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A B S T R A C T

In this work, the stress-resistant Bacillus megaterium STB1 is characterized and its ability to promote
plant growth under normal and stress conditions is demonstrated. The genomic sequence of this
bacterium, and a detailed analysis of the genes involved in facilitating its stress resistance and plant
growth-promoting activities is also reported.
The B. megaterium STB1 genome is rich in genetic elements involved in multiple stress resistance,

xenobiotic degradation, pathogen antagonistic activities, and other traits related to soil and rhizosphere
colonization. Moreover, genes participating in the biosynthesis of auxins and cytokinins, the modulation
of polyamines, GABA, brassinosteroids and ethylene levels were also found.
Ultimately, this study brings new insights into the role of B. megaterium as a plant growth-promoting

bacterium and opens new opportunities for the development of novel strategies for agriculture and
biotechnology.
© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The increasing demand for food production and environmental
clean-up solutions brings new challenges in agricultural and
environmental biotechnology, amongst them, the recovery of
degraded soils and their conversion to arable lands (bioremedia-
tion), as well as the development of sustainable agricultural
products to replace the use of chemical fertilizers and pesticides
that lead to unacceptable pollution levels worldwide. Beneficial
soil and plant-associated bacteria can promote plant growth and
stress resistance, hence, constituting a sustainable alternative to
the excessive use of chemicals in agriculture [1]. These plant-
growth-promoting bacteria (PGPB) can bind to or live inside of
plant tissues and facilitate plant growth and protection through a
variety of mechanisms, including nitrogen fixation, phosphate
solubilization, modulation of plant hormone levels, production of
antimicrobial compounds, among others [2].

Bacteria such as Bacillus spp., including Bacillus megaterium, are
commonly found in soils and are members of the microbiome of
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several plant hosts worldwide [3], acting mostly as PGPB [4,5].
These strains effectively colonize soils and plant tissues, and,
produce a wide range of bioactive compounds that are involved in
plant-growth promotion [6,7] and antiphytopathogen activities
[8]. Bacillus species are also a source for a wide range of
metabolites and enzymes of biotechnological and industrial
interest [9]. Nevertheless, one of the most important character-
istics of Bacillus strains is the ability to form spores, thereby,
increasing their capability to resist to a wide range of stress
conditions [10] and enable their application as PGPB inoculants for
agriculture and bioremediation processes [11]. Thus, obtaining
spore-forming and stress-resistant Bacillus strains with a high
level of plant-growth-promoting abilities is important for the
development of novel products to be applied in agricultural/
bioremediation setups, especially those subjected to stressful
conditions (e.g. high salinity).

Previous studies conducted by our group have led to the
isolation of several spore-forming Bacillus spp. strains from
stressful environments, amongst them, Bacillus megaterium strain
STB1 that was isolated from a rhizospheric soil obtained from a
contaminated estuarine environment in Portugal. This strain
resisted increased salinity and heavy metal concentrations and
had the ability to promote the germination and early growth of
several plants. Here, we report a detailed biochemical and genomic
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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characterization of strain B. megaterium STB1, as well as it plant
growth-promoting activities. The obtained results bring new
insights into B. megaterium genomics and the factors involved in
its ability to interact with a host plant and promote its growth.

2. Materials and methods

2.1. Bacillus megaterium STB1 characterization

B. megaterium STB1 was isolated from an estuarine soil
collected from the Mitrena area (Setúbal, Portugal) (38�3002400N
8�4804700W) which contains industries producing paper and
chemical fertilizers, among other pollutants, which over time
has resulted in the contamination of the surface waters and soils of
this area. The bacterium was maintained in 20 % glycerol stocks at
-80 �C and cultured in Tryptic Soy Agar (TSA) and Broth (TSB), at
28 �C with 150 rpm shaking, whenever necessary.

The strain was tested for the ability to produce indole-3-acetic
acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase,
protease, lipase, esterase, amylase, cellulase, catalase, sidero-
phores, ammonia, acetoin, H2S, nitrate/nitrite reduction, motility
and to solubilize phosphate as previously described [12].
Phytohormone degradation abilities were tested according to
the methodology described by Nascimento et al. [13].

2.2. Tomato plant-growth promoting assay under normal and salt
stress conditions

Commercial tomato (Solanum lycopersicum cv. super marmande)
seeds were disinfected using 70 % ethanol (1 min), 1 % sodium
hypochlorite solution (3 min) and five washes with sterile distilled
Fig. 1. Results obtained from the tomato plant growth promotion assay under norma
conditions; B) salt stress conditions; C) representative plants from each treatment.
NI- non-inoculated; STB1- inoculation with Bacillus megaterium STB1; RDW- Root Dry 

*represents significant statistical differences (p<0.05).
water to remove any traces of the former solutions. Seeds were
pre-germinated on 1 % agar plates at 25 �C. After germination, one
seedling was placed in each pot (volume of 300 mL) containing a
non-sterilized red clay soil (pH in H2O – 5.3; organic matter 15.62 %;
P and K – 0.49 mg.kg and 0.13 cmolc.kg respectively; Ca, Mg, Al and
H+Al,– 0.74, 0.43, 1.00, and 1.36 cmolc.kg, respectively), obtained
from Florianópolis, Brazil. The seedlings were inoculated with
2.5 ml of a STB1 bacterial inoculum (OD600 = 0.5) obtained following
the growth of strain STB1 in TSB medium at 28�oC for 72 h with
shaking at 150 rpm. The non-inoculated controls received 2.5 ml of
sterile TSB medium. The experiment consisted on four treatments:
normal conditions, non-inoculated control; normal conditions,
inoculation with STB1; salt stress conditions, non-inoculated
control; salt stress conditions inoculation with STB1. The study
followed a completely randomized design with 10 replications. All
pots received Hoagland and Arnon [14] nutrient solution (contain-
ing 200 mM NaCl, in the case of stress treatments) every three days.
The experiment was conducted under greenhouse conditions
(average temperature of 23.3 �C) in the Universidade Federal de
Santa Catarina, Florianópolis, Brazil. The plants were harvested 35
days after inoculation, roots and shoots were excised from one
another and dried at 60 �C for 3 days, before dry weights were
measured on an analytical scale.

Statistical analysis was conducted with SPSS Statistics v.22
software (SPSS Inc., IBM Company, USA), using ANOVA and the
means were compared using Tukey’s test.

2.3. Genome sequencing and analysis

Strain STB1 genome sequencing was conducted following the
methodology described by Urón et al. [15]. Briefly, the genomic
l and salt stress conditions (200 mM NaCl), 35 days after inoculation. A) control

Weight; SDW- Shoot Dry Weight; TB- Total Biomass.
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DNA library was constructed using Illumina TruSeq DNA Nano kit
(automated), and sequenced in the Illumina MiSeq platform using
the MiSeq V3 reagent kit (2 � 300 bp). A total of 2,272,938 reads
were obtained and assembled using the SOAPdenovo v2.04
software [16]. The final genome sequence of B. megaterium STB1
was constructed based on a guided assembly against the complete
genome sequence of Bacillus megaterium ATCC 14581 (CP009920.1)
using MAUVE 2.4.0 progressive alignments [17]. A chromosome
and one plasmid were assembled. The chromosome of strain STB1
(5,002,401 bp) is a scaffold of 13 contigs (N50 = 1,566,135 bp),
which were joined by introducing 100 Ns in the assembly gap
regions as indicated in the NCBI submission guidelines. Plasmid
pSTB1A results from one contig (118,698 bp) containing plasmid
replication genes and a lower GC%. The genome annotation was
performed using the NCBI Prokaryotic annotation pipeline [18].
The final near-complete genome sequence of B. megaterium STB1 is
available in the NCBI database under the accession number
CP025700-1.

Functional genome annotation was performed using Blast-
KOALA [19]. Genomic islands were predicted in IslandViewer [20].
CAZyme analysis was executed in the dbCAN website using
HMMER3 (hmmscan) [21]; antibiotic and secondary metabolite
analysis were performed in antiSMASH [22].

Sequences described in the manuscript and supporting
information were verified by BLASTp searches (default parameters)
against the UniProt/SwissProt database using the Geneious
software v9.1 (https://www.geneious.com). Genomic average
nucleotide identity (ANI) was calculated using OrthoANiu
(https://www.ezbiocloud.net/tools/ani) [23]. Genome circular
views were created using CGview [24].

3. Results and discussion

3.1. General characterization of Bacillus megaterium STB1

Bacillus megaterium STB1 is a Gram-positive, pale yellow,
sporulating bacterium, able to grow from 7� to 45 �C (maximum
tested) and in the presence of up to 5 % NaCl (maximum tested). It is a
catalase positive and motile bacterium, able to use glucose and
lactose as carbon sources, but non-fermentative. It does not produce
acetoin nor H2S, and a nitrate/nitrite reduction test was negative.
This bacterium produced several extracellular enzymes including
protease, cellulase and amylase, but not lipase or esterase under the
tested conditions. Strain STB1 produced ammonia and siderophores,
however, it was not able to solubilize phosphate or zinc. IAA or IAA-
like compounds [25] were found in the supernatant of strain STB1
(17.01 � 0.1 mg/ml) when the bacterium was grown in TSB medium
supplemented with 500 mg/ml tryptophan. This strain catabolized
4-aminobutyrate (GABA) but was not able to degrade the plant
hormones ACC, IAA, SA, N6-isopentenyladenine, kinetin, jasmonic
acid and abscisic acid.

3.2. Bacillus megaterium STB1 promotes tomato growth under
normal and salt-stress conditions

B. megaterium STB1 significantly promoted tomato plant
growth under both normal and salt stress conditions, leading to
increased root, shoot and leaf development (Fig. 1A–C). The
inoculation of tomato seedlings with B. megaterium STB1 resulted
in a significantly �3.5-fold increase in the root (32 vs 108 mg), and
shoot dry weight (49.9 vs 187.4 mg), which resulted in an
expressive increase in tomato total dry biomass (81.9 vs.
295.8 mg) when compared to the non-inoculated control, under
normal conditions (Fig. 1A and C). Similar results were observed
under stress conditions, where tomato seedlings inoculated with
B. megaterium STB1 presented a significantly increased root
(22.2 vs 83.8 mg) and shoot dry weight (50 vs 238.5 mg), and
consequently, total dry biomass (72.2 vs. 268.6 mg) when
compared to non-inoculated plants (Fig. 1B and C).

This data indicates a potentially significant agricultural impact
of B. megaterium STB1, which is consistent with previous reports
demonstrating the increased plant growth promoting abilities of
several other B. megaterium strains, including induced plant
protection against salt stress [26–28].

3.3. Bacillus megaterium STB1 genome general characteristics

The genome of Bacillus megaterium STB1 includes a single
circular chromosome of approximately 5 Mbp with an average GC
content of 38.2 %, and plasmid pSTB1A of approximately 118 Kb
with an average GC content of 33.7 % (Fig. 2).

DNA sequencing predicted a total of 5271 open reading frames
(ORFs) in the genome, in which 5195 correspond to putative
protein coding sequences (CDS) and 88 to ribosomal RNA and tRNA
genes.

BlastKoala analysis resulted in the functional annotation of
2513 from a total of 5195 CDS (48.4 %). Environmental (609) and
genetic (590) information processing functions were assigned for
most of the annotated CDS, followed by carbohydrate (299) and
amino acid (295) metabolism.

DbCAN analysis indicated a total of 37 proteins predicted to belong
to the Glycoside Hydrolase (GH) family, 36 to Glycosyl Transferases
(GT), 29 to Carbohydrate Esterases (CE), 10 to Carbohydrate Binding
Modules (CBM) and 7 to Auxiliary Activities (AA).

The complete elements for sec (secretion system), tat (twin
arginine) and a type VII secretion system were identified and
represent the major secretion systems found in STB1 (Table S1).

3.4. Phylogenomics

Phylogenetic analysis based on the partial 16S rRNA sequences
of all described Bacillus species showed that strain STB1 clusters
closely to the B. megaterium ATCC 14581 type strain (data not
shown). To confirm this result, genomic average nucleotide
identity (ANI) analysis were conducted. The analysis showed that
strain STB1 genome presents a high ANI (>95 %, which is the cut-off
value for defining bacteria belonging to the same species) to the
genomes of other B. megaterium strains: QM B1551 (97.23 %); DSM
329 (97.20 %); ATCC 14581 (97.12 %), hence, indicating that strain
STB1 belongs to the B. megaterium species.

3.5. Genetic elements involved in B. megaterium STB1 stress
resistance, soil and plant colonization abilities

3.5.1. Osmotic stress tolerance
B. megaterium STB1 genome analysis revealed the presence of

several genes that are involved in osmotic stress tolerance,
including: sodium and chloride transporters, the osmoprotectant
transport system, osmolyte biosynthesis and transport (e.g.
glycine-betaine, proline, glutamate, glutamine), and, membrane
integrity and protection mechanisms (e.g. cardiolipin, lipoteichoic
acid production, fatty acid desaturases) (Table S2). The abundance
of genetic elements involved in osmotic stress tolerance in the
strain STB1 genome is in agreement with the functional data
showing that strain STB1 tolerates high salinity concentrations,
and previous reports on the increased salinity tolerance of other B.
megaterium strains, many of which are used as inoculants for
increasing salt tolerance in various crops [27,28].

3.5.2. Temperature stress resistance and spore formation
The genome of B. megaterium STB1 contains several cold shock

(csp) and heat shock (hsp) proteins, as well as other chaperone
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Fig. 2. Schematic representation of Bacillus megaterium STB1 genome.
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proteins involved in the response to temperature stress (Table S3).
The STB1 genome harbors six cspA, three cspB, four cspC genes and
a cspE gene, which are all involved in the stabilization of DNA and
RNA, and, consequently, impact the transcription and translation
efficiency under cold stress [29], as well as other stress conditions
[30]. In addition, the genome contains several chaperones involved
in heat stress response including dnaJ, dnaK, groES, groEL, as well as
other several small hsp genes [31].

A total of 172 genes predicted to be involved in the several
phases of spore formation and spore germination processes were
detected in the STB1 genome (Table S4). This number is similar to
those observed in other B. megaterium strains (165 spore-related
proteins in B. megaterium QM B1551; 157 spore-related proteins in
B. megaterium DSM 319; 174 spore-related proteins in
B. megaterium JX285).

3.5.3. Heavy metals resistance
Heavy metal transport/resistance genes are abundant in the

B. megaterium STB1 genome (Table S5). These include several
transport genes (for zinc, cobalt, copper, cadmium, manganese,
nickel, arsenate, chromate, and fluoride) as well as genes encoding
arsenate and chromate reductases (three arsC genes, and one chrR
gene). One of the arsenate reductase genes is present in a cluster
(arsADCBRB, C0569_25700-25725) that also contains several
arsenate transport/resistance genes and is found on the plasmid
pSTB1A (Table S5). BLASTn analysis revealed that this cluster is
rare, and close homologs were only found in the B. weihaiensis
Alg07 chromosome and the B. oceanisediminis 2691 plasmid pBO1.
Interestingly, B. megaterium STB1, B. weihaiensis Alg07 and
B. oceanisediminis 2691 were all isolated from similar marine/
estuarine environments.

The large number of heavy metal resistance genes in the B.
megaterium STB1 genome suggests that this strain is able to deal
with high levels of heavy metals, which is consistent with previous
reports demonstrating the uptake and heavy metal resistance of
several B. megaterium strains [32–34].

3.5.4. Oxidative and nitrosative stress resistance
The B. megaterium STB1 genome contains multiple genes

involved in the oxidative stress response, including two Cu-Zn
superoxide dismutase genes, two Fe-Mn superoxide dismutase
genes, three catalase genes, two organic hydroperoxide resistance
genes and single copies of genes encoding thiol peroxidase, heme-
dependent peroxidase, glutathione peroxidase, peroxiredoxin and
a non-heme chloroperoxidase (Table S6). This collection of genes
indicates a strong adaptation and resistance to reactive oxygen
species (ROS), which are commonly produced and accumulated by
bacteria under stressful conditions and are also known to be
involved in the plant defense response.

Furthermore, the genome contains a farnesyl diphosphate
synthase (ispA) gene and three gene clusters involved in carotenoid
synthesis (Table S6). The carotenoid cluster 1 (C0569_00970-00985)
encodes hydroxyneurosporene desaturase (C0569_00970) and
4,40-diaponeurosporenoate glycosyltransferase (C0569_00975)
homologs, as well as an acyltransferase (C0569_00980) and
bisanhydrobacterioruberin hydratase CruF-like (C0569_00985)
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domain-containing proteins. Cluster 2 (C0569_14990-15000)
encodes a diapophytoene synthase, a diapophytoene desaturase
and a diapophytofluene desaturase homolog, all presenting high
identity (97.5 %, 99 %, 98.8 %) to the B. megaterium DSM319
enzymes involved in the synthesis of the C30 carotenoids, 4,40-
diapophytoene and 4,40-diaponeurosporene [35]. Cluster 3
(C0569_21280-90) encodes a 4,40-diapolycopene oxygenase
(C0569_21280), 4,40-diaponeurosporenoate glycosyltransferase
(C0569_21285) and glycosyl-4,40-diaponeurosporenoate acyltrans-
ferase (C0569_21290) homologs. Accordingly, the sequence data
suggests that B. megaterium STB1 is able to produce 4,40-
diapophytoene and 4,40-diaponeurosporene, as well as modified
versions of these compounds, all of which play a protective role in
the response against oxidative stress.

Two nitric oxide dioxygenase genes were also identified in the
genome (Table S6) and may account for strain STB1 resistance to
nitrosative stress.

3.5.5. Metabolism of xenobiotics
B. megaterium strains are known for their ability to resist and

degrade several xenobiotic compounds including herbicides,
pesticides, nitro compounds, azo dyes, barbiturates, epoxides,
steroids, and other toxic compounds [36–41]. Not surprisingly,
genomic analysis revealed several genes encoding enzymes
involved in xenobiotic degradation in B. megaterium STB1
(Table S7), including two nitroreductases (C0569_01050;
C0569_01380) presenting high identity (99.6 %) to B. megaterium
Mes11 NfrA1 and NfrA2 nitroreductases, respectively, involved in
the degradation of the herbicide mesotrione and other nitro
compounds [36]; an epoxide hydrolase (C0569_00825) sharing
98.3 % identity to the B. megaterium ECU1001 epoxide hydrolase
involved in the degradation of α-naphthyl glycidyl ether and the
production of optically active epoxides [39]; an aryldialkylphos-
phatase (C0569_03085) with 51 % identity to Sulfolobus solfataricus
MT4 thermostable phosphotriesterase involved in the degradation
of organo-phosphorus insecticides [42]; an alkyl/aryl-sulfatase
(C0569_23470) participating in the degradation of sodium dodecyl
sulfate and 4-nitrocatechol; a nitronate monooxygenase involved
in the degradation of toxic nitronates; five azoreductases involved
in the degradation of aromatic azo compounds; and a catechol-2,3-
dioxygenase (C0569_05375) involved in the degradation of
catechol, a common metabolite in several aromatic compound
degradation pathways.

In addition, the genome of strain STB1 contains several
cytochrome p450 encoding genes (Table S7), including a cyto-
chrome P450/NADPH–P450 reductase homolog (C0569_02245)
(98.1 % identity to B. megaterium ATCC 14581 CYP102A1) involved in
fatty acid hydroxylation [43]; a CYP109E1 homolog (C0569_04895)
(98.5 % identity toB. megaterium DSM 319 CYP109E1) involved in the
hydroxylation of steroids, vitamin D3 (cholecalciferol), cholesterol,
statins and terpenes [44–46,47]; a CYP106A1 homolog
(C0569_20645) (95.4 % identity to B. megaterium DSM 319
CYP106A1) involved in the hydroxylation of the pentacyclic
triterpene 11-keto-β-boswellic acid and several steroids [48,49];
a CYP109A2 homolog (C0569_21565) (97.3 % identity to
B. megaterium DSM 319 CYP109A2) involved in vitamin D3
hydroxylation [50]; and a unknown cytochrome P450
(C0569_21365) with 96 % identity to a B. megaterium DSM 319
WP_080514752.1 cytochrome P450.

3.5.6. Nitrogen, sulfur and phosphorus acquisition
B. megaterium STB1 possesses nitrate and nitrite reductase

genes, as well as several genes involved in nitrate/nitrite transport
(Table S8). Additionally, urea degradation (urease) and transport
genes, and three ammonium transporter genes (amtB) were found
in the genome (Table S8).
Genes involved in the assimilatory sulfate reduction pathway,
and sulfate transport (cysPUWA, ylnA, sulP) were detected
(Table S8), as well as sulfonate transport and degradation genes
(ssuABCD). Three ssuD genes, encoding alkanesulfonate monoox-
ygenase, were identified, suggesting that strain STB1 actively
obtains sulfur sources (sulfite) by degrading sulfonates. The STB1
genome also contains two dimethyl-sulfide (DMS) monooxyge-
nase (dmoA) gene homologs involved in the degradation of DMS;
and a dimethylsulfone monooxygenase (sfnG) gene homolog
involved in the DMS degradation pathway. Curiously, DMS is
volatile compound typically found in marine and estuarine
environments and is also produced by plants.

Phosphate transport system genes, as well as the alkaline
phosphatase genes phoA and phoD are present in the genome of
strain STB1 (Table S8), and account for its main organic
phosphorus acquisition abilities.

3.5.7. Iron acquisition
The B. megaterium STB1 genome contains several genes involved

in iron transport (Table S9), as well as in the biosynthesis of a
siderophore (C0569_05785-5815), with the putative siderophore
biosynthesis genes being somewhat homologous to the rhizobactin
biosynthesis genes (rhaABCDEF) involved in the production of the
hydroxamate-type siderophore rhizobactin from Sinohizobium
meliloti 1021. Moreover, BLASTn analysis revealed that the side-
rophore cluster (C0569_05785-5815) is highly conserved amongst
B. megaterium strains, including B. megaterium ATCC 19213 (98 %
identity), that is known to produce the hydroxamate-type side-
rophores schizokinen and N-deoxyschizokinen [51]. This analysis
also indicated that the B. megaterium ATCC 19213 genome contains
only one siderophore biosynthesis gene cluster. Hence, the data
suggests that the B. megaterium STB1 siderophore gene cluster
(C0569_05785-5815), also found in most B. megaterium strains,
is likely involved in the production of schizokinen and N-
deoxyschizokinen. Additionally, a gene cluster encoding a side-
rophore transport system was found in B. megaterium STB1 and
contains the yusV, yfhA, yfiZ and yfiY gene homologs, which have
been shown to play a role in B. subtilis schizokenin transport [52].

3.5.8. Competition- antagonistic activities
Genomic analysis revealed the presence of several gene clusters

involved in the production of antimicrobial compounds, including
a gene cluster involved in phosphonate biosynthesis, a cluster
containing a type III polyketide synthase gene, and a bacteriocin/
lantipeptide gene cluster (Table S10).

The phosphonate biosynthesis cluster found in the
B. megaterium STB1 chromosome contains at least six genes,
including phosphonopyruvate mutase (pepM), phosphonopyru-
vate decarboxylase and 2-aminoethylphosphonate-pyruvate
transaminase gene homologs. Curiously, this gene cluster also
contains two genes encoding proteins related to endospore coat
formation as well as peptidoglycan biosynthesis (Mur-like,
catalytic domain superfamily), suggesting that it may be involved
in the production of a phosphonoglycan. BLAST analysis revealed
that this cluster is only found in B. megaterium strains, thus,
suggesting that this is a species-specific trait.

Bacterial type III polyketide synthases have been linked to the
production of phenolic lipids such as alkylresorcinols and
alkylpyrones, possessing antimicrobial activity [53]. A gene
encoding a type III polyketide synthase from the chalcone/stilbene
synthase family (C0569_19065), and an adjacent isoprenylcysteine
carboxyl methyltransferase gene (C0569_19070) were found in
the genome of strain STB1. The encoded proteins are somewhat
homologous to B. subtilis 168 BpsA and BpsB proteins (52.4 % and
45.3 % identity, respectively) which are involved in the production
of several alkylresorcinols and alkylpyrones [54]. BLASTp analysis
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revealed that C0569_19065-70 homologs are commonly found in
other B. megaterium strains indicating that this is a common trait in
this species.

A bacteriocin/lantipeptide gene cluster was found in strain STB1
in plasmid pSTB1A. The cluster consists of an operon containing at
least ten genes, three of which are involved in lantipeptide
biosynthesis while the others are involved in lantipeptide/
bacteriocin modification and transport (Table S10). The
C0569_25480 gene encodes a type 2 lantipeptide synthetase
LanM, and genes C0569_25490-95 encode Type 2 lantibiotic,
SP_1948 family proteins. BLAST analysis indicates that the LanM
homolog C0569_25480 is rare and close homologs are only found
in five other sequenced B. megaterium strains, namely, strains
AFS083949, AFS069568, AFS058476 (obtained from corn),
AFS013177 (grass) and CHCC20162 (soil), hence, suggesting that
this is a new class of lantipeptide. Interestingly, most of these
strains were found associated with plants, suggesting a role for this
product in the associative lifestyle with a plant host.

Altogether, these results are in agreement with reports
indicating the antagonistic activities and production of antifungal
and antibacterial compounds by B. megaterium strains [5,55–57].

3.5.9. Motility, chemotaxis and attachment to plant surfaces
The flagella biosynthesis and regulation operons were detected

in the genome (Table S11), as well as, several genes involved in gas
vesicle formation (gvp). Gas vesicles are intracellular hollow
organelles commonly found in aquatic bacteria, which allow
buoyancy and enable cells to move upwards in liquid to access
oxygen [58]. Strain STB1 was isolated from an estuarine environ-
ment, so it is possible that it produces gas vesicles in order to
survive a periodic aquatic environment. Nevertheless, the gvp
genes are found in most B. megaterium strains [9,58], indicating
that this is a species-specific trait.

Several chemotaxis genes, such as cheABYWR and motAB, five
methyl-accepting chemotaxis proteins and a heme-based aero-
tactic transducer HemAT homolog were detected (Table S11).
Moreover, The B. megaterium STB1 genome contains multiple
genes involved in exopolysaccharide production, including capsule
biosynthesis genes, which may facilitate bacterial attachment to
plant roots. In fact, two clusters containing polysaccharide
biosynthesis genes were found (Table S11). In addition, several
genes involved in the production of teichoic acids, which play a role
in biofilm formation and root colonization [59] were also identified
(Table S3).

3.5.10. Utilization of root exudates
PGPB typically thrive in the rhizosphere, the portion of the soil

near to plant roots that is directly influenced by plant exuded
compounds. Root exudates differ amongst plants but are mainly
composed by sugars, organic acids, amino acids, peptides, proteins,
phenolics and flavonoids [60]. The genome of B. megaterium STB1 is
rich in genetic elements involved in the catabolism/conversion of
carbohydrates and responsible for the main carbon cycling
pathways (Table S12). Genes encoding proteins involved in the
degradation of fructose, ribose, arabinose, lactose, galactose,
mannose, GDP-mannose, sucrose, trehalose, raffinose, stachyose,
cellobiose and other hexoses, sugar acids (gluconate and several of
its keto forms, galactonate, lactate, galacturonate, tagaturonate
and altronate), sugar alcohols (myo-inositol, mannitol) and
complex sugars (cellulose, starch, glycogen) were found in the
genome (Table S12). Additionally, several glucosidase encoding
genes are present in the genome and may account for the
catabolism of several alpha and beta-glucosides (Table S12). Genes
encoding proteins related to sugar transport systems, which are
vital in carbohydrate acquisition, were also abundantly found in
the STB1 genome (Table S13).
The genetic elements encoding the tricarboxylic acid (TCA) and
glyoxylate shunt pathways, including succinate, fumarate, malate
and citrate degradation/conversion genes are present in the
genome (Table S14), as well as genes encoding enzymes involved
in the degradation of acetate, formate, malonate and tartrate, thus,
suggesting the ability of this bacterium to degrade and use a wide
range of organic acids as carbon sources. Moreover, three phenolic
acid decarboxylase and a polyphenol oxidase encoding gene were
also detected (Table S14) and may account for this bacterium
ability to catabolize several phenolic compounds. The phenolic
acid decarboxylase encoded by C0569_13590 presents high
identity (88.2 %) to B. subtilis 168 enzyme, PadC, involved in the
decarboxylation of ferulic, p-coumaric and caffeic acids [61]. The
genes C0569_24570 and C0569_24565 encode enzymes with a
high homology to B. subtilis 168 BsdCD enzymes (63 % and 81.4 %
identity, respectively) involved in the decarboxylation and
detoxification of phenolic derivatives such as 4-hydroxybenzoate
and vanillate [62].

Amino acid transport and degradation genes are abundant in
the genome (Table S15) and several peptide transport and
degradation genes were also identified (Table S16), including
those encoding aminopeptidases, dipeptidases, oligoendopepti-
dases and proteases, such as bacillolysin (C0569_22935).

Genes encoding cytochrome p450 enzymes, including a
CYP102A1 homolog (C0569_02245) that is known to hydroxylate
resveratrol [63], are found in the genome, suggesting that strain
STB1 also possesses the ability to modify/catabolize plant
flavonoids.

3.6. Genetic elements involved in B. megaterium STB1 plant growth
promotion activities

3.6.1. IAA biosynthesis
Several Bacillus strains, including B. megaterium STB1, are

known to produce auxins, such as IAA, that play an important role
in plant growth promotion and plant-microbe interactions [64].
Recently, Shao et al. [6] proposed that IAA production in B.
amyloliquefaciens SQR9a occurs via a tryptophan-dependent
indole-3-pyruvate (IPyA) pathway. Similarly, the genome sequence
of B. megaterium STB1 harbors genetic elements consistent with
the production of IAA via the IPyA pathway (Table S17). These
include several aminotransferase genes, including patB, which may
be involved in the conversion of tryptophan to IPyA; pyruvate
oxidase, pyruvate decarboxylase and several phenolic acid
decarboxylase genes, including a yclB homolog (C0569_24575),
which encodes an enzyme involved in the conversion of IPyA to
indole-3-acetaldehyde (IAAld); and aldehyde dehydrogenase
genes, such as dhaS, encoding an enzyme responsible for the
conversion of IAAld to IAA [6].

Curiously, the STB1 genome harbors a gene encoding an
amidase and with 44.5 % identity to Arabidopsis thaliana amidase 1
enzyme, involved in the conversion of indole-3-acetamide (IAM) to
IAA [65]. This suggests that B. megaterium STB1 is also able to
produce IAA via the IAM pathway. In this regard, it is not unusual
for bacteria that synthesize IAA to do so by more than a single
pathway [64].

3.6.2. Cytokinin biosynthesis
Elements involved in the production of cytokinins, such as, the miaA

(C0569_06005) and miaB (C0569_06035) genes encoding the tRNA
dimethylallyltransferase and tRNA-2-methylthio-N6-dimethylal-
lyladenosine synthase enzymes involved in the production of
N6-(dimethylallyl)adenosine (iPR) and 2-methylthio-N6-(dime-
thylallyl)adenosine (2MeSiPR), respectively; the yvdD gene
(C0569_21570) encoding a Lonely Guy (LOG) family protein
(cytokinin riboside 50-monophosphate phosphoribohydrolase)
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involved in the hydrolytic removal of ribose 50-monophosphate
from nitrogen N6-modified adenosines; and a bifunctional
cytochrome P450/NADPH–cytochrome P450 reductase gene
(C0569_02245) with homology to A. thaliana cytokinin hydroxylase
involved in the biosynthesis of trans-zeatin, were found in the STB1
genome (Table S17). These results suggest that B. megaterium STB1
is able to synthesize several cytokinins, which is consistent with
previous reports demonstrating cytokinin production by many
Bacillus species and its important role in Bacillus (including
B. megaterium) plant growth promotion abilities [66–68].

3.6.3. Polyamine production and modulation of ethylene levels
Polyamines such as putrescine, spermine and spermidine have

an important role in the plant-growth promoting abilities of
Bacillus strains, including B. megaterium [69,70]. Furthermore,
spermidine production by B. subtilis has been shown to decrease
the activity of the tobacco ACC oxidase gene (ACO1) responsible for
ethylene production, thereby lowering plant ethylene levels that
affect a range of plant-microbe interactions [69,71]. Several
polyamine metabolism and transport genes are found in the
genome of B. megaterium STB1, including, a speB gene encoding
agmatinase (involved in putrescine production), four speE genes
encoding spermidine synthase and several polyamine transport
genes (potABCD, pupP) (Table S17), consistent with an important
role for polyamine metabolism in B. megaterium STB1 plant growth
promotion abilities.

3.6.4. GABA metabolism
Under stress conditions plants produce and accumulate GABA

[72]. However, high concentrations of GABA can have deleterious
effects on cell elongation and overall plant stress resistance
[73,74]. GABA metabolism genes are abundantly found in
B. megaterium STB1 (Table S17). In this sense, strain STB1 possesses
the gadB gene encoding glutamate decarboxylase involved in GABA
production, as well as, four gabT and three gabD genes, encoding
GABA aminotransferase and succinate-semialdehyde dehydroge-
nase involved in GABA degradation. Moreover, strain STB1 possess
two gabP genes, encoding GABA permease, involved in GABA
uptake. These observations are consistent with the possibility that
B. megaterium STB1 acquires and uses GABA as a nutrient source in
the rhizosphere and, consequently, modulates plant GABA levels.
Interestingly, plants defective in the ability to degrade GABA are
often hypersensitive to salt stress [74], thus, B. megaterium STB1
GABA modulation abilities may be linked to its ability to induce salt
stress tolerance in tomato.

3.6.5. Modulation of plant brassinosteroids levels by cytochromes
p450

A recent study by Asari and colleagues [67] showed that
B. amyloliquefaciens UCMB5113 inoculation of the roots of A.
thaliana led to the modification of plant brassinosteroids levels. In
this sense, brassinolide, homocastasterone, castasterone, and
teasterone levels were all increased in UCMB5113-inoculated
plants. Interestingly, B. megaterium and other Bacillus species
metabolize/modify steroids via cytochrome P450 enzymes. These
results are consistent with the possibility that B. megaterium STB1,
possessing several cytochrome p450 (Table S7) involved in steroid
metabolism, may be able to metabolize/modify brassinosteroids
that are involved in plant growth regulation.

3.6.6. Plant growth promotion activities by modulation of VOCs
Bacillus strains are known to produce several VOCs that

positively impact plant growth and defense responses [7]. The
main production of bacterial VOCs results from nitrogen, sulfur,
carbohydrate, amino acid, fatty acid, ketone and alcohol metabo-
lism [75] and genes/enzymes involved in these pathways are
commonly found in the B. megaterium STB1 genome (Table S8, S12,
S14, S15, S18), thus, suggesting a high level of VOCs production
ability by this strain.

In addition, genomic analysis revealed the presence of several
genes/pathways involved in the synthesis and degradation of VOCs
such as acetoin, butanediol, DMS, 1-3-propanediol and nitric oxide
(Table S19), that are known to directly impact plant development
[7,76].

4. Conclusions

B. megaterium STB1 is a versatile and stress-resistant PGPB with
great potential for agriculture and biotechnology. Its genome
sequence revealed the presence of multiple genes involved in
important functions regarding soil and plant colonization, plant
growth promotion and other relevant features of biotechnological
interest (e.g. osmotic, temperature, oxidative, nitrosative and
heavy metal stress resistance; carbohydrate, organic acid, amino
acid, phenolic acids and xenobiotic, including steroids, terpenoids,
herbicides, insecticides, nitronates, metabolism; lytic activities
and antagonistic activities mediated by lytic enzymes, bacterio-
cins, phosphonates; VOCs modulation and multiple plant hormone
biosynthesis/modulation abilities). Ultimately, the data obtained
in this study brings new insights into the genomic properties
governing the successful beneficial interactions between impor-
tant soil microorganisms like B. megaterium and plants, and their
potential use in the development of novel sustainable agricultural
and biotechnological applications.
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