
sensors

Article

A Novel 2-D Coherent DOA Estimation Method
Based on Dimension Reduction Sparse
Reconstruction for Orthogonal Arrays

Xiuhong Wang 1,2, Xingpeng Mao 1,4,*, Yiming Wang 1,3, Naitong Zhang 1,4 and Bo Li 2

1 School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;
xiuhongwang@hit.edu.cn (X.W.); wym.fio@gmail.com (Y.W.); ntzhang@hit.edu.cn (N.Z.)

2 School of Information and Electrical Engineering, Harbin Institute of Technology (Weihai),
Weihai 264209, China; libo1983@hit.edu.cn

3 First Institute of Oceanography, SOA, Qingdao 266061, China
4 Collaborative Innovation Center of Information Sensing and Understanding at Harbin Institute

of Technology, Harbin 150001, China
* Correspondence: mxp@hit.edu.cn; Tel.: +86-451-8641-8051

Academic Editor: Vittorio M. N. Passaro
Received: 1 June 2016; Accepted: 6 September 2016; Published: 15 September 2016

Abstract: Based on sparse representations, the problem of two-dimensional (2-D) direction of
arrival (DOA) estimation is addressed in this paper. A novel sparse 2-D DOA estimation method,
called Dimension Reduction Sparse Reconstruction (DRSR), is proposed with pairing by Spatial
Spectrum Reconstruction of Sub-Dictionary (SSRSD). By utilizing the angle decoupling method,
which transforms a 2-D estimation into two independent one-dimensional (1-D) estimations,
the high computational complexity induced by a large 2-D redundant dictionary is greatly
reduced. Furthermore, a new angle matching scheme, SSRSD, which is less sensitive to the
sparse reconstruction error with higher pair-matching probability, is introduced. The proposed
method can be applied to any type of orthogonal array without requirement of a large number of
snapshots and a priori knowledge of the number of signals. The theoretical analyses and simulation
results show that the DRSR-SSRSD method performs well for coherent signals, which performance
approaches Cramer–Rao bound (CRB), even under a single snapshot and low signal-to-noise ratio
(SNR) condition.

Keywords: direction of arrival (DOA); two-dimensional (2-D) DOA estimation; coherent sources;
dimension reduction sparse reconstruction; redundant sub-dictionary

1. Introduction

Direction of Arrival (DOA) estimation methods, especially those of high accuracy and high
resolution, have been rapidly developed in recent years, many of which can be found in applications
of radar, sonar, communications, etc. [1]. While most of those methods are for one dimensional (1-D)
direction (e.g., azimuth angle), during estimation of multiple plane waves, in many applications such
as ground target observation of airborne or space borne radar, it is more reasonable to assume that the
arriving signals have the two-dimensional (2-D) (i.e., azimuth and elevation angles) nature. Therefore,
extensive attention and in-depth research are given to deal with the 2-D DOA estimation problem [2–5].

The classical subspace-based methods [6–8], such as 2-D Multiple Signal Classification (2-D
MUSIC) [6], 2-D Estimate Signal Parameter via Rotational Invariance Technique (2-D ESPRIT) [7],
cross-correlation based 2-D DOAs estimation (CODE) [8], etc., have been successfully applied in 2-D
DOA estimation with high accuracy and resolution under the strict constrains of large snapshots,
independent signals, uncorrelated white noise, etc. However, these subspace based methods will
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lose efficacy in practical applications where the target signal immerged into strong correlated sources
and noises after propagated multiple paths and experienced complex electromagnetic interference.
Therefore, it is of importance to suppress the influence of correlated sources and quickly estimate 2-D
DOA under the practical environment and complex interferences. Some progresses have been made
in this direction [9–24]. The first class of approach is spatial smoothing based method. The spatial
smoothing (SS) [9,10] was first applied to the L-shaped array for signal decoherence and followed by
estimation using ESPRIT method in [11]. Furthermore, the spatial smoothing method was applied
to circular array in [12]. The second class of approach is data matrix reconstruction based method,
which facilitated decoherence by matrix reconstruction in L-shaped array, double parallel linear
array, sparse uniform rectangular plane array and uniform matrix array [13–15]. The 2-D DOA
estimation was then realized by classical subspace based methods such as ESPRIT or Propagator
Method (PM). The third class of approach is Toeplitz matrix construction based method, which signal
decoherence was realized by either building the received array data directly into a Toeplitz matrix
structure [16,17] or constructing fourth-order cumulant Toeplitz matrix to cope with the color noise [18].
Furthermore, there are some particular approaches, such as in [19], where the oblique projection
method was exploited to separate the coherent and incoherent signals with two parallel uniform
linear arrays, which was followed by 2-D DOA estimation of all signals. By decoupling angles,
Wong et al. [20–24] convert a 2-D DOA estimation into two 1-D DOA estimation. The work in [21,22]
focus on the unambiguous 2-D DOA estimation on a sparse planar array with dual/multiple scales
of invariance and the work in [23,24] focus on the 2-D DOA estimation on uniform L-shaped array.
In 1-D DOA estimation, the estimation methods by Zoltowski et al. [21,22] and by Wong [23,24]
are based on ESPRIT and Root-MUSIC algorithm, respectively. Their pairing methods are based
on a comparison of eigenvalues of the covariance matrix or a related processing of noise subspace.
Therefore, these methods have the same drawbacks as subspace-based methods, such as requiring
a large number of snapshots, non-coherent signals, etc.

Compressed Sensing (CS), which uses the ideas of sparse decomposition, has been applied in the
DOA estimation [25–31] by building the angle redundant dictionary and solving the optimal sparse
solution. It achieves high accuracy and high resolution. Furthermore, the preprocessing of spatial
smoothing and statistical property of the received data are not required. Therefore DOA estimation can
be realized without a large amount of snapshots which has a great potential in application. However,
it has not been applied in the 2-D DOA estimation due to the long redundant dictionary and high
complexity, and most applications can only be found in 1-D DOA estimation [25,26] of uniform linear
array (ULA). In [27], the 2-D DOA estimation was transformed into two 1-D estimation by exploiting
the geometry of L-shaped array, then the method based on sparse representation of space angle with
amplitude-comparison pairing (SRSA-AC) is proposed, but its pairing algorithm would fail in close or
equal signal powers.

To solve the problem of 2-D coherent DOA estimation in low complexity, a novel Dimension
Reduction Sparse Reconstruction (DRSR) with pair-matching by Spatial Spectrum Reconstruction
of Sub-Dictionary (SSRSD) method is proposed based on the two orthogonal linear arrays.
The computational complexity is greatly reduced because the 2-D redundant dictionary is converted
to two independent 1-D redundant dictionaries by exploring the structure feature of orthogonal linear
arrays. Moreover, the matching probability and estimation speed are improved.

The advantages of the proposed method are mainly in the following aspects respects: (1) the
coherent DOA estimation can be executed directly without decoherence process such as spatial
smoothing; (2) the computational complexity and execution time are greatly reduced by transforming
the 2-D DOA estimation into parallel computations of two independent 1-D DOAs; (3) the requirement
of large number of snapshots is relaxed such that the 2-D DOA estimation performs well in any number
of snapshots; and (4) prior knowledge of the number of signals is no longer a requirement.

The rest of this paper is organized as follows: firstly, signal model and 2-D DOA estimation based
on direct sparse representation (DSR) are introduced in Section 2. Secondly, a novel DRSR method
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for 2-D DOA estimation is proposed in Section 3. A new pair-matching scheme based on SSRSD is
proposed in Section 4. Then, the CRB and the computational complexity of the proposed method are
analyzed in Section 5. The simulation results and some discussions are given in Section 6. Finally,
the conclusion of our work is summarized in Section 7.

2. Signal Model and 2-D DOA Estimation Based on Direct Sparse Representation

2.1. Signal Model

Consider K far-field narrowband signals impinging on a centrosymmetric uniform cross array
in the x-z plane as shown in Figure 1, where the subarray along x-axis has 2M + 1 omnidirectional
sensors with spacing dx and the other subarray along z-axis has 2N + 1 omnidirectional sensors with
spacing dz. Let θk and ϕk be the azimuth and elevation angles of the kth signal, respectively. Note that
the azimuth angle is taken between the signal arrival direction and x-axis, and the elevation angle is
taken between signal arrival direction and z-axis.
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Figure 1. Cross array configuration for 2-D DOA estimation.

The received data of the mth array element at time t is expressed as

rm (t) =
K

∑
k=1

am (θk, ϕk)sk (t) + em (t) (1)

where sk (t) is the kth incident signal, em (t) is the additive noise of the mth element, and am (θk, ϕk) is
the steering vector of the array and is represented by

am (θk, ϕk) = exp
(
−j

2π

λ
(xmcosθkcosϕk + zmsinϕk)

)
, m = 1, 2, · · · , Mc (2)

where xm and zm denote the coordinate position of the mth element in the xoz plane,
and Mc = 2M + 2N + 1 gives the total number of elements.

For all received elements, the received data can be represented by

R (t) = AS (t) + E (t) (3)

where R (t) = [r1 (t) , r2 (t) , · · · , rMc (t)]
T ∈ CMc×1 and E (t) = [e1 (t) , e2 (t) , · · · , eMc (t)]

T ∈ CMc×1

are the received signal and the noise of all array elements, respectively; S (t) = [s1 (t) , · · · , sK (t)]T ∈ CK×1

is incident signal of K sources; and A ∈ CMc×K is the manifold matrix of the array given by

A = [a (θ1, ϕ1) , a (θ2, ϕ2) , · · · , a (θK, ϕK)] (4)
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where a (θk, ϕk) = [a1 (θk, ϕk) , a2 (θk, ϕk) , · · · , aMc (θk, ϕk)]
T is the steering vector corresponding to 2-D

angle pair of (θk, ϕk).

2.2. 2-D DOA Estimation Based on Direct Sparse Representation (DSR)

2.2.1. Single Snapshot Estimation

The model of array received signal in Equation (3) can be converted into sparse representation
model based on the sparse decomposition. The spatial domain is equally divided into respective
azimuth and elevation angle sets of Θ =

[
θ1, θ2, · · · , θLθ

]
and Ξ =

[
ϕ1, ϕ2, · · · , ϕLϕ

]
for searching,

where Lθ and Lϕ are the number of angles. The incident signal S (t) is sparsely represented in spatial
domain as P (t) ∈ CL×1, where pi (t) , (i = 1, 2, · · · , L) denotes the complex amplitude of signal at the
potential incident angle, whose total number is L , Lθ Lϕ. Therefore, we have

‖ P (t) ‖0 = |supp (P)| = K (5)

where supp (P) denotes a set of indices of non-zero elements of vector P (t).
The angle redundant dictionary Ψ ∈ CMc×L is then created by extending the columns of the

array manifold matrix in Equation (3). It consists of steering vectors of the 2-D spatial angles, and is
written as

Ψ
(
Θ, Ξ

)
=
{

a (θ, ϕ)| θ ∈ Θ, ϕ ∈ Ξ
}
=
[
a
(
θ1, ϕ1

)
, a
(
θ1, ϕ2

)
, · · · , a

(
θLθ

, ϕLϕ

)]
(6)

Therefore, the sparse representation of the received signal in 2-D DOA estimation is

R (t) = Ψ
(
Θ, Ξ

)
P (t) + E (t) (7)

The DOA estimation in Equation (3) is then transformed into the sparse recovery problem in
Equation (7), and the solution can be obtained by

min‖ P (t) ‖1 s.t. R (t) = Ψ
(
Θ, Ξ

)
P (t) + E (t) (8)

The constrained minimization problem in Equation (8) can be alternatively solved by convex
optimization as

P̂ (t) = arg min
P(t)
‖ R (t)−Ψ

(
Θ, Ξ

)
P (t) ‖2

2 + µ‖ P (t) ‖1 (9)

where ‖ · ‖2 is the l2 norm, ‖ · ‖1 is the l1 norm, µ > 0 is regularization parameter which balances the
relation between Frobenius norm and l1 norm, where the larger µ indicates the solution approaches
closer to zero vector and the smaller µ indicates the solution approximates to the least squares solution.
The convex optimization in Equation (9) is a Second-Order Cone Programming (SOCP), which can be
solved by conic optimization software such as SeDuMi or CVX.

2.2.2. Multiple Snapshots Estimation

The multiple snapshots scenario can be obtained by extending the single snapshot as

R = Ψ
(
Θ, Ξ

)
P + E (10)

where R = [R (t1) , R (t2) , · · · , R
(
tJ
)
] ∈ CMc×J and P = [P (t1) , P (t2) , · · · , P

(
tJ
)
] ∈ CL×J denote

a number of J snapshots of respective received and incident signals by sensor array, respectively;
and E = [E (t1) , E (t2) , · · · , E

(
tJ
)
] ∈ CMc×J is additive white noise.
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The sparse solution of (10) can be solved by

P̂ = arg min
P
‖ R−Ψ

(
Θ, Ξ

)
P ‖2

F + µ‖ P ‖2,1 (11)

where ‖ · ‖F is the Frobenius norm, ‖ P ‖2,1 is the mixed l2,1 norm of matrix P and is defined as

‖ P ‖2,1 , ∑L
l=1 ‖ P(l, :) ‖2 =∑L

l=1

√
∑J

j=1 (P(l, j))2.
Define the normalized spatial spectrum in sparse decomposition framework as

Q (θ, ϕ) = unvec
(

Pv

max {Pv}

)
(12)

where Pv (l) , ‖ P̂(l, :) ‖2, l = 1, 2, ..., L, unvec (·) indicates converting vector into matrix.
Herein, the DOA estimation can be written as(

θ̂, ϕ̂
)
= arg max

(θ,ϕ)
Q (θ, ϕ) (13)

It can be observed that the key of sparse representation based 2-D DOA estimation lies in
the sparse solution of P, where the complexity is decided by the scale of P and the dimension
L = Lθ Lϕ in constructing redundant dictionary Ψ

(
Θ, Ξ

)
. The dimension of redundant dictionary

could be enormous when the number of azimuth and elevation searing points is large, while the
increasing dimension will lead to a sharp increase in the computational complexity of sparse solution
in Equations (9) and (11), or even become unachievable.

3. 2-D DOA Estimation by Dimension Reduction Sparse Reconstruction

To reduce the computational complexity of 2-D DOA estimation, curtailing the scale or dimension
of the redundant dictionary can be considered. Therefore, the 2-D DOA estimation can be divided into
two independent 1-D DOA estimations through angle decoupling, thus the dimension of redundant
dictionary is greatly decreased.

Considering the cross array as two independent ULAs, it can be observed from Figure 1 that
the included angle between incident signal and the subarray along z-axis is π/2 − ϕ. Therefore,
the elevation angle ϕ can be estimated by the z-axis subarray. Similarly, the included angle (also called
synthesis azimuth angle, written as α) between incident signal and the subarray along x-axis can be
estimated by the x-axis subarray. Note that there is an important relationship between azimuth angle θ

and elevation angle ϕ as
cosα = cosθcosϕ (14)

Therefore the azimuth angle θ can be determined from Equation (14).

3.1. Single Snapshot Estimation

The signals received by the subarray along the z-axis and the x-axis are represented as

RZ (t) = AZS (t) + EZ (t)
RX (t) = AXS (t) + EX (t)

(15)

where AZ = [aZ (ϕ1) , . . . , aZ (ϕK)] ∈ C(2N+1)×K and AX = [aX (α1) , . . . , aX (αK)] ∈ C(2M+1)×K

denote the respective subarray manifolds, and

aZ (ϕ) =
[

ej 2π
λ Ndzsinϕ ej 2π

λ (N−1)dzsinϕ · · · 1 · · · e−j 2π
λ (N−1)dzsinϕ e−j 2π

λ Ndzsinϕ
]T

(16)

aX (α) =
[

ej 2π
λ Mdxcosα ej 2π

λ (M−1)dxcosα · · · 1 · · · e−j 2π
λ (M−1)dxcosα e−j 2π

λ Mdxcosα
]T

(17)
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The sparse representation of Equation (15) is

RZ (t) = ΦZ
(
Ξ
)

PZ (t) + EZ (t)
RX (t) = ΦX

(
Λ
)

PX (t) + EX (t)
(18)

where ΦZ
(
Ξ
)
∈ C(2N+1)×Lϕ and ΦX

(
Λ
)
∈ C(2M+1)×Lθ denote the redundant dictionaries of the

corresponding subarrays formed by the expansion of AZ and AX , and are represented as

ΦZ
(
Ξ
)
=
[

aZ (ϕ1) aZ (ϕ2) · · · aZ

(
ϕLϕ

) ]
(19)

ΦX
(
Λ
)
=
[

aX (α1) aX (α2) · · · aX
(
αLθ

) ]
(20)

where Ξ =
[

ϕ1, ϕ2, · · · , ϕLϕ

]
and Λ =

[
α1, α2, · · · , αLθ

]
are the sets of elevation or synthesis azimuth

angles, respectively.
Therefore, the DOA estimation in Equation (18) can be solved as

P̂Z = arg min
PZ
‖ RZ (t)−ΦZ

(
Ξ
)

PZ (t) ‖2 + µ1‖ PZ (t) ‖1

P̂X = arg min
PX
‖ RX (t)−ΦX

(
Λ
)

PX (t) ‖2 + µ2‖ PX (t) ‖1
(21)

3.2. Multiple Snapshots Estimation

By extending the single snapshot case in Equation (15), the sparse representation in multiple
snapshots is obtained as

RZ = ΦZ(Ξ)PZ + EZ RX = ΦX(Λ)PX + EX (22)

where RZ =
[
RZ (t1) , · · · , RZ

(
tJ
)]

, PZ =
[
PZ (t1) , · · · , PZ

(
tJ
)]

, RX =
[
RX (t1) , · · · , RX

(
tJ
)]

,
and PX =

[
PX (t1) , · · · , PX

(
tJ
)]

denote a number of J snapshots of respective received or incident
signals by the subarrays along z axis or x axis.

To reduce the computational complexity in solving the solution when the number of snapshots
increases, singular value decomposition(SVD) of RZ and RX can be performed as

RZ = UZΛZVH
Z RX = UXΛXVH

X (23)

Define matrix DK =
[
IK, 0K×(J−K)

]T
and generate the data vectors after dimension reduction as

RSVD
Z = RZVZDK; RSVD

X = RXVXDK (24)

Similarly, SSVD
Z = PZVZDK, SSVD

X = PXVXDK, ESVD
Z = EZVZDK, ESVD

X = EXVXDK can be
represented and Equation (22) can be reconstructed as the DOA estimation model as

RSVD
Z = ΦZSSVD

Z + ESVD
Z ; RSVD

X = ΦXSSVD
X + ESVD

X (25)

The sparse solution of Equation (22) can be solved by

ŜZ = arg min
SZ
‖ RSVD

Z −ΦZ
(
Ξ
)

SSVD
Z ‖F + µ1‖ SSVD

Z ‖2,1

ŜX = arg min
SX
‖ RSVD

X −ΦX
(
Λ
)

SSVD
X ‖F + µ2‖ SSVD

X ‖2,1
(26)
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Therefore, the 1-D spatial spectrums of QZ (ϕ) and QX (α) are solved by

QZ (ϕl) = ‖ ŜZ(l, :) ‖2/max
{
‖ ŜZ(l, :) ‖2

}
, l = 1, 2, · · · , Lϕ

QX (αl) = ‖ ŜX(l, :) ‖2/max
{
‖ ŜX(l, :) ‖2

}
, l = 1, 2, · · · , Lθ

(27)

The elevation and synthesis angles corresponding to a number of K largest peaks in the spatial
spectrum can be estimated as

ϕ̂ = arg max
ϕ

QZ (ϕ) α̂ = arg max
α

QX (α) (28)

4. Angle Pair-Matching Scheme Based on Sub-Dictionary Spatial Spectrum Reconstruction

Each elevation angle ϕ̂k or synthesis angle α̂k is estimated separately in Section 3 and we need
an angle pairing scheme to pair them. Thereby, the corresponding azimuth angle can be calculated as

θ̂k = arccos
(

cosαk
cosϕk

)
(29)

Consequently, the 2-D DOA is obtained as
(
θ̂k, ϕ̂k

)
.

In [27], the angle pairing scheme is based on the comparison of estimated amplitudes of each
incident signal, which means the nonzero elements of the estimated amplitudes ŜZ and ŜX are sorted
and one-to-one correspondence is established. However, it is under the premise of all amplitudes
are correctly estimated, which requires high-precision reconstruction algorithm, high SNR as well as
certain amplitude difference between the target signals. Therefore, the amplitude sequencing error will
lead to incorrect angle matching if the amplitudes estimation are not correct. Furthermore, that angle
pairing scheme is not effective when the signal powers are equal or close.

The choice of parameters µ1 and µ2 in solving Equation (26) would have great influence on
amplitude estimation error and pair-matching probability. In Equation (26), the Frobenius-norm term
represents the joint estimation error, which connects to the amplitude estimation error and position
locating error (i.e., DOA estimation error), whereas the l1-norm term is the sparsity guarantees.
The parameter µ balances the contributions of each estimation errors. To assure a maximized
pair-matching probability, the regularization parameter selected in [27] need to guarantee that
amplitude estimation error contribute a higher proportion. Thus, the lower proportion of position
locating error would lead to a larger DOA estimation error.

To increase both the pair-matching probability and DOA estimation performance, a new
angle pairing scheme based on spatial spectrum of redundant sub-dictionary is proposed. Firstly,
the redundant sub-dictionary is constructed. It is assumed that there are K incident signals and their
elevation angles {ϕ1, · · · , ϕK} and synthesis angles {α1, · · · , αK} are estimated in Section 3. Thus,
there are a total of I = K2 possible pairs of 2-D angles, which can be represented as

Σ =
{(

θ̂, ϕ̂
) ∣∣∣(θ̂ i, ϕ̂i

)
, i = 1, 2, · · · , I

}
(30)

where ϕ̂i is obtained by Equation (29).
The 2-D rectangular region of angles is formed by extending the radiuses along elevation and

azimuth direction centered at
(
θ̂ i, ϕ̂i), represented as

∏i =
{
(θ, ϕ)

∣∣∣θ ∈ (θ̂ i − rθ , θ̂ i + rθ

)
, ϕ ∈ (ϕ̂i − rϕ, ϕ̂i + rϕ)

}
(31)
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In region of ∏i, the angles are extracted uniformly by the respective intervals of ∆θ and ∆ϕ,
denoted as

Ωi =

{
(θ, ϕ)

∣∣∣∣∣ θ = θ̂i + j∆θ , j = − brθ/∆θc , · · · , 0, · · · , brθ/∆θc
ϕ = ϕ̂i + l∆ϕ, l = −

⌊
rϕ/∆ϕ

⌋
, · · · , 0, · · · ,

⌊
rϕ/∆ϕ

⌋ } (32)

The steering vector gi = a (θ, ϕ) , (θ, ϕ) ∈ Ωi is generated according to Equation (4) by all angles
in Ωi, then forms a set as

Gi (Ωi) =
[
gi

1, gi
2, · · · , gi

T

]
, T = (2 brθ/∆θc+ 1)×

(
2
⌊
rϕ/∆ϕ

⌋
+ 1
)

(33)

Set Gi as the redundant sub-dictionary centered at
(
θ̂ i, ϕ̂i), and write the combination set of

a number of I sub-dictionaries as

G =

{
[G (Ω1) , G (Ω2) , · · · , G (ΩI)] i f Ω1 ∩Ω2 ∩ · · · ∩ΩI = ∅

G (Ω1 ∪Ω2 ∪ · · · ∪ΩI) i f Ω1 ∩Ω2 ∩ · · · ∩ΩI 6= ∅
(34)

As each sub-dictionary is a part of the complete dictionary, they still satisfy the DOA sparse
representation model of the received signals in Equation (7) or (10). Hence,

R = GB + E (35)

Furthermore, the normalized 2-D spatial spectrum under redundant sub-dictionaries is defined as

Q (θ, ϕ) = unvec
(
B̂v/max

{
B̂v
})

(36)

where B̂v (i) = ‖ B̂(i, :) ‖2, i = 1, 2, ..., I × T, B̂ is the sparse solution of Equation (35), and can be
solved by

min‖ B ‖2,1 s.t. ‖ R−GB ‖2
F ≤ β (37)

Figure 2 shows the 2-D spatial spectrum obtained from Equation (36). It can be observed that only
the true DOAs will produce spectrum peaks whereas there is no peak from the false sub-dictionaries.
As a result, the pair-matching DOAs can be identified by checking whether there is a peak at the
corresponding sub-dictionary. Furthermore, the 2-D angles of the ith source signal can be estimated by
finding the central angles (θ̂i, ϕ̂i) of the ith sub-dictionary corresponding to the largest K peaks, that is(

θ̂i, ϕ̂i
)
= arg max

i
Q (θ, ϕ) (38)
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Note that there is at most one source signal in each sub-dictionary, herein the selections of the
radius and intervals only need to guarantee the sparsity of the spatial spectrum. Moreover, the accuracy
and resolution requirements of the sparse solution in Equation (35) are relaxed so that greedy algorithm
with low computation complexity, such as Orthogonal Matching Pursuit (OMP) [30] or Simultaneous
OMP (SOMP) [31], can also be applied.

The proposed sub-dictionary based matching scheme is immune to amplitude estimation error.
In addition, the SNR requirement is reduced. It raises the matching probability and applicable when
the source powers are equal or close. The procedure of the proposed DRSR-SSRSD method can be
summarized as follows:

Step 1: Construct the 1-D redundant dictionary of subarray ΦZ and ΦX according to
Equations (19) and (20).

Step 2: Find the sparse solution ŜZ and ŜX according to Equation (26), then estimate the elevation
angles {ϕ̂1, ϕ̂2, · · · , ϕ̂K} and synthesis azimuth angles {α̂1, α̂2, · · · , α̂K} of K sources according
to Equations (27) and (28).

Step 3: Calculate the corresponding azimuth angle θ̂k according to Equation (29) and form all
combination Σ according to Equation (30).

Step 4: Angle matching. Construct 2-D sub-dictionary G according to Equations (31)–(34),
then obtainits 2-D spatial spectrum according to Equations (36)–(38), and finally get the
indexes of the sub-dictionary corresponding to the largest K spectrum peaks and their central
angles

(
θ̂ i, ϕ̂i) are the estimated DOAs.

5. Performance Analysis

5.1. Cramer–Rao Lower Bound

To facilitate derivation, Equations (15) and (16) are combined as

W (t) =

[
RZ (t)
RX (t)

]
=

[
AZS (t) + EZ (t)
AXS (t) + EX (t)

]
=

[
AZ
AX

]
S (t) +

[
EZ (t)
EX (t)

]
, VS (t) + E (t) (39)

Then the Cramer–Rao Lower Bound of the DOA estimation in Equation (39) is [18]

CRB (ψ) =
σ2

N
2J

{
Re
[(

DHP⊥VD
)
⊗ ST

f

]}−1
(40)

where ψ =
(
θT ,ϕT) = (θ1, θ2, · · · , θK, ϕ1, ϕ2, · · · , ϕK)

T is the 2-D DOA steering vector, σ2
N is noise

power, J is number of snapshots, Re (·) denotes real part of the complex number, ⊗ represents
Hadamard product, and D is derivation matrix as

D =
∂V
∂ψ

=

[
∂v1

∂θ1
,

∂v2

∂θ2
, · · · ,

∂vK
∂θK

,
∂v1

∂ϕ1
,

∂v2

∂ϕ2
, · · · ,

∂vK
∂ϕK

]
(41)

where vi is the ith column of matrix V, P⊥V = I−V
(
VHV

)−1 VH is the projection matrix of noise
subspace, Sf = E

[
SSH] is the signal spectrum matrix, which is a diagonal matrix for uncorrelated

signals as Sf = diag
{

σ2
S,1, σ2

S,2, · · · , σ2
S,K

}
and a Hermite matrix for correlated signals written as

Sf =


σ2

S,1 ρ12 . . . ρ1K

ρ∗12 σ2
S,2 . . . ρ2K

...
...

. . .
...

ρ∗1K ρ∗2K . . . σ2
S,K

 (42)
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where ρij is the correlation coefficient between the ith and the jth source signals.

5.2. Computational Complexity Analysis

The DRSR-SSRSD method adopts the idea of dimension reduction, which decomposes the
2-D search into two separate 1-D searches and followed by pair matching to facilitate 2-D DOA
estimation. Herein, the computational complexity analyses involve 1-D DOA estimation algorithm
and pair-matching algorithm.

• 1-D DOA estimation algorithm

The dimension of angle redundant dictionary Ψ is reduced from Lθ × Lϕ to Lθ or Lϕ. Therefore,
the computational complexity in 1-D DOA estimation by the L1-SVD [25] sparsity reconstruction
is O

(
K3
(

L3
θ + L3

ϕ

))
;

• Pair-matching algorithm

The pair-matching algorithm adopts the OMP or SOMP algorithm, which has low computational
complexity as the undemanding reconstruction algorithm indicated in Section 4. The computational
complexity of pair-matching algorithm is about O (KJMcLSD) based on SOMP, where LSD stands for
the number of the 2-D angles in the sub-dictionary.

Therefore, the total computational complexity is O
(

K3
(

L3
θ + L3

ϕ

)
+ KJMcLSD

)
.

For comparison, three common sparse representation algorithms (i.e., OMP, BP and L1-SVD) are
applied to DSR 2-D DOA estimation, and their computational complexity are listed in Table 1:

Table 1. Complexity comparison with common sparse decomposition algorithms.

Algorithms Single-Snapshot Case Multiple Snapshots Case

DSR-OMP O
(
KMcLθ Lϕ

)
O
(
KJMcLθ Lϕ

)
DSR-BP O

((
Lθ Lϕ

)3 log
(

Lθ Lϕ
))

O
((

JLθ Lϕ
)3 log

(
JLθ Lϕ

))
DSR-L1SVD O

((
Lθ Lϕ

)3
)

O
(

K3 (Lθ Lϕ
)3
)

DRSR-SSRSD O
(

L3
θ + L3

ϕ + KMcLSD

)
O
(

K3
(

L3
θ + L3

ϕ

)
+ KJMcLSD

)
6. Simulation and Analysis

In the simulations, the cross array configuration is shown in Figure 1, in which the element
number of each subarray is 11 and the array element spacing is half wavelength. The narrow-band
coherent sources are generated by

si (t) = γiej(2π f0t+ηi) (43)

where γi, ηi and f0 are the respective amplitude, phase and frequency of the ith signal. The center
frequency is set to f0 = 300 MHz.

The SNR is defined as

SNR = 10log10

(
1
K

K

∑
k=1

σ2
S,k

σ2
N

)
(44)

where σ2
S,k is the signal power of the kth signal and σ2

N is the noise power.
The Root Mean Square Error (RMSE) of the estimated DOA angles is defined as

RMSE =

√√√√ 1
2KNc

K

∑
i=1

Nc

∑
j=1

[(
θ̂i,j − θ̃i

)2
+
(

ϕ̂i,j − ϕ̃i
)2
]

(45)
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where Nc is the number of independent Monte Carlo tests; and θ̃i and ϕ̃i are the real azimuth and
elevation angles of the ith signal, respectively, while θ̂i and ϕ̂i are their estimated values.

6.1. DOA Estimated under Identical Source Amplitudes

Figure 3 illustrates the 2-D DOA estimated result of two and three coherent signals with same
amplitude for 100 independent Monte Carlo tests. The SNR is 0 dB and the number of snapshot
is 50. The azimuth and elevation of the two coherent signals in Figure 3a,b are [θ1, ϕ1] = [63o, 15o]

and [θ2, ϕ2] = [107o, 42o]. The three coherent signals in Figure 3c,d are set to be [θ1, ϕ1] = [63o, 15o],
[θ2, ϕ2] = [107o, 42o] and [θ3, ϕ3] = [80o, 60o]. It is observed that the proposed DRSR-SSRSD method
can pair match correctly, while SRSA-AC [27] method fails.
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Figure 3. 2-D DOA estimation results of DRSR-SSRSD and SRSA-AC method: (a) DRSR-SSRSD
(two coherent signals); (b) SRSA-AC (two coherent signals); (c) DRSR-SSRSD (three coherent signals);
and (d) SRSA-AC (three coherent signals).

6.2. Performance Analysis under Different SNRs

Figure 4 illustrates that the 2-D DOA estimation error and pair-matching probability vary with
SNRs under amplitude ratios of γ1/γ2 = 1:1 and γ1/γ2 = 0.8:1 of two coherent signals. The azimuth
and elevation angles are set as [θ1, ϕ1] = [52o, 25o] and [θ2, ϕ2] = [96o, 72o], respectively, and the
number of snapshots is 100.

Figure 4 shows that proposed DRSR-SSRSD method performs well regardless of whether the
amplitudes of the signals are identical, whereas for SRSA-AC method the pair-matching failure leads
to a poor angle estimation. The estimation error remains close to the CRB at low SNRs (−10 dB~0 dB).
The estimation performance of FBSS-ESPRIT [11] method is not affected by the amplitude ratio, but it
will get worse under lower SNRs.
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6.3. Performance Analysis under Different Amplitudes

Figure 5 illustrates that the 2-D DOA estimation error and pair-matching probability vary with
different amplitude ratios of γ1/γ2 of two coherent signals. The SNR is 0 dB and the number of
snapshots is 100.Sensors 2016, 16, 1496 13 of 17 
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Simulation results show that the estimation performance of proposed DRSR-SSRSD method
becomes better with the increase of amplitude ratio. In contrast, the estimation performance of
SRSA-AC method deteriorates when the amplitude ratio is larger than 0.5, especially when the
amplitude ratio is larger than 0.9, the performance drops significantly. The FBSS-ESPRIT method
has the similar performance to DRSR-SSRSD method when SNR is 10 dB, whereas when SNR drops
to 0 dB, the performance of FBSS-ESPRIT method is much worse than that of DRSR-SSRSD method.

6.4. RMSE Analysis in Different Number of Snapshots

Figure 6 illustrates the relationship between 2-D DOA estimation error and the number of
snapshots when the SNRs are −10 dB, 0 dB and 10 dB. Two coherent signals are with equal amplitude
and from same incident angles in Section 6.2. The RMSE performance of DRSR-SSRSD method is
close to the CRB under different SNRs and different number of snapshots, while FBSS-ESPRIT method
generates a poor estimation output in low SNR and its performance is not improved much even if the
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number of snapshots increases. In addition, it is worth noting that proposed DRSR-SSRSD method
still performs well under a single snapshot condition.
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6.5. RMSE Analysis in Different Angle Intervals

Figure 7 illustrates the relationship between 2-D DOA estimation error and different angle
intervals when the amplitude ratio of the coherent signals is 0.8:1. The SNR is 10 dB and the number of
snapshots is 100. In Figure 7, the performance of SRSA-AC method is better than that of FBSS-ESPRIT
method when the angle interval is less than 10 degrees, while FBSS-ESPRIT performs better than
SRSA-AC otherwise. The proposed DRSR-SSRSD method gives the smallest estimation error.
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6.6. RMSE Analysis under Different Correlation Coefficients

Figure 8 illustrates the relationship between 2-D DOA estimation error and different correlation
coefficients when the SNRs are −10 dB, 0 dB and 10 dB. The signals with different correlation
coefficients are [8]

s2 (t) = ρs1 (t) +
√

1− |ρ|2s2o (t) (46)

where s1 (t) and s2o (t) are two independent signals with identical power, and ρ is the correlation
coefficient of s1 (t) and s2 (t) which ranges from 0 to 1. Those correlated signals have the same power.
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Simulation results show that the RMSE performance of DRSR-SSRSD method does not change
with the increase of the correlation coefficients even under low SNR. Therefore, the high precision 2-D
coherent DOA estimation is achieved.

6.7. RMSE Analysis of Uniform T-Shaped, L-Shaped and Cross Arrays

Figure 9 illustrates the 2-D DOA estimation error of DRSR-SSRSD and FBSS-ESPRIT method of
T-shaped, L-shaped and cross arrays. The number of array elements is identical for all three array
formations whose array elements are uniformly spaced with half wavelength. It is observed that
the estimation performance of DRSR-SSRSD under the three types of orthogonal array is almost the
same, especially in the high SNR condition. Overall, the performance of DRSR-SSRSD is superior
to FBSS-ESPRIT.Sensors 2016, 16, 1496 15 of 17 
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6.8. Computational Complexity Analysis

Figure 10 illustrates the 2-D DOA estimation computation time of DRSR-SSRSD, SRSA-AC and
DSR-L1SVD. Assuming that there are two coherent signals, SNR is 10 dB and the number of snapshots
is 100.
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Figure 10 shows that the computation time of DRSR-SSRSD method decreases significantly
compared with the DSR-L1SVD method, while slightly higher than SRSA-AC method due of the
additional pairing. From the theoretical analysis and simulation results, the computational complexity
brought by the pairing algorithm is comparatively a small proportion of the whole method. Especially,
the larger the size of dictionary is, the smaller the proportion is. Therefore, compared with SRSA-AC
method, the estimation performance of DRSR-SSRSD method is improved by slightly scarifying the
computational complexity.

7. Conclusions

A novel DOA estimation method based on dimension reduction sparse reconstruction and
Spatial Spectrum Reconstruction of Sub-Dictionary (DRSR-SSRSD) has been proposed to realize
a low complexity 2-D coherent DOA estimation. Meanwhile, the problem that the pairing algorithm
failed when the signals’ power is equal or close has been solved successfully. Simulation results
demonstrate that the proposed method can facilitate the coherent DOA estimation with almost the
same performance in different coherent coefficients. The estimation error approaches CRB even under
the conditions of small snapshot number, low SNR and small angle interval. The proposed method
has lower complexity compared with direct sparse representation methods. Moreover, its application
can be extended to any uniform and non-uniform orthogonal arrays without a priori knowledge of
exact signal number.
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