$R_{\rm int} = 0.034$

 $0.33 \times 0.21 \times 0.18 \text{ mm}$

7753 measured reflections 1757 independent reflections 1667 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Dichloridobis[2-(hydroxymethyl)tetrahydrofuran- $\kappa^2 O, O'$]manganese(II)

Lucjan B. Jerzykiewcz,* Józef Utko and Piotr Sobota

Faculty of Chemistry, University of Wrocław, 14. F. Joliot Curie, 50-383 Wrocław, Poland

Correspondence e-mail: jerzyk@wchuwr.pl

Received 3 April 2008; accepted 7 April 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.058; data-to-parameter ratio = 19.3.

The structure of the title compound, $[MnCl_2(C_5H_{10}O_2)_2]$, was solved from low-temperature data collected at 100 (2) K. The asymmetric unit contains one half-molecule with the Mn^{II} ion located on a twofold axis. A distorted octahedral environment around the Mn atom is formed by two ether and two hydroxyl O atoms of two 2-(hydroxymethyl)tetrahydrofuran ligands, and by two chloride ions. The chelating tetrahydrofuran ligands, which form five-membered rings, are *cis* oriented. The crystal structure is stabilized by hydrogen bonding between the coordinated OH groups and the chloride ions.

Related literature

For general background, see: Bradley (1989); Hubert-Pfalzgraf (1998); Jerzykiewicz *et al.* (1997, 2007*a,b*); Janas *et al.* (1997, 1999); Sobota *et al.* (1998*a,b*, 2000*a,b*); Utko *et al.* (2003)·For related compounds, see: Wu *et al.* (2004); Lumme & Lindell (1988); Choudhury *et al.* (2006); Yang *et al.* (2003).

Experimental

Crystal data $[MnCl_2(C_5H_{10}O_2)_2]$ $M_r = 330.10$ Monoclinic, C2/c a = 17.463 (3) Å b = 6.171 (2) Å

c = 13.159 (3) Å β = 100.24 (2)° V = 1395.5 (6) Å³ Z = 4 Mo K\alpha radiation $\mu = 1.33 \text{ mm}^{-1}$ T = 100 (2) K

Data collection

Kuma KM-4 CCD κ-axis	
diffractometer	
Absorption correction: analytical	
(CrysAlis CCD; Oxford	
Diffraction, 2006)	
$T_{\min} = 0.721, \ T_{\max} = 0.818$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.13refinement1757 reflections $\Delta \rho_{max} = 0.36 \text{ e Å}^{-3}$ 91 parameters $\Delta \rho_{min} = -0.32 \text{ e Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn-Cl1 Mn-O10	2.459 (1) 2.222 (2)	Mn-O11	2.222 (2)
$\begin{array}{c} Cl1-Mn-O10\\ Cl1-Mn-O11\\ Cl1-Mn-Cl1^{i}\\ Cl1-Mn-O10^{i}\\ Cl1-Mn-O11^{i}\\ \end{array}$	94.26 (3) 89.57 (3) 99.60 (2) 93.03 (3) 164.10 (3)	$\begin{array}{c} 010 {-} Mn {-} 011 \\ 010 {-} Mn {-} 010^i \\ 010 {-} Mn {-} 011^i \\ 011 {-} Mn {-} 011^i \end{array}$	73.22 (4) 168.70 (4) 98.24 (4) 84.69 (4)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Fable	2
-------	---

		0	
Hydrogen bond	geometry	(Λ 🤉	') -
Tryurogen-bonu	geometry	(<i>n</i> ,	٦.

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O11−H11···Cl1 ⁱⁱ	0.79 (2)	2.26 (2)	3.021 (2)	164 (2)

Symmetry code: (ii) x, y - 1, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *SHELXTL*, *PLATON* (Spek, 2003), *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2008).

This work was supported by the Polish State Committee for Scientific Research [grant Nos. PBZ-KBN-118/T09/19 and NN205403633].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2165).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bradley, D. C. (1989). Chem. Rev. 89, 1317-1322.
- Brandenburg, K. (2007). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Choudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). *Acta Cryst.* E62, m1489–m1491.
- Hubert-Pfalzgraf, L. G. (1998). Coord. Chem. Rev. 178-180, 967-997.
- Janas, Z., Jerzykiewicz, L. B., Sobota, P. & Utko, J. (1999). New J. Chem. 23, 185–188.
- Janas, Z., Sobota, P., Kimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897–3901.

Jerzykiewicz, L. B., Utko, J., Duczmal, M. & Sobota, P. (2007a). Dalton Trans. pp. 825–826.

Jerzykiewicz, L. B., Utko, J. & Sobota, P. (1997). *Acta Cryst.* C53, 1393–1396. Jerzykiewicz, L. B., Utko, J. & Sobota, P. (2007b). *Acta Cryst.* C63, m501–m503.

Lumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463–465.

- Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Poland, Wroclaw, Poland.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sobota, P., Utko, J., Brusilovets, A. I. & Jerzykiewicz, L. B. (1998a). J. Organomet. Chem. 553, 379–385.
- Sobota, P., Utko, J., Ejfler, J. & Jerzykiewicz, L. B. (2000b). Organometallics, 19, 4929–4931.
- Sobota, P., Utko, J., Sztajnowska, K., Ejfler, J. & Jerzykiewicz, L. B. (2000a). Inorg. Chem. 39, 235–239.
- Sobota, P., Utko, J., Sztajnowska, K. & Jerzykiewicz, L. B. (1998b). New J. Chem. 22, 851–855.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Utko, J., Przybylak, S., Jerzykiewicz, L. B., Szafert, S. & Sobota, P. (2003). *Chem. Eur. J.* 9, 181–190.
- Westrip, S. P. (2008). publCIF. In preparation.
- Wu, J.-Z., Bouwman, E., Mills, A. M., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 2694–2702.
- Yang, Q. Y., Qi, J. Y., Chan, G., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, m982–m984.

supplementary materials

Acta Cryst. (2008). E64, m657-m658 [doi:10.1107/S1600536808009549]

cis-Dichloridobis[2-(hydroxymethyl)tetrahydrofuran- $\kappa^2 O, O'$]manganese(II)

L. B. Jerzykiewcz, J. Utko and P. Sobota

Comment

The investigation presented in this work is a part of our research project concerning complexes with $O_{,O'}$ -bifunctional ligands (Jerzykiewicz et al., 1997; Janas et al., 1997; Sobota et al., 1998a; Sobota et al., 1998b; Janas et al., 1999; Sobota et al., 2000a; Sobota et al., 2000b; Utko et al., 2003, Jerzykiewicz et al., 2007a; Jerzykiewicz et al. 2007b). The use of chelating alkoxides can provide new compounds which are potential candidates for both sol-gel and metal-organic chemical vapour (MOCV) conversion of the precursor into the ceramic materials (Hubert-Pfalzgraf, 1998; Bradley, 1989). In this paper we describe the structure of a monomeric manganese(II) alkoxide complex: Mn(thffoH)₂Cl₂ (thffoH - tetrahydrofurfuryl alcohol) (Fig. 1). The Mn^{II} atom located at the special position (0, y, 1/4) on the two-fold axes displays a slightly distorted octahedral geometry (Table 1). The thffoH molecules bond to Mn atom as bidentate ligands through O11 hydroxyl group and O10 of ether group close two five-membered rings. The hydroxyl groups are cis arranged, whereas ether oxygen atoms of chelating ligands are situated *trans*. The coordination sphere of metal ion is completed by the Cl⁻ ions, which are in cis-positions. In contrast to other structures with O,O'-functional ligand MnBr2(MeOH)(Hmepap) (where mepma = N-(2-methoxyethyl)-N-(pyridin-2-ylmethyl) amine) (Wu *et al.*, 2004) and Mn₄Cl₄(OCH₂CH₂OCH₃)₄(EtOH)₄ (Jerzykiewicz et al., 2007a) the lengths of Mn–O(ether) and Mn–O(hydroxyl) bonds do not differ significantly. The Mn–Cl bond length of 2.459 (1) Å is similar to corresponding bonds distances in other monomeric octahedral manganese (II) compounds with *cis*–Cl atoms $Mn(2,2'-bpy)_2(C1)_2$ (where 2,2'-bpy = 2,2'-bipyridine) (Lumme & Lindell, 1988), $Mn(2,2'-bpy)_2(C1)_2$ bpy)₂(C1)₂ SC(NH₂)₂ (Choudhury *et al.*, 2006), MnCl₂(HL)₂ (where HL = N-(3-chlorophenyl)pyridine-2-carboxamide) (Yang et al., 2003). The tetrahydrofouran ring adopts an envelope conformation. The whole structure is held together by intermolecular hydrogen bonds of O-H…Cl type (Table 2, Fig. 2).

Experimental

The air- and moisture-sensitive title compound was prepared under dried N₂. A mixture of 1.26 g (10 mmol) $MnC1_2$ and 1.93 cm³ (20 mmol) tetrahydrofurfuryl alcohol (thffoH, Aldrich) in 15 mL of absolute ethanol was refluxed for 50 min, and the resulting precipitate was filtered, washed with ethanol, dried and recrystallized from ethanol.

Refinement

Carbon bonded hydrogen atoms were included in calculated positions and refined in the riding mode using *SHELXTL* default parameters. The remaining H atoms were located in a difference map and refined freely.

Figures

Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Mn(II) is located at the two-fold axes.

Fig. 2. The packing of the title compound, viewed down the c axis, showing one layer of molecules connected by O—H···Cl hydrogen bonds (dashed lines).

cis-Dichloridobis[2-(hydroxymethyl)tetrahydrofuran- $\kappa^2 O, O'$]manganese(II)

 $F_{000} = 684$

 $D_{\rm x} = 1.571 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 4812 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\mu = 1.33 \text{ mm}^{-1}$ T = 100 (2) K

Block, colorless

 $0.33 \times 0.21 \times 0.18 \text{ mm}$

 $\theta = 3 - 29^{\circ}$

Crystal data

[MnCl₂(C₅H₁₀O₂)₂] $M_r = 330.10$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.463 (3) Å b = 6.171 (2) Å c = 13.159 (3) Å $\beta = 100.24$ (2)° V = 1395.5 (6) Å³ Z = 4

Data collection

Kuma KM-4 CCD κ-axis diffractometer	1757 independent reflections
Radiation source: fine-focus sealed tube	1667 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 100(2) K	$\theta_{\text{max}} = 28.5^{\circ}$
ω scans	$\theta_{\min} = 3.6^{\circ}$
Absorption correction: analytical (CrysAlis CCD; Oxford Diffraction, 2006)	$h = -23 \rightarrow 23$
$T_{\min} = 0.721, \ T_{\max} = 0.818$	$k = -8 \rightarrow 8$
7753 measured reflections	$l = -11 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.057$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0255P)^{2} + 0.9537P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{max} < 0.001$
1757 reflections	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
91 parameters	$\Delta \rho_{\rm min} = -0.32 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned a structure invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Mn	0.0000	0.60449 (4)	0.2500	0.01153 (8)
Cl1	0.097635 (19)	0.86166 (5)	0.33711 (2)	0.01677 (9)
O10	0.05616 (5)	0.56904 (15)	0.11203 (7)	0.01400 (19)
O11	0.08645 (6)	0.33832 (17)	0.28441 (8)	0.0203 (2)
H11	0.0799 (13)	0.215 (4)	0.2945 (16)	0.035 (6)*
C11	0.11816 (8)	0.4088 (2)	0.11569 (11)	0.0158 (3)
H11A	0.0972	0.2725	0.0801	0.017 (4)*
C12	0.17872 (8)	0.5110 (2)	0.05927 (11)	0.0192 (3)
H12A	0.2323	0.4768	0.0946	0.021 (4)*
H12B	0.1719	0.4602	-0.0132	0.028 (5)*
C13	0.16192 (8)	0.7537 (2)	0.06439 (12)	0.0203 (3)
H13A	0.1872	0.8166	0.1311	0.029 (5)*
H13B	0.1794	0.8332	0.0073	0.033 (5)*
C14	0.07401 (8)	0.7568 (2)	0.05337 (11)	0.0171 (3)
H14A	0.0562	0.8921	0.0822	0.028 (5)*
H14B	0.0490	0.7444	-0.0200	0.024 (5)*
C15	0.14969 (8)	0.3643 (2)	0.22866 (11)	0.0183 (3)

supplementary materials

H15A	0.1817	0.2310	0.2352	0	.024 (4)*	
H15B	0.1832	0.4862	0.2584	0.	.017 (4)*	
Atomic displa	cement parameter	$rs(\AA^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	0.01366 (14)	0.00883 (13)	0.01296 (14)	0.000	0.00471 (10)	0.000
Cl1	0.01853 (17)	0.01165 (15)	0.01927 (17)	-0.00251 (11)	0.00099 (12)	-0.00065 (11)
O10	0.0142 (4)	0.0143 (4)	0.0147 (4)	0.0012 (3)	0.0060 (4)	0.0023 (3)
O11	0.0236 (5)	0.0134 (5)	0.0276 (6)	0.0050 (4)	0.0145 (4)	0.0082 (4)
C11	0.0138 (6)	0.0133 (6)	0.0211 (7)	0.0007 (5)	0.0055 (5)	-0.0028 (5)
C12	0.0154 (6)	0.0251 (7)	0.0187 (7)	0.0004 (5)	0.0073 (5)	0.0007 (5)
C13	0.0153 (6)	0.0231 (7)	0.0224 (7)	-0.0042 (5)	0.0027 (5)	0.0073 (5)
C14	0.0166 (6)	0.0183 (6)	0.0167 (6)	-0.0014 (5)	0.0041 (5)	0.0070 (5)
C15	0.0161 (6)	0.0178 (6)	0.0226 (7)	0.0042 (5)	0.0076 (5)	0.0056 (5)
Geometric pa	rameters (Å, °)					
Mn—Cl1		2.459 (1)	C13—	C14	1.5	16 (2)
Mn—O10		2.222 (2)	011—	H11	0.78	8 (2)
Mn—O11		2.222 (2)	C11—	H11A	1.00)
Mn—Cl1 ⁱ		2.459 (1)	C12—	H12A	0.99	9
Mn—O10 ⁱ		2.222 (2)	C12—	H12B	0.99	9
Mn—O11 ⁱ		2.222 (2)	C13—	H13A	0.99	9
O10-C11		1.461 (2)	C13—	H13B	0.99	9
O10-C14		1.456 (2)	C14—	H14A	0.99	9
O11—C15		1.439 (2)	C14—	H14B	0.99	9
C11—C12		1.532 (2)	C15—	H15A	0.99	9
C11—C15		1.516 (2)	C15—	H15B	0.99	9
C12—C13		1.530 (2)				
Cl1—Mn—O1	0	94.26 (3)	O10—	C14—C13	104	.34 (10)
Cl1—Mn—O1	1	89.57 (3)	011—	C15—C11	110	.01 (11)
Cl1—Mn—Cl	1 ⁱ	99.60 (2)	O10—	C11—H11A	110	
Cl1—Mn—O1	0^{i}	93.03 (3)	C12—	C11—H11A	110	
Cl1—Mn—O1	1 ⁱ	164.10 (3)	C15—	C11—H11A	110	
010—Mn—O	11	73.22 (4)	C11—	C12—H12A	111	
Cl1 ⁱ —Mn—O	10	93.03 (3)	C11—	C12—H12B	111	
O10—Mn—O	10 ⁱ	168.70 (4)	C13—	C12—H12A	111	
010—Mn—O	11 ⁱ	98.24 (4)	C13—	C12—H12B	111	
Cl1 ⁱ —Mn—O	11	164.10 (3)	H12A-		109	
O10 ⁱ —Mn—O	011	98.24 (4)	C12—	С13—Н13А	111	
O11—Mn—O	11 ⁱ	84.69 (4)	C12—	С13—Н13В	111	
Cl1 ⁱ —Mn—O	10 ⁱ	94.26 (3)	C14—	С13—Н13А	111	
Cl1 ⁱ —Mn—O	11 ⁱ	89.57 (3)	C14—	С13—Н13В	111	
O10 ⁱ —Mn—O)11 ⁱ	73.22 (4)	H13A-	—С13—Н13В	109	
Mn—O10—C	11	118.15 (8)	O10—	C14—H14A	111	

Mn-010-C14	121.45 (8)	O10-C14-H14B	111
C11—O10—C14	109.20 (10)	C13—C14—H14A	111
Mn-011-C15	111.64 (8)	C13—C14—H14B	111
Mn-011-H11	129.6 (17)	H14A—C14—H14B	109
C15—O11—H11	110.0 (17)	O11—C15—H15A	110
C12—C11—C15	112.84 (12)	O11-C15-H15B	110
O10-C11-C12	106.07 (10)	C11—C15—H15A	110
O10-C11-C15	107.03 (11)	C11-C15-H15B	110
C11—C12—C13	103.14 (11)	H15A—C15—H15B	108
C12—C13—C14	101.94 (11)		
Cl1-Mn-O10-C11	85.96 (8)	Mn-010-C11-C15	-21.30 (12)
Cl1-Mn-O10-C14	-53.90 (9)	C14—O10—C11—C12	2.38 (14)
O11—Mn—O10—C11	-2.30 (8)	C14—O10—C11—C15	123.09 (11)
O11-Mn-O10-C14	-142.16 (10)	Mn-010-C14-C13	117.39 (10)
Cl1 ⁱ —Mn—O10—C11	-174.18 (8)	C11—O10—C14—C13	-25.61 (13)
Cl1 ⁱ —Mn—O10—C14	45.96 (9)	Mn-011-C15-C11	-48.82 (11)
O11 ⁱ —Mn—O10—C11	-84.18 (9)	O10-C11-C12-C13	21.45 (14)
O11 ⁱ —Mn—O10—C14	135.96 (9)	C15—C11—C12—C13	-95.43 (13)
Cl1—Mn—O11—C15	-67.02 (8)	O10-C11-C15-O11	44.63 (13)
O10-Mn-O11-C15	27.56 (8)	C12-C11-C15-O11	160.94 (10)
O10 ⁱ —Mn—O11—C15	-160.02 (8)	C11—C12—C13—C14	-36.08 (14)
O11 ⁱ —Mn—O11—C15	127.83 (9)	C12-C13-C14-O10	38.10 (13)
Mn-010-C11-C12	-142.01 (9)		
Symmetry codes: (i) $-x$, y , $-z+1/2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O11—H11···Cl1 ⁱⁱ	0.79 (2)	2.26 (2)	3.021 (2)	164 (2)
Symmetry codes: (ii) $x, y-1, z$.				

Fig. 1

Fig. 2

