prevent contact flaws [110]. Superhydrophobicity of the gecko feet can is attributed to the
multiscale structure formed by the setae and spatulae [109]. The high adhesive forces towards water are
a result of heterogeneous morphology and orientation of the structures as explained by Liu et al. [109].
In short, the high-density spatulae create a high adhesive force towards water. Next to the feet of the
gecko, its skin also displays superhydrophobic properties due to microstructures featuring spinules
(l: 4 µm), thereby controlling liquid, solid, and biological contacts [112]. The gecko thus evolved surface
structures at different scale levels for specialised functions, either to achieve robust and reversible
attachment or for self-cleaning purposes.

In recent years, sharkskin gained attention due to its antifouling and drag reducing properties [113,115].
The riblets on a sharkskin are oriented in the flow direction in order to reduce friction drag,
as summarised by Dean and colleagues [115]. The sharkskin surface structures are directional
through riblets that are aligned along the swimming direction. The riblets, also known as dermal
denticles, are organised in small ridges with longitudinal grooves (Figure 8B). The height of these
riblets ranges from 200–500 µm, with a spacing varying between 100–300 µm [113]. Moreover, the riblet
structure also protects sharks against biofouling [116]. This is due to the low drag properties of the
sharkskin and the spacing and structure of its riblets. Lower drag results in faster water movement,
which reduces the settlement time for microorganisms. In addition, the riblet microstructure deters
microorganisms, as the sharkskin’s groove width and depth is not preferred [116]. This behaviour
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has been confirmed on biomimetic sharkskin surfaces [117]. Altogether, the microstructures on the
sharkskin reduce friction drag, exhibit hydrophobicity and attribute to antifouling effects.
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Figure 8. SEM display of different microstructures found in animals. (A) The hierarchical structures
of the gecko (Gekko gecko) consists of setae made up of branches (BR) and spatulae (SP), enabling it
to walk on vertical surfaces. (B) Riblets found on the scales of sharkskin (Squalus acanthias) reduce
friction drag in the direction of the flow. (C) Modified barbule arrays on the feathers of a bird of
paradise (Parotia wahnesi) cause structural absorption resulting in a super black appearance. Scale
bars: bottom right. Images adapted with permission from: (A) Mech. Mater., 37, Gao et al. [110],
Mechanics of hierarchical adhesion structures of geckos, 275–285,© (2005) Elsevier. (B) Jung et al. [113],
Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys. Condens. Matter,
22, 1–9,© (2010) IOP Publishing. (C) McCoy et al. [114] under the Creative Commons Attribution 4.0
International License.

Remarkable material properties can also be found in the feather of birds [118,119]. For example,
water repellent properties of diving birds were identified by Gremillet and colleagues almost a decade
ago [118]. The birds maintain a thin layer of air in their plumage due to two distinct zones. The inner part
shows a regular feather structure, whereas the outer part possesses an irregular structure. This duality
provides the birds with a waterproof inner section and a wettable outer section [118]. Similar to diving
birds, the outer feathers of pigeons also show special wetting behaviour [119]. The barbs and barbules
of the pennae create a Cassie-Baxter type of wetting regime for small water droplets. The multiscale
surface forces rain drops to roll off the feather, making it waterproof. Besides special wettability,
feather structures can also influence the appearance of birds. Of special interest, McCoy et al. [114]
showed that feathers of five Birds of Paradise structurally absorb light to produce a super black
appearance. In comparison, the birds show the same extremely low directional reflectance as seen in
man-made super black materials based on carbon [120]. Multiple scattering of light caused by the tilted
barbule microstructures in feathers results in more structural absorption than in other birds (Figure 8C).
These structures have evolved over the years, because the super black plumage enhances the bird’s
courtship display. Overall, the feathers of birds possess distinct microstructures that influence both
wetting behaviour and appearance, as earlier observed for wings of butterflies.

The above described properties found in vertebrates can be useful for many applications.
For example, the adhesion of gecko pads has led to the development and fabrication of adhesive
surfaces with potential applications in biomedical materials [121]. For instance, the adhesive strategy
of the gecko has been used to develop a hybrid adhesive tape which can be used to guide synthetic
adhesives [122]. Another study translated the working mechanism of gecko feet into the development
of a biocompatible and biodegradable tissue adhesive for sealing wounds [123]. Similarly, Frost et al.
produced a gecko-inspired adhesive based on nanopillars with a diameter in the range of 100–600 nm
that effectively bonds to tissue for repair [124]. The sharkskin’s structure can be implemented in
engineering designs for drag-reducing and antibiofouling applications [117], as seen in the coating
of aeroplanes [125] and ships [126]. Furthermore, the replicated riblet structure can also disrupt the
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formation of bacterial biofilms, useful for applications on medical devices [127]. Lastly, the unique
structural absorption characteristics of feathers seen in Birds of Paradise may have further applications
in antireflective materials [128].

2.4. Nature-Inspired Architectures to Guide Cell Behaviour

The previous sections highlighted the importance of surface characteristics for a wide variety
of applications. However, these properties are also relevant in guiding cell behaviour in vitro,
which can be attributed to creating antifouling properties in vivo, for example. Concerning this,
natural surfaces have been used in bioinspired approaches to guide cell behaviour, including spider
silk [129,130], oyster shells (Pinctada maxima) [131–135], lotus leaves [136–140], and cicada and dragonfly
wings [36,141–147].

In the 1910s, Harrison was the first to note the influence of natural substrata on cell behaviour
such as cell shape, migration and cytoskeletal organisation [129]. In his experiment, nerve cells of frogs
were mounted on spider silk to investigate the response to such solid structures [129]. It was observed
that when forced into free hanging drops, cells adapted their shape and became spherical [129]. A few
years later, similar observations were made, where cells from the epithelium of the frog showed
active movement along the spider web [130]. Nowadays, silk is exploited for bone tissue engineering
applications. For example, silk fibroin nanoparticles promote osteogenic differentiation of rabbit
adipose-derived stem cells [148]. The osteoinductive properties of shells were already explored several
thousand years ago, when Mayans used the shells as tooth replacement [133]. However, not until
the early 1990s the potential of nacre, the inner shell layer of molluscs, in stimulating bone formation
was observed [131]. Namely, the presence of nacre chips in a culture of human osteoblasts guided
the formation of bone nodules [131]. More recently, Green et al. [132] showed the potential of nacre
particles and the nacre soluble matrix to induce the early stages of human bone cell differentiation,
again showing its osteoinductive capacity. Likewise, the invertebrate shell was used in another study
in a similar manner [133]. However, this time the importance of the nacre topography rather than
the chemistry in inducing osteogenesis in mesenchymal stem cells (MSCs) was highlighted [133].
Of interest, the prismatic topography (Figure 9A) also allowed maintaining bone-marrow derived MSC
phenotype in long-term culture [135] and induced osteogenic differentiation, which was related to an
increase in cell spreading [134]. Altogether, the oyster shell provides a promising tool in therapeutic
strategies for engineering bone or biomaterial design to maintain multipotent properties.J. Funct. Biomater. 2020, 11, x FOR PEER REVIEW 12 of 24 
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Figure 9. Nature-inspired topographies used to control cell behaviour. (A) Replicated prism topography
of the oyster shell (Pinctada maxima) for phenotypical maintenance of mesenchymal stem cells
(MSCs). (B) Hierarchical micro- and nanostructures copied from the lotus leaf to increase cell
viability. (C) Nanotopography imprinted from a cicada wing with bactericidal properties. Scale bars:
bottom right. Images adapted with permission from: (A) Alakpa et al. [135], The Prismatic Topography
of Pinctada maxima Shell Retains Stem Cell Multipotency and Plasticity In Vitro. © (2018), Published by
WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim. (B) Jeon et al. [137], The effect of microsized
roughness in nano/microsized hierarchical surfaces replicated from a lotus leaf on the activities of
osteoblast-like cells (MG63). J. Mater. Chem. © (2012), The Royal Society of Chemistry; permission
conveyed through Copyright Clearance Center, Inc. (C) Dickson et al. [36], Nanopatterned polymer
surfaces with bactericidal properties. Biointerphases, 10,© (2015), American Vacuum Society.
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The lotus leaf has been an inspiration for surface design to control cell behaviour for different
purposes [136,137,139,140]. For example, the lotus leaf structure is used to steer cell differentiation [137,139].
In osteoblast like cells (MG63) the hierarchical lotus structures (Figure 9B) induced increased cell
viability and calcium deposition compared to flat [137]. Another effect was observed on adipose
derived mesenchymal stem cells, where the lotus structure increased adipogenic differentiation,
while chondrogenic and osteogenic differentiation were decreased [139]. Furthermore, cell adhesion
and proliferation are also modulated by the lotus structure [136,138,140]. The dual micro- and
nanostructure influenced cell attachment and proliferation of different cell lines (SaOs-2, L929 and
ATDC5), linked to morphological changes [140]. Similarly, the superhydrophobic lotus characteristics
prevented adhesion and proliferation of MSCs [136]. These properties were utilised by Mao et al. [138]
to fabricate a lotus-like superhydrophobic film with good blood compatibility while no platelets
adhered, useful in biomedical devices to prevent coagulation.

Another example of a natural surface able to modulate cell behaviour is the cicada wing,
which is able to kill bacteria due to arrays of nanopillars present on its surface, as previously
explained [85]. This bactericidal effect has led to the development of cicada inspired nanopatterned
surfaces [36,141,142]. For instance, an array of nanopillars with a width of 70 nm, spacing of 100 nm,
and a height of 210 nm (Figure 9C) increased bacterial cell death compared to flat and larger nanopillared
counterparts [36]. Bacterial cell morphology on these nanopillared surfaces appeared stretched and
ruptured, whereas bacteria were rod-shaped on the flat control. In a similar study, the length scale
parameters that control spatial patterning of bacteria on a surfaces was investigated [33]. It was
concluded that bacterial attachment becomes more disordered as spacing between pillars decreases,
with increasing high-aspect-ratio being key in preventing bacterial attachment. In line with this,
another study identified that the killing efficiency of nanopillars (h: 190 nm, d: 80 nm) against
Staphylococcus aureus bacteria increased by decreasing the interspace between the pillars [141].
Intriguingly, identical disordered nanopillars did not show a similar outcome [141]. Furthermore,
multi-directional nanospikes (d: 120 nm, h; 300 nm, s: 200–400 nm) showed biocidal activity against
both Staphylococcus aureus and Pseudomonas aeruginosa bacteria [142].

Potential nanopatterns that can simultaneously direct cell response and kill bacterial cells inspired
by insect wings are also described in [143–147]. Such dual biofunctionality was investigated for three
nanopatterns with pillar diameters ranging from 122–126 nm, heights between 94–188 nm, and spacing
of 300 nm [144]. On these patterns Escherichia coli cells were severely damaged and formation of
extracellular polymeric substance was disrupted. Similarly, in another study nanopatterns in the shape
of pillars with a height of 190 nm, spacing of 170 nm, and a diameter of 80 nm showed significantly
higher bactericidal effects compared to nonpatterned surfaces [143]. As nanotopographies in this
size range are known to induce osteogenic differentiation in stem cells [149], these topographies can
possibly steer cell differentiation and kill bacteria at the same time. Moreover, titania nanowire arrays
were able to discriminate bacterial and mammalian cells [145]. While bacteria were eliminated through
mechanical rupture, mammalian cell adhesion, and proliferation were guided depending on type of
nanoarray [145]. Interestingly, titanium nanoarrays mimicking the dragonfly wings showed a similar
response [146]. These surfaces showed selective bactericidal activity, while also enhancing proliferation
of primary human fibroblasts [146]. Likewise, similar nanostructured titanium surfaces were able to kill
bacteria and enhance the growth of MG63 cells compared to flat controls [147]. Such properties could
be relevant for biomedical implants to tackle host–tissue integration problems. Overall, the unique
surface characteristics of natural surfaces can be used to regulate cell behaviour useful for different
therapeutic and biomaterial applications.

2.5. Structure of Extracellular Matrix (ECM) Guides Functional Properties in Human and Animal Tissue

Bodies of multicellular organisms consist of different types of tissue that all have their own
distinct role. Tissue, which is widely known as a group of similar cells with a specific function,
obtains a great part of its function from the ECM composition [150]. Namely, the distribution
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of functional and structural molecules such as collagen in the ECM gives each tissue its distinct
properties [151]. Moreover, the complex structural organisation among tissues shows a great variety
in ECM architecture [152,153]. For example, the muscular tissue of the heart, also known as the
myocardium, shows a directional alignment of ECM fibres (Figure 10A) [154]. Consequently, cells are
oriented along the anisotropic parallel arrays of the myocardial tissue due to nanotopographical
cues found on the ECM. Nanopatterned substrata with similar structural alignment can be used as a
scaffold for the construction of implantable engineered cardiac tissue, as shown for polyethylene glycol
hydrogels [154]. Altogether, heart tissue acquires its electrophysiological and mechanical functional
properties necessary for precise control of cardiac function from the ECM topography.
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Figure 10. Ensemble of structural organisation found in various types of tissue. (A) Top view of ex
vivo rat myocardium showing direction of alignment of matrix fibres. (B) Structure of individual
mineralised collagen fibrils attached to each other by glue filaments (arrows) in bone tissue. (C) Collagen
fibrils are aligned continuity in mature rat ligaments. Scale bars: bottom right. Images adapted with
permission from: (A) Kim et al. [154], Nanoscale cues regulate the structure and function of macroscopic
cardiac tissue constructs. Proc. Natl. Acad. Sci. © (2010) (B) Springer Nature Customer Service
Centre GmbH: Springer Nature, Nature Materials, Sacrificial bonds and hidden length dissipate
energy as mineralized fibrils separate during bone fracture, Fantner et al.,© (2005) [155]. (C) Matrix
Biol., Provenzano et al. [156], Collagen fibril morphology and organization: Implications for force
transmission in ligament and tendon, 71–84,© (2006) Elsevier.

Similarly, bone tissue also gains its exceptional mechanical properties from the composition and
structure of its matrix [155,157]. Interactions between collagen fibrils and non-fibrous organic matrix is
facilitated by the nanoscopic arrangement of the bone. The collagen fibrils are interconnected by glue
filaments (Figure 10B), which prevent the separation of the bone structure when force is applied [155].
The glue promotes an energy dissipation mechanism by stretching its sacrificial bonds. Structure of
the ECM also plays an important role in endothelial vascular membranes found in vascular tissue
of the rhesus macaque [158]. Topographical features of vascular basement membranes in the blood
vessels are composed of a complex meshwork of pores and fibres in the nano- and submicron range
(d: 1–1000 nm), as seen in the basement membrane architecture of the aorta. These structural properties
guide the normal homeostatic state of vascular tissue by controlling endothelial cell behaviour including
adhesion, differentiation, and proliferation. Finally, mechanical behaviour in connective tissue such as
tendons and ligaments is also determined by the organisation of the ECM [156]. The structural element
collagen-I makes up the continuous fibril morphology of this type of tissue (Figure 10C). Force within
connective tissue is transferred through these collagen fibres, giving the tissue its mechanical properties.
Finally, surface topography of the ECM has also been used in biomimetic tissue engineering approaches
of native skin [159], tendon [160], and liver tissue [160]. In short, a big diversity in structure can
be identified between various types of tissue such as heart, bone, vascular and connective tissue.
The structural organisation of the ECM within a tissue is a key factor in establishing the tissue’s
functional effect, which can be utilised in bioinspired tissue engineering methods.
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2.6. Replication of Native Tissue to Direct Cell Behaviour

A few studies have focused on replicating native tissue to direct cell behaviour [161–164].
For example, it was shown that by replicating the tendon micro-environment (Figure 11A), mesenchymal
stem cells (MSCs) can be guided to differentiate towards a tenogenic phenotype [162]. In another study,
the cell shape of mature and de-differentiated chondrocytes were imprinted in polydimethylsiloxane
(PDMS), resulting in negative imprinted patterns of these cell surfaces [161]. These patterns directed
cellular morphology and expression of chondrogenic markers (collagen-II and aggrecan) in rabbit
adipose derived MSCs, depending on the maturation of the chondrocytes used for imprinting.
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Figure 11. Replicated native tissue structures. (A) Replicated elongated and aligned morphology of
tendon tissue able to support tenocytic differentiation of MSCs. (B) Schwann cell imprinted patterns
to direct differentiation of MSCs into Schwann cells. Scale bars: bottom right. Images adapted with
permission from: (A) Tong et al. [162], Functional replication of the tendon tissue microenvironment
by a bioimprinted substrate and the support of tenocytic differentiation of mesenchymal stem cells.
Biomaterials, 33,© (2012) Elsevier. (B) Moghaddam et al. [165], Engineered substrates with imprinted
cell-like topographies induce direct differentiation of adipose-derived mesenchymal stem cells into
Schwann cells. Artif. Cells, Nanomedicine, Biotechnol., 47,© (2019) Published by Informa UK Limited,
trading as Taylor and Francis Group.

Using similar approaches, substrates with imprinted osteoblast or Schwann cell topography
(Figure 11B) were capable of guiding differentiation of adipose derived MSCs towards the
osteogenic [166] and Schwann cell [165] lineage respectively. Lee et al. [163] used UV-assisted capillary
force lithography to fabricate a substrate with imprinted nanoscale topography of differentiated skeletal
myoblasts. Again, hMSCs cultured on these patterns underwent more efficient commitment to the
myogenic lineage compared to the flat control [163]. The relevance of cell shape within tissues was also
highlighted by Ron and colleagues [164] using 3D biomimetic engineered biochips and computational
models [164]. In the study, human podocytes cultured on the biochips attained a similar shape as
seen in vivo. It was concluded that cell shape contains essential information to maintain the cell’s
physiologically relevant phenotype, which are dependent on the geometrical constraints imposed
upon cells by the surrounding tissue. A consequence can be that the surface to volume ratio of a cell
affects reaction and diffusion rates [164]. This changes the expression and subcellular localisation of
proteins necessary to manage its function. Furthermore, cell geometry is linked to YAP/TAZ [167]
and RhoA [168] signalling, both essential in controlling multiple aspects of cell behaviour such as
growth, differentiation and cell cycle maintenance [169,170]. Thus, the shape a cell attains within tissue
influences its behaviour. Altogether, replication of native tissue shows high potential for regenerative
medicine to guide cell behaviour.
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3. Discussion

Technological advances in regenerative medicine and tissue engineering rely on the development
of functional biomaterials for engineering the cell microenvironment to regulate cell behaviour.
Concerning this, a major challenge remains in the design of the right material properties to generate a
specific cell response. With the emergence of micro- and nanofabrication techniques and high-content
imaging, novel combinatorial and high-throughput approaches have been developed [171–174].
These libraries are based on miniaturised platforms, which are able to simultaneously characterise a high
number of varying surface properties, such as topography [37–39,41,43,174] and chemistry [42,174–176].
Together with machine learning algorithms this offers a great tool to screen for properties that induce
desired cell behaviour in vitro [177]. For example, the TopoChip [37], BSSA [38], and MARC [39]
platforms have investigated the relationship between topography and cell response. Additionally, in the
field of material science these automatic measurement methods are also used to screen for functional
properties, ranging from structural to optical characterisations [41–43]. However, these high-throughput
platforms also have limitations, since they only vary a limited number of parameters and therefore
each focus on a restricted area of the biomaterial design space. Cell studies on artificial surfaces have
proven that topographical cues are of great importance in controlling cell behaviour. For example,
cell shape is highly influenced by surface topography, which can influence several cellular processes
ranging from migration to differentiation [164,167,178]. In vivo, it is known that cells respond to the
dual-scale structures of the ECM both at the micro- and nanoscale. Interestingly, natural surfaces possess
properties that are known to influence cell behaviour both in vitro and in vivo. Namely, natural surfaces
show hierarchical structures, a high degree of surface roughness and a large diversity of patterns,
steering wettability in all regimes as seen in plants, insects, and animals. Thus, natural surfaces can
be utilised in bioinspired design because of their unique surface properties, not found on artificial
surfaces used in conventional cell studies [63]. This method benefits from its focused approach by
using natural surface properties to regulate cell behaviour without the need for intensive screening or
in silico design. Such development of novel biomaterials can also be applied to three-dimensional
microenvironments, ranging from apple-derived cellulose scaffolds [179] to biomimetic marine sponge
fibre skeletons for tissue regeneration [180]. Biomimetic research in this area has also turned towards
the replication of native tissue and cell structures to modulate cell behaviour or even to harnessing
the potential of decellularized ECMs as a three-dimensional natural architecture for cell support and
growth [181,182]. Further translation of natural architectures into the field of regenerative medicine
and tissue engineering opens up opportunities in the clinic. Integration of their (multi)functional
properties can aid to reduce implant associated infections, increase the biocompatibility of medical
devices, and incorporate controlled release systems in scaffolds. Advances in these domains will
enhance biomaterials in their ability to function in intimate contact with living tissues.

4. Conclusions

The utilisation of natural surfaces as templates for fabrication of artificial surfaces for cell studies
can bring about novel cell responses and unravel the mechanisms involved in the interplay between
material characteristics and cell phenotype. Together with high-throughput and machine learning
methods this can provide a solution to find optimal surface parameters for regulating cell behaviour.
In conclusion, biomimicry of natural surfaces has a great potential to enhance technologies in the
field of regenerative medicine and tissue engineering through advances in the ability of functional
biomaterials to guide cell behaviour.
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