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Abstract: Nitinol (nickel-titanium or Ni-Ti) is the most utilized shape memory alloy due to its
good superelasticity, shape memory effect, low stiffness, damping, biocompatibility, and corrosion
resistance. Various material characteristics, such as sensitivity to composition and production thermal
gradients, make conventional methods ineffective for the manufacture of high quality complex
Nitinol components. These issues can be resolved by modern additive manufacturing (AM) methods
which can produce net or near-net shape parts with highly precise and complex Nitinol structures.
Compared to Laser Engineered Net Shape (LENS), Selective Laser Melting (SLM) has the benefit of
more easily creating a high quality local inert atmosphere which protects chemically-reactive Nitinol
powders to a higher degree. In this paper, the most recent publications related to the SLM processing
of Nitinol are reviewed to identify the various influential factors involved and process-related issues.
It is reported how powder quality and material composition have a significant effect on the produced
microstructures and phase transformations. The effect of heat treatments after SLM fabrication on
the functional and mechanical properties are noted. Optimization of several operating parameters
were found to be critical in fabricating Nitinol parts of high density. The importance of processing
parameters and related thermal cooling gradient which are crucial for obtaining the correct phase
structure for shape memory capabilities are also presented. The paper concludes by presenting
the significant findings and areas of prospective future research in relation to the SLM processing
of Nitinol.

Keywords: Nitinol; shape memory; superelastic; phase transformation; operation parameters;
microstructure; heat treatment

1. Introduction

Shape memory is a unique property of certain metallic and polymeric materials by which they
can recover their primary shape (programmed shape) after deformation (under temperature or stress
conditions) when a thermal or mechanical force is applied. This ability of shape-memory materials
enables them to be used as functional materials in various engineering applications, such as in
sensors and actuators, smart structures, biomedical implants and aerospace components [1,2]. Nitinol
(nickel-titanium alloy) is the most utilized shape memory alloy (SMA) with other common alloys being
CuZnAl and CuAlNi. Unlike most intermetallics, which are brittle, Ni-Ti is ductile in nature, and
therefore, often preferred [1,3]. Apart from shape memory properties, Ni-Ti exhibits other desirable
characteristics such as good biocompatibility, low stiffness, good corrosion resistance, high wear
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resistance, high ductility, superelasticity and strength properties. These properties make Nitinol a high
potential candidate material for use in medical, aerospace, automotive and heat engine applications.
Various commonly used compositions of Nitinol powders were of Ni(45%)-Ti(55%); Ni(50%)-Ti(50%);
Ni(55%)-Ti(45%), and their variations. The material has low anisotropy and small grain size compared
to other alloys [1,4,5]. Nitinol has a unique set of functional properties based on a reversible martensitic
phase transformation. These include shape memory effect, pseudoplasticity (thermal behavior), and
pseudoelasticity (mechanical behavior). Most applications of Nitinol in the medical field rely on
the superelastic property, whereas the shape memory effect is used in actuators and heat engine
applications. These behaviors primarily depend on the transformation temperatures, which vary
with the percentage composition of Ni and Ti. A higher content of Ti results in higher transformation
temperatures and in a prominent shape memory effect, whereas a higher Ni content lowers the
transformation temperatures and bestows superelastic properties upon the material [2,3].

Nitinol alloys are difficult to fabricate and process because of the high spontaneity of titanium,
and very low machinability. Conventional processing methods, including casting and powder
metallurgy, have several challenges in the processing of Nitinol. These challenges can be summarized
as follows [1,3,6,7].

• Achieving a uniform and homogeneous composition
• Producing complex geometries
• Low level of machinability (high elastic and abrasive nature of Ni-Ti)
• Purchasing of good Ni-Ti powder quality (free of oxides and inclusions)
• Provision of inert atmosphere (to avoid oxidation)
• Avoiding impurities (affects transformation temperatures, and crack propagation)
• Avoiding flaws and undesired porosity (reduces load, initiates crack nucleation/propagation)

1.1. Additive Manufacturing of Nitinol

Additive manufacturing (AM) was found to be effective in creating highly complex Ni-Ti
geometries with pre-designed porosity, homogeneous composition, and desirable properties as
compared to the traditional techniques. The process can achieve structures with high density and near
net shape, requiring very little or no post-processing. Laser-based AM techniques are progressively
being applied to produce Nitinol parts (bulk and porous structures) [1]. For instance, processing
Nitinol for bone implants is much easier through AM techniques compared to the difficulty of
machining such components with conventional processing methods. AM process parameters can
be adjusted to create comparable properties to those of conventionally processed Nitinol, including
surface morphology and shape memory characteristics [8]. Among the various additive manufacturing
techniques, Laser Engineered Net Shaping (LENS) and Selective Laser Melting (SLM) are the most
utilized techniques [9]. The SLM process (also known as Powder Bed Fusion) starts with spreading a
thin layer (thickness < 100 µm) of Nitinol powder on a substrate. A high-power computer-controlled
laser beam is then used to scan the powder bed. The powder particles melt by absorbing the energy
from the laser beam, and solidify to form a cross-sectional layer of the input CAD model slice. This
cycle is repeated layer-by-layer with the help of a spreader/recoater blade and adjustable build
platform, until the complete part is built [10]. In LENS (also known as Direct Energy Deposition), a
solid-state laser beam is focused on the building platform and used to melt the coaxially sprayed metal
powder which solidifies in place [11]. Compared to conventional methods, both of these techniques
have the potential to provide more gradual phase transformations through produced parts. Both
LENS and SLM can fabricate Ni-Ti with complete shape memory recovery for about 6% microscale
and 3% macroscale strains. The strains are stabilized at 4% and 2% after cycling [12,13]. However, the
SLM process exhibits better processing of Nitinol over the LENS method [12,13], and therefore, it is
preferred. A brief comparison between both of these methods is tabulated in Table 1.
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Table 1. Comparison between Selective Laser Melting (SLM) and Laser Engineered Net Shape (LENS)
processing of Nitinol [12,13].

SLM LENS

• Fabricates homogenous composition equivalent to
the composition of the feedstock

• Composition varies spatially and may differ from
the powder feedstock composition.

• Exhibits high aspect columnar grains extending
over multiple layers, due to orientation in the build
direction (along largest thermal gradient).

• Equiaxial grains are created with dimensions
corresponding to the layer thickness (has smaller
minor axis).

• Strain accumulation is more uniform, as material
microstructure is more homogeneous.
• The stress-strain curve shows a plateau as per the
response when critical stress is exceeded.

• Due to heterogeneity, strain accumulation varies.
The stress-strain curve exhibits a strain-hardening
like response once the critical stress was crossed.

• Shape recovery requires a temperature increase.
• Detwinned martensite is more stable.

• Residual martensite in the fabricated microstructure
recovers on heating, hence, detwinned martensite is
less stable in LENS-fabricated components.

1.2. Current Work

SLM processing is emerging as one of the most effective ways to produce Nitinol with desirable
functional properties. However, relatively little research work has been conducted on this topic. The
current paper identifies the advances and progress in the SLM processing of Nitinol. It summarizes
various factors such as process parameters, powder characteristics, and heat treatment conditions, and
identifies their effect on the microstructures, mechanical characteristics and transformation properties
of SLM-fabricated Nitinol samples. A later section also describes the various difficulties associated
with producing retained shape memory properties, and several frequent defects and their causes.
This study is of high relevance to researchers and engineers who work in this area, to assist them in
optimizing the SLM fabrication process for producing Nitinol for specific applications. As this is an
emerging area of research, future directions for research work are identified in the concluding section.

2. Materials and Methods

2.1. Effect of Operation Parameters

In the additive manufacturing of Ni-Ti, processing parameters have the biggest influence
on the final product. This product may require higher levels of post-processing, depending on
the quality/design requirements. Optimization of these process parameters is, therefore, of real
significance. The various process parameters include laser-related, scan-related, powder, and
environment (temperature and oxygen concentration)-related factors.

2.1.1. Process Parameters

Energy density has been found to have a directly proportional relationship with strength and
impurity levels of SLM fabricated Nitinol components. Higher levels of energy density can improve
the density of SLM-fabricated Nitinol products. However, there could be a rise in impurity pick-ups.
The relation is as given below, where E is energy density, P is laser power, v is scan speed, h is hatch
spacing, and t is layer thickness [14].

E =
P

v.h.t
(1)

Even though SLM fabrication is usually conducted in an inert environment, oxygen and nitrogen
are picked up significantly (about 0.14 wt.%) when the energy density is increased [15]. An energy
density of 100–200 J/mm3 is advised, and a value of 195 J/mm3 is recommended for Ni-Ti fabrication
using the SLM technique [15]. Walker et al. [6] demonstrated that very high energy density can form
wavy surfaces on parts. Very low energy density was found to cause discontinuous melts. Increasing
the energy density beyond a critical value was also found to induce porosity, which led to a drop in
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relative density [16]. High energy density increases the molten pool volume, hindering the escape of
gas bubbles to the surface during solidification, and this often results in pores. Secondly, a balling
effect can occur at high energy, and may form voids [13].

The laser scan speeds are found to have a direct effect on the thermal hysteresis of the alloy.
The functional properties are linked to the thermal hysteresis. Variations in cooling conditions may
result in tiny localized variations in chemical composition [9,17]. During the SLM process, the heat
distribution is of a non-uniform nature. Due to this, certain regions are exposed to more heat, and
Ni evaporation may occur, forming Ti2Ni precipitates [13]. It was also noted that lower scan speeds
can exhibit higher thermal memory recovery, and improved superelasticity [18]. Other intermetallic
phases such as Ti3Ni3 and TiNi3 may precipitate, due to a loss of laser control over the synthesis (e.g.,
during exothermal reaction) for a certain period [19]. Relatively low scan speeds (<200 mm/s) or high
energy densities may create intermetallic phases such as Ti2Ni, Ti3Ni4, or TiO2 and Ti4Ni2O oxides,
and result in poor phase transformations affecting the functional properties [20].

If the operation environment has a high oxygen content (≥1800 ppm), brittle oxides may form
and exhibit undesirable mechanical responses [13]. Non-metallic elements such as oxygen and carbon
are often picked up during the sintering process. Ni-Ti is often sensitive to impurity pick up while
processing at high-temperatures [21,22]. This results in impurity-related brittle Ti-rich phases such
as Ti4Ni2Ox which could strongly alter the microstructural properties, and thereby, the functional
properties [23–25]. Another factor to consider in the SLM fabrication process is substrate pre-heating.
If the substrate is not heated prior to the sintering process, high residual stresses may appear at the
bottom region of the component. This is due to the high thermal gradient between the first few layers
and the building platform, and if not attended to properly, may result in a warping effect, causing
the fabricated part to separate from the substrate material. Preheating the substrate will decrease the
thermal gradient between the first few layers and the substrate [26–28].

Optimization of laser parameters is necessary to ensure high density levels and low impurity
concentrations in the fabricated Nitinol [15,29–31]. According to ASTM F2063-05 [32], the impurity
levels must not exceed 500 ppm. The optimum laser parameters can be identified by creating single
Nitinol tracks, and modify the parameters until the fabricated tracks meet the desired requirements [29].
A set of optimal process parameters were identified by Walker et al. [6] for SLM processing of NiTi
(Phoenix-PXM machine). The parametric values were: laser power = 250 W, scan velocity = 1.25 m/s,
spot diameter = 30 µm, and hatch spacing = 120 µm. They were able to develop a relative part
density of 98%, and shape memory functionality. Another set of parameters using the same system
were suggested by Shishkovsky et al. [19] as: laser power = 50 W, scan velocity = 0.1–0.16 m/s,
spot diameter = 70 µm, and hatch spacing = 100 µm. the process obtained 97% relative density.
Haberland et al. [15] also used an energy density of 200 J/mm (54.7 J/mm3) and produced a fully
dense Ni-Ti containing what were considered permissible levels of impurity (O2: 0.03–0.04 wt.%; N2:
0.01–0.02 wt.%; C: 0.028–0.03 wt.%). The authors also modified the existing energy density relation as
follows for simple geometries, to include other parameters such as db—beam diameter (mm): dt—track
width (mm): and ρr—powder-bed relative density.

E =
P

ρr·db· t· v
dt ≤ h (2)

E =
P

ρr·db·t·v
·
(

2− h
dt

)
0 < h < dt (3)

Dadbakhsh et al. [17] studied the difference in phase formation by producing samples at low
laser parameters (LP) and high laser parameters (HP), separately under similar energy densities.
The LP parameters were associated with a low power (40 W), and low scanning speed (160 mm/s),
with low heating and cooling rates. The HP parameters were based on high power (250 W), and
high scanning speed (1100 mm/s), with higher heating and cooling rates. The two combinations
produced similar densities (99%) and chemical compositions. The fabricated samples via LP conditions
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exhibited martensitic phase with functioning shape memory effect, while the HP combination produced
austenitic phase with a superelasticity property, at room temperature.

In order to retain proper densification levels, a coordinated increment or decrement of the scan
speed and laser power was noted as being necessary. It was found that the energy density decreased
when laser power was kept constant and scanning speed was increased. Similarly, the energy density
decreased when the hatch spacing was increased, while keeping laser power and scanning speed
constant [3].

2.1.2. Phases and Crystal Structures of Nitinol

There are three different functioning phases in Nitinol. In the martensitic phase, Nitinol has a low
symmetry, and complex-twinned monoclinic B19′ structure (Figure 1a). In the austenitic phase, Nitinol
has a highly symmetric, and ordered body centered cubic (BCC) crystal lattice structure, denoted as
B2 structure (Figure 1b). Martensite is characterized by needle-like crystals arrayed in a herringbone
shape. The austenite phase is hard and stiff, while that of martensite is softer, more ductile, and
has a lower yield stress. In some grades of Ni-Ti, an intermediate R-phase may be present which
has a rhombohedral structure exhibiting low transformation strain, and low temperature hysteresis
(1–10 ◦C) [33,34]. The R-phase formation can be linked to any previous cold working or aging of
Ni-rich alloys, or may be due to alloying with an additional element like iron [3].
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Figure 1. Crystal structure phases of NiTi showing (a) B19′ martensite, and (b) B2 austenite [3].

When Nitinol is heated, and temperature exceeds the transformation temperatures, the martensite
transforms into austenite, recovering the original programmed shape. Hence, this shape memory
effect is also referred to as the “thermal memory effect” [1]. The schematic representation of this
transformation is shown in Figure 2a. A more detailed explanation can be provided based on the
different transition temperatures involved in the phase formations (Figure 2b). At room temperature,
the material will be in the twinned martensite phase (B). When a deformation is applied, the phase
changes to detwinned martensite (C) by reorienting and detwinning the lattice structure. The twin
boundaries in martensite shift such that they orient in one preferential direction to better accommodate
the load; this phenomenon is termed “detwinning”. This microstructural process enables Ni-Ti to
withstand high strain without any permanent deformations [35]. When this detwinned martensite
(D) is heated to exceed the austenite start temperature (As), austenite begins to form (E), and once it
crosses austenite finish temperature (Af ), austenite formation will be complete (A, F). Figure 3 shows
the typical strain-temperature and stress-strain curves of Ni-Ti.

As noted, for some grades of Nitinol, the intermediate phase called the R-phase may form. As the
cubic austenite phase is cooled, one of the lattice diagonals elongates resulting at a reduced angle (<90◦).
Hence, the name R-phase due to the rhombohedral structure it forms. If the material is cooled below
the critical R-phase temperature (Rs), R-phase crystals may form. The resulting microstructure will
contain both austenite and R-phase, and is referred as the pre-martensite phase [36]. When the material
is further cooled down to the martensite start temperature (Ms), a martensite phase starts to form. The
austenite (low strain phase) to martensite (high strain phase) transformation will be completed once it
cools down below the martensite finish temperature (Mf ). Conversely, when the austenite phase is
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sufficiently stressed, it changes to martensite. The Clausius–Clapeyron stress-temperature relationship
for Ni-Ti describes the activation process under stress of the forward transformation from austenite to
martensite, as well as the reverse transformation (martensite to austenite). This relationship indicates
that the activation temperatures (As, Af, Ms and Mf ) increase linearly per unit stress [37–39]. At higher
temperatures, martensite is unstable, and therefore, returns to the austenite phase on unloading. This
large elastic response of reversing the deformation to original shape is called superelasticity [1]. This
martensitic transformation is a diffusionless shear (solid-state) transformation. A coordinated motion
of a large number of atoms relative to their neighbors causes this diffusionless displaced transition. A
new crystal structure is formed from parent phase without any change in the composition [3].
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2.1.3. Metal AM Parameter Setting Effect on Microstructure

Microstructures with different grain morphology, size, and texture can be tailored by adjusting
the process parameters [16,42,43]. The layer-by-layer melting and consolidation creates complex
thermal gradients, spatially varying grains, and precipitates in the as-fabricated structure. Complex
thermal gradients can occur due to high laser power and cooling rates, resulting in a solidification
imbalance [44]. The high cooling rates in the range of 103–108 K/s may form finer powders, improving
the mechanical properties and density of the final part [45,46]. Khoo et al. [47] used repetitive laser
scanning technique, in which the second scan imparts lesser energy to the powder compared to a single
scan method. Thus, the molten pool acquired a lower temperature and a shorter solidification time.
Various SLM research papers have confirmed that grains generally orient in the path of the highest
thermal gradient (vertical). Grains may display columnar and equiaxed morphologies with varying
sizes [16,48–50]. The thermal stresses during the SLM processing of Ni-Ti can generate stress-induced
martensitic phases. In SLM, the laser power and scanning velocity affects the microstructure distinctly.
Even though not much impact on microstructure were reported, change in scan velocities affected the
Ni evaporation, altering the phase transformation temperatures [16]. It was further understood that
the power density, and complex thermal process during solidification also affects the microstructure.

The melting process in SLM involves the re-melting of the formerly sintered layer with bonding
of the new layer in an epitaxial solidification manner. Epitaxial solidification is necessary to bond
the interlayers strongly, and to prevent undesirable intermetallic phases and porosities in these
regions [51,52]. This can result in grain growth in the sublayer, while the current layer grains are
sintered [16,44]. Epitaxial growth can result in an increased length and width of the grains [16]. This
elongation may be in the form of platelet shape oriented parallel to the laser beam direction (Figure 4),
following the higher thermal gradient track (scanning direction). A minimum critical energy level is
necessary to maintain this epitaxial solidification and a lower cooling rate. The lower cooling rates
can lead to the formation of coarser grains [45,53,54]. Grain sizes increase with increasing laser power
(Figure 5) [16,53,55]. In an experiment conducted by Bormann et al. [16], grain shapes were observed
to change from s-shape to rectangular when a high laser power (56–100 W) was used [16]. These
grains were also found to orient themselves along the heat direction. Lower levels of cooling rate
caused re-orientation and enlargement of the formed grains [45]. High laser power may also increase
the porosity. High energy input (>74 J/mm) is likely to increase the surface roughness and porosity
between the adjacent scan tracks. During prolonged melting or high energy, the molten pool becomes
unstable, resulting in irregular tracks and vaporization [17,18,56]. When the input energy is less than a
critical level (no epitaxial solidification), the sublayer will not be adequately sintered; this could result
in reduced area of contact between the layers. The surface tension causes the formation of a cylindrical
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shape, higher porosity, and weak bonding between layers. Lower cooling rates are often seen in this
case, as are re-orientation and enlargement of the formed grains [57].
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2.1.4. Effect on Transformation Temperatures

Dadbakhsh et al. [17] reported that the SLM parameters can highly influence the transformation
temperatures and mechanical response of porous and dense Ni-Ti. In the case of SLM processing of
Nitinol, it was observed that the phase transformation temperatures increase as the energy increases
from 45 to 545 J/mm3 [15,42,58]. This effect is due to the evaporation which occurs during laser
processing at high energy. Nickel, which has a lower evaporation temperature (2913 ◦C), evaporates
more readily, leaving more titanium (with an evaporation temperature of 3287 ◦C) in the matrix
composition. This higher titanium content increases the transformation temperature [3,11]. High
energy density can also evaporate nickel ions (explained earlier), resulting in higher transformation
temperatures [59]. This phenomenon is observable in all the compositions i.e., high Ti content or Ni
content, or near equiatomic Ni-Ti [60].

2.1.5. Effect on Corrosion Properties

The corrosion properties of Nitinol are of concern from a cytocompatibility viewpoint. Release of
Ni ions from the matrix can cause harmful and adverse effects in biological applications. Nitinol is
known for its good corrosion resistance, and hence its biocompatibility, due to the rapid development
of protective oxide layers (thickness of 2–20 nm) on the surface. The oxides that usually form on the
Ni-Ti surface are mostly TiO2, along with small traces of TiO, Ti2O3, NiO and Ni2O3 [25,61]. However,
Ni ions can still leach in physiological environments when exposed to long service durations [62].
Laser-based processing can lead to higher Ti concentration on the surface, and a thicker oxide layer [61].
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Alternatively, controlling the Ti/Ni ratio can also result in higher corrosion resistance due to better
stability of the TiO2 film [63].

In a study performed by [25], both SLM-fabricated and conventionally-produced Ni-Ti was found
to exhibit comparable corrosion properties. The capability of SLM in producing a homogeneous and
defect-free Ni-Ti structure could further improve the corrosion resistance during service. It was also
found that when the porosity was increased, a higher corrosion current was caused due to the presence
of larger surface area and an increased number of edges of the porous structures. The corrosion current
was observed to increase from about 200 nA (bulk structure) to about 950 nA (35% porous structure).
Higher corrosion currents could result in a higher release rate of Ni ion and corrosion by-products [25].
If the operation environment contains higher oxygen content (e.g., 0.6%), the SLM process can form
large oxide film on the porous structure. This can affect the mechanical property; however, it will
increase the corrosion resistance and biocompatibility [64,65]. As mentioned in the previous section,
low cooling rates can create coarser grains, thus reducing the extent of grain boundaries, which are
potential nucleation sites for precipitates or impurities. Therefore, controlling the cooling rates during
SLM can directly translate into a reduction in corrosion rates for Ni-Ti [64,66–68].

2.2. Powder and Material Composition

2.2.1. Effect on Microstructure

Powder shape and particle size distribution are also found to affect the microstructure [69,70].
Laser processing often changes the microstructures and phases of the feedstock alloy powder. Due
to the lower heat flux near supports, the grains usually become finer in the regions far away from
the base, while coarser grains are formed at the bottom region of the fabricated component [45,54].
In a study conducted by Shiva et al. [71], it was observed that equiatomic Ni(50%)-Ti(50%)
composition presented the most uniform, finest, and highest packed grains compared to the other two
compositions. Ni(45%)-Ti(55%) exhibited uniformly distributed grains of irregular shapes and large
sizes. Ni(55%)-Ti(45%) exhibited smaller grains when compared to Ni(45%)-Ti(55%); however it was
still large when compared to Ni(50%)-Ti(50%) composition (Figure 6). Finer particles are preferred
for denser fabrication, and they also reduce the energy requirement for epitaxial solidification [45].
Particle sizes in the range of 20–63 µm or smaller exhibited poor flowability, and a reduced packing
density (56%). When the range was around 25–75 µm and 45–100 µm, a higher packing density (60%)
was observed. If the particle size falls below 45 µm, packaging density was about 44%; below 25 µm,
the packing density fell even further to about 37% [15,49]. For SLM of Ni-Ti, medium-sized fractions
around 25–75 µm are the ones with favorable particle size, spherical morphology, flowability and
packing density, impurity content, and excellent transformation ability.
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2.2.2. Effect on Transformation Temperatures

Transformation temperatures of Nitinol are very susceptible to the Ni or Ti content. Near
equiatomic Ni-Ti have disadvantages such as lower strength and poor cyclic stability compared to a
Ni-rich Nitinol. Higher titanium content in the matrix composition will need higher temperature to
process, owing to the higher melting point of Ti. Binary Ni-Ti alloys have transformation temperatures
between −40 ◦C and 100 ◦C and exhibit a temperature hysteresis of 20–40 ◦C. Higher Ni content
(lower Ti content) can decrease the transformation temperatures at a rate of about 93 ◦C/at.% Ni
content. For instance, the effect of nickel content on martensite start (MS) temperature is shown in
Figure 7. As nickel content increases, MS temperature decreases [3,6]. It has been reported that 50Ni
and 50.5Ni (at.%) Nitinol failed to show pseudoelasticity due to low strength [3]. The diffusionless and
reversible martensite-austenite transformation takes place in the temperature range of 50–100 ◦C as
a function of the nickel content. This is associated with a variation of transformation temperatures
by approximately 10 ◦C/0.1 at.% change in the nickel content [72,73]. Increasing nickel content also
increases the critical stress needed for martensitic transformation and the strain recovery. Therefore,
the chemical composition should be maintained very accurately. The transformation temperatures of
Ni-Ti alloys are also very sensitive to impurities such as nitrogen, carbon, and oxygen [2]. For instance,
if oxygen is present in the Nitinol matrix, the transformation temperature will be lowered, and causes
the parent phase to be brittle. Studying the phase diagram (Figure 8), we can see the existence of few
stable phases (Ni3Ti, NiTi2) besides the main phase Ni-Ti. These additional phases will not exhibit
shape memory property and their presence affect the composition of the remnant Ni-Ti portion of
matrix. This will also affect the transformation temperature. A metastable Ni4Ti3 phase precipitates at
lower temperatures owing to the decreased solubility of nickel. This phase is coarsened when annealed
at 300–600 ◦C, resulting in the formation of a stable Ni3Ti phase [2]. Samples lacking these precipitates
(high homogeneity) are highly suitable for medical applications. The Ni+ ion release can be reduced
by using a smaller laser spot size, lowering risks of Nitinol biomedical implants [13,74].
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2.3. Heat Treatment Processes

2.3.1. Effect on Phase Transformations

The as-fabricated Ni-rich Nitinol will not be able to recover the full strength because of the
nucleation of martensite in an austenite region [76]. Heat treatments such as solution annealing and
aging can be applied after SLM fabrication to provide a homogeneous equilibrium state throughout the
material, and help in recovering the strength. It also helps in clearing several microstructural defects
and residual stresses [77]. Subsequent aging processes can be applied in order to recover strength
completely through precipitating Ni-rich phases such as Ni3Ti, Ni3Ti2, and Ni4Ti3. Solution annealing
followed by water quenching could cause significant decrease in transformation temperatures of
Ni-rich Nitinol. The metastable phases such as Ni3Ti2 dissolve during solution annealing and this
suppresses further precipitation when water quenching is employed. Solution annealing also decreases
the transformation features such as peak width (in Differential Scanning Calorimetry). This was
confirmed by Andani et al. [58] and Saedi et al. [78] who reported lower transformation temperatures
(about 20 ◦C) and a single-phase transformation. It was also found that a longer aging duration may
increase the transformation temperatures (Figure 9). This could be either due to evaporation of Ni in
prolonged high temperature conditions, or precipitation of Ni-rich phases at high temperatures [78,79].
Oxidation happens often during the heat treatment processes at high temperatures. This may result in
the reduction of Ti, as it is highly reactive to oxygen, and consequently, it decreases the transformation
temperatures. This could further result in poor martensite to austenite transformations and an elevation
in precipitate formation [80].

When the martensite transformation is suppressed by a solution treatment and a subsequent
ageing processes, formation of R-phase could occur. This is due to the introduction of Ni-Ti precipitates
(usually Ni4Ti3) which could favor the R-phase growth [36,47]. In the DSC plots, we may see distinct
peaks; the first peak indicates the austenite to R-phase transformation, while the second represents the
transformation from R-phase to martensite phase [15,81].
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2.3.2. Effect on Mechanical Properties

The thermal stresses during SLM can generate stress-induced martensitic phases. Solution
annealing can homogenize the composition, dissolve all precipitates, and eliminate all stress-induced
phases [1,78]. Saedi et al. [78] conducted a Vicker’s hardness tests on SLM fabricated Ni-Ti sample, and
the hardness value was found to be 224 HV, which is much lower than the ingot hardness (278 HV).
Employing solution annealing increased the hardness value to 288 HV. Solution annealing dissolves
the brittle Ni4Ti3 precipitates; the increase in the hardness was ascribed to this. A sample which is
subjected to an aging process for 18 h at 350 ◦C. Following this, annealing can eventually exhibit an
increase in hardness up to 345 HV. Haberland et al. [82] used a Ni-rich specimens to study the effect of
orientation on the compressive properties of superelastic Ni-Ti. Their samples were solution annealed
at 950 ◦C for 5.5 h after fabrication, and then quenched under water. The heat treatments generate a
more flat loading curve (versus steep curve), and greater stress and strain at failure. This was caused by
the dissolution of nucleated Ni4Ti3 phases which had previously formed. Generally, these precipitates
hinder plastic deformation. Subsequent aging processes can result in reducing the fracture stress and
strain. However, it was found that more severe aging conditions (temperature and duration) create a
more ductile curve and higher values of fracture stress and strain [36]. Saedi et al. [78] also observed
that the subsequent aging also increased the yield stress by about 700 MPa. These observations were
because of the precipitation/age hardening effect.

2.4. Challenges in Producing Shape Memory Effect

Achieving an effective shape memory property is challenging, owing to high localized heating,
high scan speed, fast heating rates, and rapid solidification rates. The shape memory effect and
mechanical responses depend significantly on the microstructural characteristics. Apart from operation
parameters, the microstructural characteristics can also be affected by laser solidification tracks, the
formation of very small austenitic grains inside melt pools, large plate-like martensitic phases that are
thermal stress-induced, and a preferential texture corresponding to the heat flow direction. Compared
to LENS, these factors are more profound in SLM, as scanning velocities are much higher. Figure 10
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shows these occurrences in an SLM-fabricated Ni-Ti. These typical features will eliminate the residual
elastic energy among the laser tracks; however, it will reduce the uniformity of martensitic phase
transformations. The grains always tend to orient along the build direction (heat flow direction).
This can produce large anisotropy in stiffness and shape memory responses. Fine martensitic and
austenitic sub-grains formed in laser tracks can also be seen in the Figure 10 [1]. The large martensitic
plates can be removed by proper annealing and furnace cooling. However, these treatments will
not produce isotropic properties. The application of furnace cooling after annealing can result in the
segregation of martensite and austenite within the solidified track, leading to further mixed shape
memory behavior [13]. Dadbakhsh et al. [48] reported the influence of orientation of austenitic crystals
on shape memory response of Ni-Ti fabricated by SLM. The structures in which the austenitic crystals
are aligned vertically showed the highest elastic recovery. Conversely, the horizontal alignment
exhibited lowest elastic recovery and highest shape memory recovery strain. This discrepancy is due
to the presence of elongated austenitic crystals, which may destabilize the twinned martensite. The
horizontal orientation can also increase the material’s resistance to compressive loads [13]. Highly
dense SLM-fabricated equiatomic Ni-Ti showed almost full shape memory recovery, while in porous
samples, about 0.5% irrecoverable strain remained. However, the superelasticity property shows only
partial recovery due to low strength property of equiatomic Ni-Ti. The cycling tests will gradually
stabilize the shape memory behavior, and irrecoverable strain becomes negligible [3,82,83].
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2.5. Defects in Fabricated Parts

High thermal gradients and cooling rates can increase the chances of formation of columnar grain
structures. These columnar grains may lead to shrinkage-related defects such as solidification cracks.
This can be controlled by changing the alloy composition or decreasing the rate of solidification [84].
The lased-based AM processes (SLM or LENS) are expected to maximize the material density [1].
However, porosity is recognized as one of the most common quality issues. SLM can be used to
pre-design pore morphology. By engineering the porosity, a desired stiffness value can thereby be
achieved [70].

Cracks and pores are the two most common structural defects found in SLM-fabricated
Ni-Ti [84,85]. The porosities can be classified based on the cause of occurrence; gas-induced or
process-induced porosity (Figure 11a). Gas induced pores are caused by trapped gas in the powder
bed. Pores can form near the edge regions due to insufficient melting of powder particles, and they are
referred to as “process induced pores” [86]. Based on shape morphology, pores can be of spherical and
irregular types [44]. Spherical porosity is due to the mixing of ambient gas with the Nitinol powder
particles; the trapped gas does not have enough time to escape from the melt pool. Irregular pores are
formed due to the balling effect. These pores can be reduced by epitaxial solidification [87]. Strong
bonding between layers is necessary to prevent chances of pore formation (optimize laser power and
scan speed). It has been reported that energy densities of more than 74 J/mm3 would increase chances
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of pores [9]. Irregular pores can be reduced by using an inert gas (Argon) environment to reduce the
oxygen levels during processing. This could also reduce the balling effect (oxygen expand between
layers) due to less oxygen, further reducing the chances of irregular pores [57,88,89].

Owing to the process nature, SLM and LENS have a high tendency to create unbalanced stress
profiles (residual thermal stresses) between the printed layers. Residual stresses in these processes,
usually occur due to the large thermal gradients created by several re-melting and cooling cycles,
taking place at inconsistent heat levels or thermal gradient levels. The regions of concern are mainly
the exposed layer (top layer) and the interface between the exposed layer and the previously printed
layer [90]. Thermal expansion of the top layer creates tensile stress, while the cooler layer below
undergoes compressive stresses. This phenomenon occurs throughout the underlying layers, and may
affect the same layer multiple times. This will eventually result in a stress gradient between the layers.
Residual stresses are usually highest in the scan overlap regions. Residual stresses, if high enough, can
initiate cracks (Figure 11b) throughout the Nitinol samples, and reduce the fatigue strength drastically.
This can result in the delamination and/or warpage of feature geometry [78,89,90]. Another reason
for crack formation could be the balling effect between layers, or element vaporization. Hence, the
process parameters should be such that they favor epitaxial solidification, and also provide an inert
process atmosphere [87,89,91]. Element vaporization is another cause of crack-initiating pores in the
structure. These cracks, however, do not propagate as the SLM-inherent rapid cooling prevents the
propagation mechanism [91,92].
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3. Conclusions

In this paper, previously published work related to the SLM processing of Nitinol has been
reviewed to identify and quantify the influential factors involved, process-related issues, and suggest
possible areas to work on. Based on the findings to date, it is clear that additive manufacturing could
be used to process Nitinol components with high density and near net shape, requiring very little or
no post-processing. Out of the two common AM approaches (LENS and SLM) for Nitinol processing,
SLM has been reported as the preferred method. The SLM process can be used to produce parts with
homogenous and comparable composition to that of the feedstock. The process was also found to be
capable of forming uniform microstructure with high aspect ratio columnar grains, uniform strain
accumulation and a stable detwinned martensite phase structure.

The SLM process parameters were found to have a significant impact on the microstructure
and phase transformation temperatures. The optimization of several parameters including energy
density, scan velocities, and working environment was shown to be necessary to attain high density
levels and low impurity levels in the fabricated Nitinol parts. Too high or low energy densities result
in impurity pickup, porosity, and wavy surface finishes. The scan speeds of the laser beam affect
the thermal hysteresis due to longer heat exposure, which in turn influence the shape memory and
pseudoelastic properties. The presence of nitrogen, carbon, and oxygen in the work chamber is found
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to alter the transformation temperatures of Nitinol. A high oxygen content can cause degradation
of the mechanical and functional properties in the material. Complex thermal gradients affect the
microstructure of the as-fabricated structure. Substrate preheating is recommended to reduce the
thermal gradient and relieve the residual stresses. Density levels can be managed through coordinated
manipulation of scan speed and laser power. High cooling rates were found to generally improve the
mechanical properties and density. However, they may result in large thermal gradients affecting the
residual stress, grain orientations and phase formations. To avoid undesirable intermetallic phases
and porosities, epitaxial solidification has been found to be effective, which could be achieved by
controlling the input energy and cooling rate. Higher energy levels cause evaporation of Ni, and
therefore, result in higher phase transformation temperatures, as higher Ti content in the composition
will increase the processing as well as the transformation temperatures. From the control of cooling
rates and oxygen content in the process environment, it was found to be possible to improve the
corrosion protection of Nitinol. The creation of low density (porous) structures can also increase the
chance of corrosion occurring.

The powder quality and material composition also impose a significant effect on the microstructure
and phase transformations. Equiatomic Ni-Ti was observed to exhibit the most uniform and finest
grains, which is highly recommended for high density fabrication. Particle size was also found to affect
the flowability and packing density of the feedstock during fabrication. The martensitic transformation
and strain recovery are also influenced by the Ni content in the composition, and therefore maintaining
an accurate composition is necessary. Heat treatments performed post-SLM are also reported to affect
the functional and mechanical properties to a great extent. More ductile curves and high fracture
characteristics were created when heat treatments involving very high temperatures and durations
were used. High localized temperature rise, scan speeds, heating and solidification rates make it
difficult to produce the right phase structure for shape memory effect via SLM process. The method of
solution annealing was found to be effective in homogenizing the composition and dissolving and
removing the undesired precipitates and the stress-induced phases.

The difficulties in producing effective shape memory response lies mostly in the microstructural
characteristics, which may include formed grain morphologies, stress-induced phases, and preferential
texture formations. Annealing and furnace cooling treatment can improve the functional properties;
however, more prospective work is required to completely eliminate the anomalies leading to mixed
functional responses during SLM fabrication of Nitinol parts. Furthermore, the common structural
defects have also been reviewed. It was found that pores and cracks are two prominent process-related
defects which result during SLM processing. Common causes may include gas trapping, insufficient
melting, high thermal gradients and cooling rates.

The research and development on this topic remains at an early stage and significant work will
have to be conducted to enable Nitinol parts to be effectively produced via metal AM. More studies
are required to be focused on optimizing the parameters to consider dimensional precision, surface
quality, and the functional properties response. SLM process parameters need to be better analyzed
for optimized control to achieve repeatability in SLM processed Nitinol, and to produce components
with superior quality and reliability. Residual stresses, being one of the significant problems, must
be examined to find better solutions to mitigate them. Only a few studies have been conducted to
better understand the effect of operation parameters in causing porosity and crack defects. The fatigue
behavior of SLM-produced Nitinol must be studied further to reduce the numbers of defects, and
achieve higher reliability of functional responses. An in-depth understanding is required to interlink
the functional and mechanical properties with the microstructural characteristics resulting from a set
of process parameters.
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