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Abstract: Electron-beam irradiation (EBI) is an efficient, safe, and nonthermal sterilization technique
that is extensively used in food preservation research. Here we report the effects of different EBI
doses (0, 4, 8 kGy) and preservation temperatures (room temperature [RT], 4 ◦C) on the muscle
water distribution and muscle quality indices of silver carp chunks (SCCs). The highest entrapped
water content was found in the 4-kGy-irradiated/4-◦C-stored samples. The expressible moisture
content (EMC) of the SCCs increased with increasing irradiation dose and was significantly lower
in the RT group than in the 4 ◦C group. The irradiation dose and preservation temperature had no
significant effect on the moisture content, whiteness value and protein content of SCCs (p > 0.05).
When the irradiation dose reached 8 kGy, AV value, POV value and TVB value were significantly
increased (p < 0.05). The myofibrillar protein content and actomyosin content of the SCCs in the 4 ◦C
group was higher than that of the specimens in the RT group by 0.29–0.98 mg/mL (p < 0.05) and
36.21–296.58 µg/mL (p < 0.05), respectively. Overall, EBI treatment (4 kGy) and low-temperature
preservation (4 ◦C) helped retain the muscle water content of the SCCs and preserve their quality,
thereby endorsing the EBI treatment of silver carp products.

Keywords: electron-beam irradiation; silver carp chunks; water distribution; muscle quality

1. Introduction

Silver carp or white carp (Hypophthalmichthys molitrix), which is a fish species that
belongs to the Cyprinidae family in the order Clupeiformes is a globally abundant freshwater
resource [1]. Silver carp is popular among consumers for being nutritious, tender, and
inexpensive [2]. However, the flesh of silver carp is susceptible to microbial and endogenous
enzymatic activities as well as biochemical reactions, which can lead to spoilage during storage
as well as the production of volatile basic nitrogen and free amino acids [3]. In addition to
traditional processing and preservation methods such as curing, refrigeration, freezing, and
heat treatment, advanced techniques such as modified atmosphere packaging [4], ultrahigh-
pressure sterilization [5], snap freezing [6], and irradiation [7] have been adopted to maintain
the nutritional quality and edible value of silver carp flesh. Among these methods, ultrahigh-
pressure sterilization and snap freezing are cost ineffective owing to their requirement of
expensive equipment and high costs, which hinder their widespread adoption. Moreover,
the utilization of the modified atmosphere technology is limited by the variation in the gas
components in the modified atmosphere system from product to product and the stringent
requirements for packaging materials.

Irradiation is a safe and effective cold-sterilization technique, with electron-beam
irradiation (EBI) being a particularly noteworthy food-decontamination technology that
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is cost effective, easy to manipulate, and contamination free [8,9]. Electron accelerator
produced high energy electron beams can sterilize food products and extend their shelf life
while maintaining their original quality and flavor [10]. As an advanced technique used in
food preservation, EBI has been found to effectively reduce or eliminate nitrates and nitrites
in cured meat [11]. H. Yu et al. found that EBI treatment at 10 kGy significantly reduced
the total volatile basic nitrogen content in cod and increased its water and ash contents [12].
H. Guo et al. studied the effects of EBI on the volatile flavor substances of salmon fillets
and showed that the best sensory flavor of fish flesh was achieved with 1 kGy irradiation
treatment [13]. Q. Yu et al. found that EBI had no effect on the pH of shrimp and that
higher irradiation doses resulted in fish with more odorous volatiles [14]. Recent studies
on the EBI of aquatic products have primarily focused on changes in their physicochemical
properties and sensory flavor; however, investigations related to the influence of EBI on the
water distribution in silver carp flesh have been rarely reported.

Low-field nuclear magnetic resonance (LF-NMR) is a rapid, accurate, and nonde-
structive analytical detection technique. Using this method, the flow and distribution of
hydrogen protons in tissues of food products can be determined by assessing the relaxation
properties of hydrogen protons in a constant magnetic field, which reflect the water content
and migration processes in samples [15]. LF-NMR has been applied to various sea products,
including oysters [16], hake [17], and sea cucumbers [18]. However, studies focusing on
the LF-NMR analysis of freshwater products are relatively scarce.

Therefore, this study took SSCs as the research object to explore the effects of different
preservation temperatures (room temperature [RT], 4 ◦C) and different EBI doses (0, 4,
8 kGy) on the water distribution of SSCs, as well as analyzing the correlation between
EBI, preservation temperature and muscle quality of SSCs. The results reported herein are
anticipated to enable improvements in the processing and quality control of silver carp
products through EBI treatment.

2. Materials and Methods
2.1. Materials

Analytical-grade chemicals including hydrochloric acid, boric acid, petroleum ether,
isopropyl alcohol, trichloromethane, sodium hydroxide, anhydrous sodium sulfate, and TBA
were purchased from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China). A
Bradford Protein Assay Kit (P0006) was purchased from Shanghai Beyotime Biotechnology
Co., Ltd. (Shanghai, China), and a total protein assay kit (A045-4-2) was procured from
Nanjing Jiancheng Bioengineering Institute.

2.2. Sample Preparation and Processing

Fresh silver carp (n = 20) with weights and body lengths of 2.0 ± 0.2 kg and 54 ± 2.3 cm,
respectively, were purchased from Wushang Supermarket (Agricultural Science City Store),
Hongshan District, Wuhan, China. The silver carp was washed, and its head, tail, scales,
internal organs, and bones were removed. Subsequently, the flesh was cut along the backbone
into chunks weighing 20 ± 2.0 g. These portions were placed individually in low-density-
polyethylene bags, sealed with a sealing machine, and then heated in boiling water for 2 min
to cook the flesh to medium-rare. The fish samples were cooled, skinned, and randomly
divided into two groups with equal sample sizes based on temperature—room temperature
(RT; 25 ◦C) and 4 ◦C—with the 4 ◦C group samples being stored in iceboxes. The samples
from both groups were separated into three subgroups, which were then subjected to EBI
treatment at doses of 0, 4, and 8 kGy, respectively, at Wuhan Aibang High Energy Technology
Co., Ltd. (Wuhan, China). After the EBI treatment, the samples were placed in iceboxes and
then stored at RT or 4 ◦C. Subsequently, the samples were experimentally investigated to
determine relevant indices. The actual doses received by the samples were calibrated with
low- and high-dose-range silver dichromate dosimeters containing 0.35 and 2.5 mmol/L silver
dichromate, respectively [19]. The dosimeters monitored the irradiation of the samples and
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were sent to the Irradiation Engineering Center of Hubei Province; the actual absorbed doses
of the three subgroups were determined to be 0, 4.25, and 7.84 kGy, respectively.

2.3. Determination of Water Distribution

LF-NMR and magnetic resonance imaging (MRI) analyses were performed using a
slightly modified version of the method described by L. Wang et al. [20]. The SCCs were
cut into 1.8 × 1.8 × 1.8 cm3 pieces, padded dry, and placed in MRI-compatible test tubes.
The distributions of bound, entrapped, and free water were monitored using an NMR
analyzer (NMI20-025V-I, Suzhou Niumag Analytical Instrument Co., Ltd., Suzhou, China).
The water in the SCCs could be classified into the following three categories based on how
tight the water was bound to the tissues: bound water that is tightly tethered to muscle
macromolecules (T2b), entrapped water retained by myofibrils (T21), and free water held
in interfascicular space and by sarcoplasmic proteins (T22) [21]. The following parameters
were used for the T2 measurements: resonant frequency (SF), 20 MHz; 90◦ pulse width
(P1), 8 µs; 180◦ pulse width (P2), 16.48 µs; spectral width (SW), 100 kHz; waiting time
(TW), 1000 ms; econ time (TE), 1 ms; echo number (NECH), 700; and repetitive scans
number (NS), 4. The sample signals were acquired using the CPMG sequence and NMR
analysis software. The inverse transformation was performed using SIRT100000 to obtain
the relaxation time and peak area for each water type. Additionally, the pseudo-color maps
of the water molecules were constructed based on the analysis of water proton densities.

2.4. Determination of Moisture Content and Expressible Moisture Content (EMC)

The moisture content was determined using the method described by Shi et al. with
slight modifications [22]. Clean aluminum weighing bottles were dried in an oven at 55 ◦C
for 1 h (DHG-9203A, Shanghai Yi Heng Co., Ltd., Shanghai, China), removed, covered, and
then transferred to a desiccator to cool for 20 min before being weighed. The drying and
cooling processes were repeated until a constant weight was achieved, which was based on
the difference between two successive weights not exceeding 2 mg. The SCCs were minced,
weighed, and placed in the prepared weighing bottles. The aforementioned drying, cooling,
and weighing processes were repeated, and the final constant weights were recorded. The
water content was calculated using the following equation:

Moisture content (g/100 g) =
m1 − m2

m1
× 100, (1)

where m1 is the weight of the SCCs immediately after mincing (g), m2 is the constant weight
of the minced SCCs (g), and 100 is the conversion factor.

The EMC was determined using a slightly modified version of the method described
by Jiao et al. [23]. Briefly, the SCCs were weighed, wrapped with filter paper, and then
centrifuged (TGL-24MC, Changsha Pingfan Instrument Co., Ltd., Changsha, China) at
2000 rpm for 15 min. The centrifuged samples were weighed, and the EMC was calculated
using the following equation:

EMC (%) =
m1 − m2

m1
× 100%, (2)

where m1 and m2 (g) are the masses of the SCCs before and after the centrifugation, respectively.

2.5. Determination of Whiteness and pH Values

As an important appearance related indicator of aquatic products, whiteness value
directly affects the initial assessment of these products by consumers [24]. Based on the
method described by Gulcan et al. [25], the brightness (L*), redness (a*), and yellowness
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(b*) values of the cut surface of SCCs were measured using a colorimeter (CR-400, Konica
Minolta, Japan), and the whiteness values were calculated thereafter as follows:

Whiteness = 100 −
√
(100 − L∗)2 + a∗2 + b∗2, (3)

pH is an important indicator of the quality and freshness of aquatic products [26]. For
the pH analysis, 4 g of an SCC sample was mashed and mixed with 40 mL of distilled water.
The mixture was thoroughly agitated and left to stand for 20 min before being filtered. The
pH value of the collected filtrate was then determined using a pH meter (Mettler-Toledo
Instruments Co., Ltd., Shanghai, China).

2.6. Determination of AVs, Peroxide Values (POVs), and TBA Values

AVs, POVs, and TBA values are important indicators for evaluating the extent of lipid
hydrolysis as well as primary and secondary lipid oxidation [27]. AVs were determined
according to the GB5009.229-2016 standard and the method reported by Wei et al. [28]. The
AVs of the SCCs were calculated as follows:

AV (mg/g) =
(V − V0) × 0.01 × 56.1

m
, (4)

where V and V0 (mL) are the volumes of the standard titration solution consumed for
determination of the samples and the corresponding blanks, respectively; 0.01 is the molar
concentration of a potassium-hydroxide standard solution (mol/L); 56.1 is the molar mass
of potassium hydroxide (g/mol); and m is the weight of the SCC sample (g).

POVs were determined according to the GB5009.227-2016 standard and the method
reported by Wang et al. [29]. The POVs of the SCCs were calculated as follows:

POV (g/100 g) =
(V − V0)× 0.01 × 0.1269

m
× 100, (5)

where V and V0 (mL) are the volumes of the sodium thiosulfate standard solution consumed
by the samples and blanks, respectively; 0.01 is the molar concentration of the sodium-
thiosulfate standard solution (mol/L); 0.1269 is the mass of elementary iodine equivalent
to 1 mL of the sodium-thiosulfate standard titration solution [c(Na2S2O3) = 1.000 mol/L];
m is the weight of the SCC sample (g); and 100 is the conversion factor.

The TBA values were determined using a slightly modified version of the method
described by Salih et al. [30]. Five grams of an SCC sample was placed in a centrifuge tube
and mixed with 25 mL of a trichloroacetic acid solution (20% volume fraction). The mixture
was uniformly stirred and left to stand for 1 h before being centrifuged at 2000 rpm for
10 min and then filtered. Distilled water was added to the collected filtrate to achieve a final
volume of 50 mL. A portion of this filtrate (5 mL) was mixed with 5 mL of TBA solution
(0.02 mol/L) and reacted in a boiling water bath for 20 min. After cooling, the mixture
was subjected to absorbance (A) analysis at 532 nm using a spectrophotometer (UH5300,
Hitachi Co., Ltd., Tokyo, Japan), and the TBA values were calculated as follows:

TBA (mg/100 g) = A × 7.8, (6)

where A is the absorbance of the solution measured at 532 nm, and 7.8 is a constant.

2.7. Determination of Total Protein Content, Myofibrillar Protein Content, and
Actomyosin Content

The total protein contents were determined according to the GB5009.5-2016 standard
and the method reported by Yang et al. [31]; the corresponding values of the SCCs were
obtained as follows:

Protein content (g/100 g) =
(V1 − V2) × 0.05 × 0.0140

m × 10/100
× F × 100, (7)
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where V1 and V2 are the volumes of the hydrochloric-acid standard titrant consumed by
the specimens and blanks, respectively; 0.05 is the concentration of the HCl standard titrant
(mol/L); 0.0140 is the mass of elementary nitrogen equivalent to 1 mL of the HCl standard
titrant [c(HCL) = 1.000 mol/L], m is the weight of the SCC sample (g); 10 is the volume of
digested sample used for titration (mL); F is the nitrogen-to-protein conversion factor; and
100 is the general conversion factor.

The content of myofibrillar protein (W/V) were determined using the method de-
scribed by Benjakul et al. (1997) with slight modifications [32]. One gram of an SCC sample
was mixed with 10 mL of precooled 0.1 mol/L KCl solution, followed by homogenization
at 10,000 rpm for 1 min. The dispersion was then centrifuged at 10,000 rpm for 20 min at
4 ◦C, and the supernatant was discarded. The resulting precipitate was resuspended in a
0.6 mol/L KCl solution with a volume 8× its original value and homogenized for 1 min
(XHF-D, Ningbo Xinzhi Co., Ltd., Ningbo, China). The mixture was then left to stand at
4 ◦C for 1 h and centrifuged thereafter at 12,000 rpm for 30 min at 4 ◦C. The supernatant
was collected, and the myofibrillar protein content of the samples was determined using a
quantitative protein assay kit.

The actomyosin contents were determined using the method described by Zhou et al.
with slight modifications [33]. Two grams of an SCC sample was minced and mixed with
10 mL of precooled 0.6 mol/L KCl solution. The mixture was homogenized at 10,000 rpm
for 30 s and then centrifuged at 5000 rpm for 30 min at 4 ◦C. The supernatant was collected
and diluted in precooled distilled water with a volume 3× the original value. The diluted
supernatant was further centrifuged at 5000 rpm for 20 min at 4 ◦C, and the precipitate was
collected and resuspended in a precooled 1.2 mol/L KCL solution with equal volume. The
resulting mixture was blended using a magnetic stirrer (DF-101S, Wuhan Ke’er Instrument
Co., Ltd., Wuhan, China) for 30 min and then centrifuged at 5000 rpm for 20 min at 4 ◦C. The
supernatant was collected, and the actomyosin content was determined using a quantitative
protein assay kit.

2.8. Data Analysis

Origin 2019 software was used for graphically visualizing the results, whereas SPSS
26.0 and Microsoft Office Excel 2016 were used for statistical data analysis. The results
are presented as mean ± standard deviation (Mean ± SD). Analysis of variance (ANOVA)
was used for significance analysis, with a P-value less than 0.05 (p ≤ 0.05) considered to be
statistically significant.

3. Results and Discussion
3.1. Effects of Different EBI Doses on the Water Distribution in SCCs

The peak areas in T2 spectrums reflect the relative water content of the SCCs in the
corresponding states. As shown in Figures 1a and 2b, the peak area of the water content
T2b in samples that received the same dose of irradiation treatment was lower in the 4 ◦C
group than in the RT group (p < 0.05), whereas T21 showed a rightward shift. These
results indicate that low temperatures could promote the transformation of bound water
to entrapped and free water, which may lead to a weakened water-binding capability of
silver carp flesh and, consequently, an increase in EMC (Figure 4b). Compared with that in
the unirradiated group, T22 of samples in both the irradiated groups (RT and 4 ◦C) showed
a leftward shift and an increase in the peak areas, indicating that the irradiation reduced
the loss of free water from the SCCs and transformed it into entrapped water. This was
possibly caused by the change in the state of free water through the EBI-induced weakening
of hydrogen bonds [34]. For the unirradiated samples, the sum of the T21 and T22 peak
areas of samples in the 4 ◦C group was greater than that of specimens in the RT group,
suggesting that low temperatures could also moderately reduce the drip loss of silver carp
flesh. Figures 1b and 2 show that the signal from the bound water disappeared in the 4-kGy-
irradiated/4-◦C-stored group. This disappearance was probably due to the large peak area
and high peak intensity of the signal from the entrapped water as well as the conversion of
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bound and free water to entrapped water, which led to a further decrease in the originally
low bound-water proportion. The peak area of the signal representing entrapped water
increased with increasing irradiation dose at RT. However, at 4 ◦C, the entrapped-water
content was the highest in the 4-kGy-irradiated samples whereas it was reduced in the
8-kGy-irradiated specimens. In conclusion, low temperatures and irradiation could both
reduce the drip loss of silver carp flesh, and the high content of entrapped water in the
4-kGy-irradiated/4-◦C-stored group suggested that irradiation at 4 kGy and preservation
at 4 ◦C improved the tenderness and quality of the silver carp flesh.
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Figure 2. Diagram of relative moisture content of silver carp chunks at different irradiation doses
stored at room temperature (a) and 4 ◦C (b).

The pseudo-color maps of water proton density constructed under different treatment
conditions are shown in Figure 3. These maps reflect the distribution of water, with the
areas featuring strong signals presented in red and the signal-free zones indicated in
blue. The brightness of an image increases with increasing proton density, indicating a
higher water content in the sample and less drip loss [35]. As shown in Figure 3, the
brightness of the proton density pseudo-color maps decreased in the following manner:
(d) > (e) > (b) > (c) > (a) > (f); this is consistent with the results shown in Figure 1a,b. Among
the SCCs stored at RT, the samples of the irradiated group were darker than those in the
unirradiated batch, and the red signals in the maps intensified with increasing EBI dose.
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The signal intensity of the 4-kGy-irradiated/4-◦C-stored samples was the strongest and
higher than that of the RT stored equivalents. This may be because T22 showed a leftward
shift most obviously under this condition, which reduced the loss of free water to the
greatest extent. These results indicate that EBI could effectively reduce the drip loss of
silver carp flesh and, in essence, inhibit the loss and diffusion of water in SCCs. Moreover,
the preservation temperature of 4 ◦C and EBI dose of 4 kGy were effective in maintaining
the quality of the silver carp product.
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Figure 3. Pseudo-color maps of water molecular proton density of silver carp chunks with different
treatment methods. (a) Room temperature, 0 kGy; (b) 4 ◦C, 0 kGy; (c) Room temperature, 4 kGy;
(d) 4 ◦C, 4 kGy; (e) Room temperature, 8 kGy; (f) 4 ◦C, 8 kGy.

3.2. Effects of Different EBI Doses on the Moisture Content and EMC Loss of SCCs

All As shown in Figure 4a, the moisture content of SCC samples in the 4 ◦C group
was not significantly different from that of the RT group (p > 0.05). Moreover, the moisture
contents of the SCC samples treated at the same temperature but irradiated with different
doses were not significantly different from those of the unirradiated samples (p > 0.05).
Yang et al. showed that the moisture content of EBI-treated vacuum-packed Atlantic salmon
fillets was not significantly correlated with the irradiation dose, which is consistent with
the findings reported herein [36].
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Figure 4. Effect of different doses of electron beam irradiation on moisture content (a) and EMC (b) of silver
carp chunks. Different lowercase letters indicate significant difference among groups (p < 0.05).

Figure 4b shows that the rate of EMC loss of the centrifuged SCC samples was signifi-
cantly lower in the RT group than in the 4 ◦C group (p < 0.05). Under ambient conditions,
the EMC loss rates of the samples in the irradiated groups were significantly higher than
those of the unirradiated samples (p < 0.05), whereas no significant difference was observed
between the irradiated groups (p > 0.05). For the samples stored at 4 ◦C, the rates of EMC
loss were not significantly different between the 4-kGy-irradiated and unirradiated samples
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(p > 0.05), whereas the 8-kGy-irradiated samples showed significantly higher values than
those of the 4-kGy-irradiated counterparts (p < 0.05). The EMC was used to determine the
water-holding capacity of the irradiated SCCs by exploiting the inverse proportionality
between these parameters [37]. These results suggest that low temperatures and high
irradiation doses may lead to a reduced water holding capacity and an increased EMC loss
rate of SCCs.

3.3. Effects of Different EBI Doses on the Whiteness and pH Values of SCCs

As shown in Figure 5a, the effect of EBI on the whiteness value of the SCC samples was
not significant at both RT and 4 ◦C (p > 0.05), indicating that EBI did not cause significant
color related changes in the fish flesh. Zhang et al. conducted EBI treatment of vacuum-
packed grass carp surimi and found that the whiteness values did not differ significantly
among irradiated groups after EBI on the zeroth day of storage (p > 0.05), which is similar
to the results reported herein [38].
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The pH values of the SCCs stored at RT decreased significantly (p < 0.05) with in-
creasing irradiation dose (Figure 5b). This may be because irradiation can moderately
facilitate the breakdown of muscle glycogen, which produces acids such as ATP, lactate,
and phosphocreatine, thereby leading to the decrease in sample pH and, consequently,
accelerated food spoilage [39]. Ham. Y.-K et al. also found that the pH value of cooked
pork sausages irradiated with electron-beam decreased with increasing absorbed dose
level (p < 0.05) [40]. The pH values of the SCC samples were significantly higher in the
4 ◦C group than in the RT group (p < 0.05). Among the samples in the 4 ◦C group, the pH
values of 4-kGy-irradiated samples were not significantly different from the unirradiated
counterparts (p > 0.05). These results indicate that storage at 4 ◦C and EBI treatment at
4 kGy assisted in maintaining the original pH of the SCCs, and the low temperature could
reduce the EBI-induced quality loss of SCCs.

3.4. Effects of Different EBI Doses on AVs, POVs, and TBA Values of SCCs

Temperature had minor effects on the AVs and POVs of the samples (Figure 6a,b).
No significant difference (p > 0.05) was found in the AVs and POVs between the samples
treated with the same irradiation dose but at different temperatures. Overall, the AVs
and POVs of samples in both temperature groups increased with increasing irradiation
dose. However, the AVs and POVs of the 4-kGy-irradiated samples were not significantly
different from those of the unirradiated specimens (p > 0.05), but were significantly lower
than those of the 8-kGy-irradiated counterparts (p < 0.05). Oxidation of fats and oils yields
unsaturated fatty acids, which can be further oxidized upon exposure to light and heat,
resulting in the production of organic acids and, consequently, food rancidity; moreover,
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higher AVs indicate a greater degree of fat and oil oxidation [41]. The 4-kGy-irradiation
treatment minimally affected the AVs of the SCCs, whereas the 8-kGy-irradiation treatment
accelerated their rancidification, resulting in higher AVs. The elevated POVs of the 8-kGy-
irradiated SCCs may be due to the expedited lipid oxidation induced by the free radicals in
the tissues that are generated by high-dose irradiation [42,43].

Foods 2022, 10, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 6. Effects of different doses of electron beam irradiation on TBA value (a), AV value (b)and 

POV value (c) of silver carp chunks. Different lowercase letters indicate significant difference among 

groups (p< 0.05). 

3.5. Effects of different EBI Doses on total Protein Content, Myofibrillar Protein Content, and 

Actomyosin Content 

Fish meat is a major source of animal protein for consumers owing to its high protein 

content [46]. The total protein contents of samples in all groups ranged from 16 g/100 g to 

17 g/100 g, and the variation between all samples was not significant (p > 0.05; Figure 7a). 

The aforementioned findings are consistent with those of Fallah et al. who found that ir-

radiation minimally affected the crude protein content in camel meat [47]. 

Myofibrillar protein constitutes the myofibrils in muscles and directly affects the juic-

iness, texture, and elasticity of meat products. The myofibrillar protein content in the 4-

kGy-irradiated/RT-stored samples was 1.59 mg/mL (Figure 7b), which was a 31.64% in-

crease over that of the unirradiated samples (p < 0.05); moreover, the difference between 

the 8-kGy-irradiated and unirradiated samples was not significant (p > 0.05). This indi-

cated that the 4 kGy EBI treatment and RT storage helped improve the elasticity and tex-

ture of the SCCs. Additionally, the myofibrillar protein content of the SCC samples in the 

4 °C group was higher than that of the specimens in the RT group by 0.29–0.98 mg/mL (p 

< 0.05), possibly due to the low-temperature-induced inhibition of myofibrillar protein 

oxidation [48]. 

Figure 6. Effects of different doses of electron beam irradiation on TBA value (a), AV value (b) and
POV value (c) of silver carp chunks. Different lowercase letters indicate significant difference among
groups (p < 0.05).

The TBA values of the 8-kGy-irradiated samples in the RT group were higher than
those of the 4-kGy-irradiated and unirradiated counterparts (Figure 6c; p < 0.05). However,
in the 4 ◦C group, the TBA values of the 8-kGy-irradiated samples were not significantly
different from those of the 4-kGy-irradiated equivalents (p > 0.05). This indicates that high
dose EBI under ambient conditions could promote the decomposition of unsaturated fatty
acids and accelerate lipid oxidation, whereas low-temperature preservation could delay
lipid oxidation and thus counteract the adverse effects of irradiation. The TBA values and
POVs of EBI treated pork jerky have been found to increase in an EBI-dose-dependent
manner [44]. EBI can catalyze the production of free radicals in fish products and accelerate
lipid oxidation, triggering a free-radical chain reaction that increases the TBA values [45],
which is similar to the mechanism by which EBI increases the POVs.

3.5. Effects of Different EBI Doses on Total Protein Content, Myofibrillar Protein Content, and
Actomyosin Content

Fish meat is a major source of animal protein for consumers owing to its high protein
content [46]. The total protein contents of samples in all groups ranged from 16 g/100 g to
17 g/100 g, and the variation between all samples was not significant (p > 0.05; Figure 7a).
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The aforementioned findings are consistent with those of Fallah et al. who found that
irradiation minimally affected the crude protein content in camel meat [47].
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Myofibrillar protein constitutes the myofibrils in muscles and directly affects the juiciness,
texture, and elasticity of meat products. The myofibrillar protein content in the 4-kGy-
irradiated/RT-stored samples was 1.59 mg/mL (Figure 7b), which was a 31.64% increase
over that of the unirradiated samples (p < 0.05); moreover, the difference between the 8-kGy-
irradiated and unirradiated samples was not significant (p > 0.05). This indicated that the
4 kGy EBI treatment and RT storage helped improve the elasticity and texture of the SCCs.
Additionally, the myofibrillar protein content of the SCC samples in the 4 ◦C group was higher
than that of the specimens in the RT group by 0.29–0.98 mg/mL (p < 0.05), possibly due to the
low-temperature-induced inhibition of myofibrillar protein oxidation [48].

The actomyosin contents of the SCC samples in both temperature groups increased in
an EMI-dose-dependent manner (Figure 7c), with the actomyosin contents of the irradiated
samples being significantly higher than those of the unirradiated specimens (p < 0.05). Ad-
ditionally, the actomyosin content of the samples in the 4 ◦C group was significantly higher
than that of the samples in the RT group and ranged from 36.21 to 296.58 µg/mL (p < 0.05).
Actomyosin is the main component of myofibrillar protein, and the denaturation and loss of
myosin are considered valid indicators of quality loss of fish meat [49]. These results suggest
that low-temperature preservation (4 ◦C) and EBI treatment could inhibit the denaturation
and decomposition of actomyosin and effectively improve the quality of fish protein.
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4. Conclusions

In this study, the effects of different preservation temperatures and EBI doses on the
quality of SCCs were investigated. The results showed that low preservation temperatures
and 4 kGy EBI treatment could prevent the partial free water loss in the meat of silver
carp and consequently improve the tenderness and quality of the meat. The centrifugation
induced EMC loss of the SCCs was significantly and positively correlated with the irra-
diation dose, and the water holding capacity of the samples in the 4 ◦C group was lower
than that of the samples in the RT group. Low preservation temperature prevented the
loss of myofibrillar protein and actomyosin, and EBI effectively inhibited actomyosin de-
generation. Moreover, the myofibrillar protein content tended to decrease with increasing
irradiation dose. When the irradiation dose reached 8 kGy, the oxidation of silver carp
was accelerated and the pH value was increased. Overall, preservation at 4 ◦C and EBI
treatment at 4 kGy were determined to be the optimal EBI processing conditions for SCCs.
The findings reported herein are in support of the irradiation-based preservation of silver
carp products.
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