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Molecular checkpoints controlling natural killer
cell activation and their modulation for cancer
immunotherapy

Hyung-Joon Kwon1,2, Nayoung Kim3,4 and Hun Sik Kim1,2

Natural killer (NK) cells have gained considerable attention as promising therapeutic tools for cancer therapy due to their

innate selectivity against cancer cells over normal healthy cells. With an array of receptors evolved to sense cellular alterations,

NK cells provide early protection against cancer cells by producing cytokines and chemokines and exerting direct cytolytic

activity. These effector functions are governed by signals transmitted through multiple receptor–ligand interactions but are not

achieved by engaging a single activating receptor on resting NK cells. Rather, they require the co-engagement of different

activating receptors that use distinct signaling modules, due to a cell-intrinsic inhibition mechanism. The redundancy of

synergizing receptors and the inhibition of NK cell function by a single class of inhibitory receptor suggest the presence of

common checkpoints to control NK cell activation through different receptors. These molecular checkpoints would be

therapeutically targeted to harness the power of NK cells against diverse cancer cells that express heterogeneous ligands for

NK cell receptors. Recent advances in understanding the activation of NK cells have revealed promising candidates in this

category. Targeting such molecular checkpoints will facilitate NK cell activation by lowering activation thresholds, thereby

providing therapeutic strategies that optimize NK cell reactivity against cancer.
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INTRODUCTION

Since the discovery of natural killer (NK) cells in the 1980s
based on their ‘natural killing’ activity against cancer cells,
accumulating evidence has now established that NK cells are
key effectors in cancer immunosurveillance.1–4 They are innate
lymphoid cells with an intrinsic selectivity and capacity to kill
cancer cells over normal healthy cells without the requirement
for prior sensitization, which is distinct from the activation
of adaptive immune cells.3 Accordingly, NK cells are in the
‘ready-to-kill’ state and rapidly trigger effector functions against
cancerous cells that involve the direct cytolysis and secretion of
cytokines, including interferon-γ (IFN-γ) and tumor-necrosis
factor-α (TNF-α).1 Due to their innate selectivity against cancer
cells, NK cells are now being considered promising therapeutic
measures in the treatment of cancer. In support, numerous
studies have demonstrated that NK cell functional deficiency is

associated with an increased risk of developing various types
of cancer,5–7 including a seminal 11-year follow-up study
reporting the high risk of cancer incidence in subjects with
low NK cell cytotoxic activity.8 Moreover, NK cell effector
functions are often impaired in patients suffering from various
types of cancer,9–14 and the extent of such dysfunction
correlates with clinical prognosis.15–17 Thus, NK cell effector
function can be regarded as a surrogate marker of ongoing
antitumor immune response, and its monitoring can be
utilized as a reliable prognostic biomarker.18 Thus, these
findings raise an interesting possibility that an infusion of
NK cells without functional deficiency or reviving of endogen-
ous NK cell function hold promise in the treatment of cancer.

NK cells are equipped with an array of germline-encoded
surface receptors that recognize specific ligands on target cells
and use diverse receptor combinations to deliver selective
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cytotoxicity against cancer cells.3,19 To prevent the killing of
normal healthy cells, NK cells primarily use inhibitory recep-
tors, such as killer cell Ig-like receptors (KIRs) and CD94-
NKG2A, that bind to major histocompatibility complex
(MHC) class I molecules on target cells.20 In addition,
NK cells require combined signals from multiple activating
receptors to elicit effective cytotoxicity against cancer cells.
Thus, the decision of an NK cell to kill target cells is
determined by a signaling balance between activating and
inhibitory receptors. In this context, cancer cells can be
sensed and killed by NK cells through the loss of MHC class
I molecules, which are constitutively present on normal
healthy cells and/or upregulation of various ‘stress-induced’
ligands for NK cell activating receptors that are usually sparse
on healthy cells.21–23

Given the multitude of activating receptors that bind
endogenous ‘self’ ligands on target cells, NK cell activation is
tightly regulated and kept in check by the requirement for
the engagement of multiple activating receptors. Except for
CD16-mediated antibody-dependent cellular cytotoxicity,
NK cell effector functions are rarely triggered by engaging
a single activating receptor on human, freshly isolated resting
NK cells. Rather, their activation requires the co-engagement of
specific pairs of activating receptors with distinct signaling
properties.3,24,25 For example, NKG2D, 2B4, DNAM-1 and
NKp46, which are not activating on their own, can induce the
synergistic activation of NK cells in combination with their
partner receptors.26 Such redundancy of receptor synergy and
its intersection by a single class of inhibitory receptor contain-
ing immunoreceptor tyrosine-based inhibition motifs suggests
common checkpoints for NK cell activation. Thus, under-
standing how signals from different activating receptors
converge on common molecular checkpoints is important
and may provide innovative strategies that enhance NK cell
activation for cancer immunotherapy. Moreover, upon expo-
sure to cytokines (for example, interleukin (IL)-2 or IL-15),
NK cells have enhanced survival and reactivity toward target
cells. Such cytokine stimulation lowers the threshold for
NK cell activation and thereby renders NK cells responsive to
a single activating receptor (for example, NKG2D) to trigger
effector functions.26–29 In this context, cytokine preactivation
of NK cells may provide an additional strategy for NK
cell-based cancer immunotherapy. Recent studies have also
suggested that NK cell activation relies on the modulation of
other molecular checkpoints (for example, DGKζ, CIS, PI3Kγ)
and microRNA (miRNA). Initially developed for T-cell-based
therapy, blockade of immune checkpoints (for example, PD-1)
and chimeric antigen receptors (CARs) also show promising
results when applied to NK-cell-based cancer therapy. Due
to our advanced understanding of NK cell activation, many
efforts have been made to enhance the therapeutic benefit of
NK cells via manipulation of effector functions. In this review,
we describe recent progress in NK cell activation and discuss
therapeutic strategies targeting NK cells, with a focus on
common signaling checkpoints for different activating
receptors.

COMMON SIGNALING CHECKPOINTS FOR NK CELL

ACTIVATION

Compared to T cells that are dominantly activated by
immunoreceptor tyrosine-based activation motif (ITAM)-
coupled TCR, NK cells have a multitude of receptors with
different ligand specificity and signaling properties for activa-
tion:3,30–32 receptors associated with ITAM-bearing molecules
(for example, CD16, NKp30, NKp46), the DAP10-associated
receptor NKG2D, receptors of the signaling lymphocytic
activation molecule family (for example, 2B4) and other
activating receptors (for example, DNAM-1). Among the three
ITAM-bearing adaptor molecules, FcRγ and CD3ζ chains
associate with CD16, NKp30 and NKp46 receptor by forming
either homodimers or heterodimers, whereas DAP12 associates
with the NKp44 receptor. The signaling properties of ITAM-
associated receptors in NK cells are considered similar to those
mediated by TCR or BCR.30 NKG2D associates with DAP10,
which harbors the YINM motif and signals via the recruitment
of phosphatidylinositol-3-kinase (PI3K) or Grb2–Vav1
complex.33 Engagement of NKG2D triggers activation of Akt
and MAPK, Erk and Jnk. 2B4 contains an immunoreceptor
tyrosine-based switch motif and signals through the adaptor
SAP, which recruits tyrosine kinase Fyn.34–36 2B4 signaling
involves the activation of Vav1, Erk, p38 MAPK and PLC-γ2.
In SAP deficiency, 2B4 could function as an inhibitory receptor
by recruiting protein tyrosine phosphatases (for example,
SHIP-1).35,37,38 DNAM-1 harbors an immunoreceptor tyrosine
tail-like motif and signals via the recruitment of Grb2, resulting
in Vav1, PI3K-Akt, Erk and PLC-γ1 activation.39 Given various
receptor combinations that trigger the synergistic activation of
NK cells, signals from different activating receptors must
converge on certain points at which synergy occurs. Using an
activation model that combines 2B4 with NKG2D or
DNAM-1, we found that SLP-76-Vav1 and NF-κB p65
function as common checkpoints for multiple activation path-
ways in NK cells (Figure 1).40,41 In addition, we recently
provided evidence demonstrating E3 ubiquitin ligase c-Cbl and
glycogen synthase kinase (GSK)-3β as negative regulators of
NK cell activation triggered by multiple activating receptors
(Figure 1).25,42 Because cancer cells express various and
heterogeneous ligands for NK activating receptors, it would
be desirable to target and modulate signaling molecules that are
common to multiple activating receptors for NK cell activation.

Integration of activation signals by SLP-76-Vav1
It has been established that Vav proteins play critical and
non-redundant roles in the activation of NK cells.3 Vav protein
deficiency is associated with severe defects in triggering
Ca2+ responses and NK cell functions in response to multiple
activating receptors.43–47 Among the three Vav isoforms, Vav1
is critical for the synergistic combinations of NKG2D, 2B4 and
DNAM-1.25 In support, Vav1 is commonly activated by
phosphorylation via the engagement of NKG2D, 2B4 or
DNAM-1. However, enhanced and additive phosphorylation
of Vav1, which is required for synergistic activation, is achieved
by the combination of NKG2D with 2B4 but not with
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DNAM-1. This finding suggests the presence of an upstream
regulatory element for signal integration, which results in
optimal Vav1 activation. We found that signals from synergiz-
ing receptors converge on the adaptor protein SH2 domain-
containing leukocyte phosphorylation of 76 kDa (SLP-76) via
complementary phosphorylation of two tyrosine residues in
SLP-76.40 Each one of the two phosphorylated tyrosines, which
constitute separate binding sites for Vav1, is required for
the synergistic activation of NK cells. Signaling by NKG2D
and DNAM-1 leads to the same phosphorylation of SLP-76 at
tyrosine 128, whereas 2B4 signals for phosphorylation at
tyrosine 113. In this respect, complementary phosphorylation
of SLP-76 is achieved by the synergistic combination of 2B4
with NKG2D or DNAM-1 but not by the non-functional
combination of NKG2D with DNAM-1. Interestingly, the
selective phosphorylation of tyrosine 113 and tyrosine 128 in
SLP-76 is unique to signaling by natural cytotoxicity receptors,
as stimulation of NK cells by CD16, and of T cells by TCR
resulted in phosphorylation at both sites. Thus, complementary

phosphorylation of SLP-76, which results in Vav1-dependent
synergy, could represent a molecular checkpoint for NK cell
activation via multiple activating receptors.

Integration of activation signals by NF-κB p65
The transcription factor NF-κB plays a key role in determining
the outcomes of diverse immune responses48,49 and is also an
indispensable component of NK cell cytotoxicity and cytokine
production.50,51 However, how NF-κB activation is controlled
by multiple activating receptors during NK-target cell contact
remains largely unclear, and previous studies have been
confined to a few activating receptors that are coupled to
ITAM-bearing molecules whose signaling properties are similar
to those triggered by the antigen-specific receptors of the
adaptive immunity.52,53 Effective activation of cytotoxicity and
cytokine secretion by human NK cells requires a combination
of synergistic receptors. Among activating receptors NKG2D,
2B4 and DNAM-1, which are non-ITAM receptors that couple
to different signaling modules, no single activating receptor is
competent for NF-κB activation. Rather, their synergistic
combination is required for effective NF-κB activation and
NK cell responses.41 This combination relays independent and
complementary signals that result in the combined phosphor-
ylation of the ‘upstream’ SLP-76-Vav1 and unexpectedly, the
‘downstream’ NF-κB p65 subunit. Vav1-dependent synergistic
signals are required for p65 phosphorylation and NF-κB
activation, which is supported by the stepwise regulation of
Vav1 and p65 phosphorylation in NK cells. Thus, NF-κB
activation in NK cells is coordinately regulated by the
complementation of activating receptors with distinct signaling
properties to support appropriate and effective NK cell
responses.

c-Cbl as a gatekeeper for NK cell activation
Cbl proteins, including c-Cbl and Cbl-b, are multifunctional
adaptor molecules harboring E3 ubiquitin ligase activity, which
primarily represses signaling by lymphocyte receptors.54–57

Such negative regulation is largely mediated by promoting
the ubiquitylation of signaling molecules, which can result in
internalization from the cell surface and delivery to lysosomal
or proteasomal degradation. In mice, c-Cbl is required for
proper T-cell development by inhibiting TCR signals through
ubiquitylation of the TCR ζ chain58,59 and Vav1,60 and by
promoting internalization of LAT.61 By comparison, peripheral
T-cell activation is regulated by Cbl-b through ubiquitylation,
but not degradation, of the p85 subunit of PI3K.62,63 In our
study of human NK cells, c-Cbl but not Cbl-b, imposes
a threshold for NK cell activation.25 Knockdown of c-Cbl but
not Cbl-b enhances NK cell cytotoxicity and cytokine secretion
through multiple activating receptors by promoting the
Vav1-dependent activation pathway. An interesting outcome
of c-Cbl knockdown is that it removes the requirement for
synergy and renders NK cells responsive to the engagement
of a single activating receptor, such as NKG2D and 2B4.
These data suggest that c-Cbl serves as a gatekeeper for NK cell
activation via different activating receptors. Although c-Cbl

Figure 1 Molecular checkpoints for NK cell activation through
different activating receptors. Synergistic activation of a NK cell
requires the engagement of a specific combination of activating
receptors, such as 2B4 with NKG2D or DNAM-1. These
combinations induce complementary phosphorylation of SLP-76,
resulting in Vav1-dependent synergistic activation of PLC-γ2 and
Erk. Vav1 activation by the synergistic combination of receptors can
overcome the intrinsic inhibition by c-Cbl. NKG2D or DNAM-1
triggers another independent signal through PI3K and Akt.
Synergistically activated Erk signal and separate Akt signal
cooperatively induce inhibitory phosphorylation at serine 9 of
GSK-3β or independently induce synergistic phosphorylation at
serine 276 and serine 536 of NF-κB p65, respectively. Vav1
activation under the licensing of SLP-76 phosphorylation regulates
downstream p65 phosphorylation and NF-κB activation, which
prevents inadvertent NF-κB activation and ensures proper
activation. These elaborate mechanisms coordinate to achieve the
synergistic activation of NK cell effector functions.
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knockdown amplifies the signal input from an individual
activating receptor (for example, NKG2D), it cannot replace
the requirement for complementary signals from the partner
receptor (for example, 2B4) for full NK cell activation. In
support, Cbl knockdown markedly enhances NF-κB activation
and cytokine production by the co-engagement of NKG2D and
2B4, but not by a single receptor.41 This ‘quantitative’ regula-
tion of signaling by c-Cbl may help to prevent the inadvertent
activation of NK cells toward normal healthy cells that express
limited ligands for the NK cell activating receptor. In this
respect, c-Cbl modulation would provide a promising ther-
apeutic strategy to enhance NK cell activation toward cancer
cells. In a recent study, Cbl-b deficiency was shown to enhance
anti-metastatic activity of NK cells and efficiently reduce
metastases of murine mammary cancer and melanoma.64 Thus,
targeting Cbl-b would be an interesting strategy to enhance the
anti-cancer activity of NK cells, although its therapeutic
potential in human NK cells requires further investigation.

GSK-3β as a negative regulator of NK cell activation
Using a model of NK cell activation that is dependent on
combined signals from different receptors (for example,
NKG2D and 2B4), GSK-3 was identified as a common
signaling molecule in NK cell activation by multiple activating
receptors.42 GSK-3 is a serine/threonine protein kinase that
serves as a convergent point downstream of diverse signaling
pathways and regulates many cellular processes including
immune responses.65,66 In our study, GSK-3, particularly
GSK-3β, negatively regulates NK cell effector functions, such
as cytotoxicity and cytokine production triggered by multiple
activating receptors.42 Of interest, such negative regulation by
GSK-3β is common to diverse activation pathways downstream
of both ITAM-coupled (for example, NKp30, CD16) and non-
ITAM-coupled (for example, NKG2D, 2B4) receptors. Further-
more, the kinase activity of GSK-3β is directly involved in the
repression of NK cell function, indicating GSK-3β as a potential
therapeutic target to enhance NK cell activation. In support,
knockdown of GSK-3β or its inhibition with different phar-
macological inhibitors augments NK cell activation through
diverse activating receptors. Mechanistic studies have revealed
an association between GSK-3β inhibition and an increase in
calcium mobilization and activation of Akt and Erk, which are
required for NK cell activation. Thus, GSK-3β appears to
function as a checkpoint molecule for diverse activation
pathways in NK cells. In a recent study, GSK-3 overexpression
was observed in NK cells from acute myeloid leukemia (AML)
patients, which can account for AML-NK dysfunction.67

Genetic or pharmacological GSK3 inactivation restores
AML-NK cell cytotoxicity. Mechanistic studies have demon-
strated that the potentiation of NK cell function after GSK-3
inhibition is linked to enhanced NF-κB activation and
conjugate formation. Given the involvement of GSK-3 in
multiple activation pathways, targeted repression of GSK-3
may provide a promising therapeutic strategy for NK-cell-based
cancer therapy.

OTHER THERAPEUTIC CHECKPOINTS FOR NK CELL

ACTIVATION

A recent report has shown that diacylglycerol kinase (DGK)
ζ-deficiency enhances NK cell function, such as cytokine
production and degranulation, in an ERK-dependent manner
in mice.68 DGKζ-deficient mice reject tumors more efficiently
in vivo. However, the mice have normal NK cell development,
including inhibitory NK cell receptor expression or function.
DGKζ is a negative regulator of diacylglycerol-mediated
signaling. DGKζ is initially known to be expressed in macro-
phages and dendritic cells, regulating microbial recognition.69

DGKζ limits the generation of natural regulatory T cells
(Tregs) by suppressing their development.70,71 Thus, inhibiting
DGKζ in vivo should be carefully investigated for cancer
immunotherapy.

Cytokine-inducible SH2-containing protein (CIS) is sugge-
sted as a novel checkpoint in NK-cell-mediated tumor immu-
nity by regulating IL-15 signaling in NK cells.72 The gene
encoding CIS, cish, is rapidly induced by IL-15 and deletion of
cish rendered NK cells hypersensitive to IL-15. Interestingly,
Cish− /− mice are resistant to various cancer metastases
in vivo, due to NK cells intrinsically. Without CIS, JAK–STAT
signaling is increased in NK cells. CIS also actively silences
TCR signaling in CD8+ T cells to maintain tumor tolerance.73

Taken together, inhibiting CIS may improve anti-cancer effect
by dual mechanisms: to promote NK cells and cytotoxic T cells
together.

The roles of PI3Kγ and δ isoforms have been extensively
investigated in NK cell function and development.74,75 In
particular, PI3Kγ plays a role in IFN-γ production and
migration of NK cells.74,76 Recently, PI3Kγ has been suggested
as a molecular switch that controls immune suppression to
overcome resistance to checkpoint blockade therapy.77,78

PI3Kγ-specific inhibitor (IPI-549 by Infinity) is undergoing
phase 1/1b clinical trials for advanced solid tumors. Thus, there
is an urgent need to re-evaluate the role of PI3Kγ in NK cells.

CYTOKINE STIMULATION FOR NK CELL ACTIVATION

NK cells require cytokines (for example, IL-2, IL-12 and IL-15)
to develop, proliferate and function optimally. Therefore,
injection of cytokine(s) to boost endogenous NK cells has
been a therapeutic option. IL-2 is one of the quintessential
cytokines required for NK cells to survive and proliferate, but
high toxicity shown in early studies have motivated researchers
to evaluate the efficacy of low-dose IL-2.79,80 Ultra-low dose of
IL-2 (100 000–200 000 IUm− 3, compared with low dose of
300 000–3 000 000 IUm− 3) was tested for safety and has been
shown to increase NK cells in healthy volunteers.81 It is also
suggested that IL-2 prevents graft-versus-host disease (GVHD)
by an expansion of Treg cells without diminishing antiviral and
anti-leukemic activity in humans.82 Recently, genetically engi-
neered IL-2 molecules have been developed to circumvent the
toxicity and expansion of Tregs. One such molecule is a mutant
IL-2 (F42K), which binds to the IL-2 receptor (IL-2R) βγ with
lower affinity. IL-2 (F42K) induces the expansion of Treg cells,
but promotes NK cell activation in a mouse melanoma
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model.83 Another molecule is a recombinant fusion protein
consisting of an NKG2D binding protein and a mutated form
of IL-2 with poor affinity for IL-2Rα. This protein exhibits
potent anti-tumor effect in a murine lung cancer model. The
recombinant fusion protein expands and activates NK cells but
not Tregs.84 Nevertheless, the capacity of IL-2 to augment
Tregs is still a major concern in immunotherapy, although
Tregs help to prevent GVHD. However, ultralow doses of
long-lived IL-2 induce prolonged increases in Tregs in
non-human primates.85

IL-15 plays a role in NK cell development. Its receptor
shares a common γ chain as a subunit with IL-2R, as well
as a β-chain, but has a unique stimulation mechanism of
trans-presentation.86 Heterodimeric IL-15 molecules with more
potency or longer half-life have been developed to avoid the
needs for trans-presentation.87,88 They enhanced anti-tumor
activity by NK and CD8+ T cells in vitro and in a murine
melanoma model. Phase I clinical trials using recombinant
human hetIL-15 (IL-15/sIL-15Ra) are in progress, but an IL-15
superagonist has exhibited significant immunotoxicity.89

Another recombinant IL-15 is an IL-15-N72D superagonist-
complexed with IL-15RαSushi-Fc fusion protein, which
enhances subpopulations of NK and memory CD8+ T cells,
and mediates antitumor activity in mouse breast and colon
cancer models.90 The last molecule is undergoing clinical trials.
It is well known that NK cells can be stimulated by IL-12 in
combination with IL-2 to express cytokines and chemokines
and to migrate.91 In addition, IL-12 and IL-18 proliferate and
synergistically activate murine NK cells.92 It was hence a good
candidate for cancer immunotherapy, but unfortunately, the
results from clinical trials have not fulfilled the hoped-for
outcomes.93

Furthermore, protocols have been developed to expand
NK cells ex vivo using cytokine cocktails for infusion.
Cytokine-induced memory-like NK cells with enhanced survi-
val and functionality have been generated by preactivation with
IL-12, IL-15 and IL-18 in a humanized mouse model.94

To improve the ex vivo expansion of NK cells, feeder cells
are often used. Recent reports have described clinical trials with
ex vivo expanded NK cells using irradiated K562 cells that have
been genetically modified to express 41BB-ligand and IL-15 or
using the same cells expressing not only 41BB-ligand but also
membrane-bound IL-15. NK cells were activated and prolifer-
ated in vivo in both cases. The former study showed GVHD in
five out of nine solid tumor patients, following T-cell-depleted
allogeneic hematopoietic stem cell transplantation.95 However,
the latter reported no serious adverse events in multiple
myeloma patients.96 Importantly, the patients were adminis-
tered IL-2 following NK cell infusion in the latter study but not
in the former. In summary, there has been much development
in cytokine treatment to enhance NK cells and ex vivo
expansion of NK cells, but the optimization of cytokines for
cancer immunotherapy awaits further preclinical and clinical
research.

IMMUNE CHECKPOINT INHIBITORS FOR NK CELL

ACTIVATION

The most promising and discussed new development in cancer
immunotherapy is the blockade of immune checkpoints and
CARs. These studies are focused on cytotoxic T cells rather
than NK cells in most cases, but the technologies are also
readily applicable to NK cells. NK cells kill cancer cells as
cytotoxic T cells and have advantages in contexts that lack
MHC restriction.

Figure 2 Interactions of immune checkpoint receptors and ligands affecting NK cell functions. NK cells (bottom) express multiple immune
checkpoint receptors and ligands. The green color represents receptors and the blue color represents ligands. The ligands on tumor cells
are well known to interact with their cognate receptors on NK cells, but it has been reported that ligands on NK cells also interact with
their receptors on dendritic cells (DCs) or Tregs; for example, PD-1 on DCs and CTLA-4 on Tregs. However, the effects of the interactions
on anti-tumor activity of NK cells may require further confirmation. The dotted lines indicate that the interactions may require further
investigation, whereas the interactions marked with solid lines are less debatable. The names in the boxes (middle) show blocking agents
that are currently available in clinic.
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Recent progress in the blockade of immune checkpoints
have mostly focused on Programmed cell death protein 1
(PD-1) and Cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) (Figure 2). There are three FDA-approved drugs to
inhibit PD-1 or CTLA-4 pathways.97 Ipilimumab is a human
IgG1 antibody (Ab) used for CTLA-4 blockade. Nivolumab
is a human IgG4 Ab specific for PD-1. Both were developed
by Bristol–Myers Squibb. Pembrolizumab by Merck
(Kenilworth, NJ, USA) is a humanized IgG4 Ab directed
against PD-1. More immune checkpoint inhibitors are cur-
rently in clinical trials. PD-1 is highly expressed on approxi-
mately one-fourth of peripheral blood NK cells in healthy
humans. It is expressed by CD56dimNKG2A−KIR+CD57+

mature NK cells, but not by CD56bright NK cells.98 PD-1+
NK cells are likely resting NK cells.99 PD-1 is upregulated on
NK cells from Kaposi sarcoma patients, mediating impaired
NK cell function.100 Treatment with an anti-PD-1 Ab enhances
human NK cell cytotoxicity against autologous multiple
myeloma cells in vitro.101 CTLA-4 itself is expressed by
activated mouse NK cells and inhibits cytokine production in
response to mature dendritic cells.102 The expression of the
CTLA-4 and CD28 ligands CD80 and CD86 on cancer cells
enhance the cytotoxicity of human NK cells.103 CTLA-4+ Tregs
suppress NK cell cytotoxicity in Cetuximab (anti-EGFR Ab)-
treated head and neck cancer patients.104 However, it has been
proposed that B7.1-CD28/CTLA-4 is not involved in triggering
human NK cell activation in a previous study.105 Furthermore,
CD28/B7 co-stimulation does not appear to play an important
role in peripheral NK cells in murine cytomegalovirus
infection.106 Taken together, it remains unclear whether anti-
CTLA-4 therapy could improve the anti-cancer effect of
NK cells.

NK cells express multiple inhibitory receptors, such as KIRs,
CD94/NKG2A, T-cell immunoglobulin- and mucin-domain-
containing molecule 3 (TIM-3), and T-cell immunoreceptor
with Ig and immunoreceptor tyrosine-based inhibition motif
domains (TIGIT), although their potential as therapeutic
targets has been much less studied. However, the role of KIRs
in NK cell activation and licensing is well established. The
‘missing self’ hypothesis is that NK cells recognize target cells
by the absence of self-MHC class I molecules, in which
receptors on NK cells are inhibitory KIRs in humans. An
anti-KIR Ab (IPH2101 by Innate Pharma, Marseille, France)
has been proven to be safe without toxicity and autoimmunity
in multiple myeloma and AML patients.107,108 However, the
efficacy was different; IPH2101 enhances ex vivo NK cytotoxi-
city in multiple myeloma patients, but in AML patients, there
were no significant differences in NK cell number and
cytotoxicity. CD94/NKG2A is a C-type lectin receptor, in
which the ligand is HLA-E. The first phase I/II clinical trial is
on-going and employs an anti-NKG2A Ab (IPH2201 by Innate
Pharma) since 2015.

The expression of TIM-3, whose cognate ligand is galectin-9,
is upregulated in peripheral NK cells from advanced gastric
cancer patients109 and from lung adenocarcinoma patients,110

suggesting the value of TIM-3 as a predictive or prognostic

biomarker. It is also expressed in the tumor-infiltrated NK cells
in 75% of patients with gastrointestinal stromal tumor.111

Interestingly, TIM-3+ tumor-infiltrated NK cells do not express
PD-1. Inhibition of TIM/Gal-9 interaction by Abs was eval-
uated in vitro. Exhausted NK cells from advanced melanoma
patients were rescued by anti-TIM-3 blocking Ab.112 They also
found that TIM-3 expression levels are correlated with disease
stages. However, blockade by anti-Gal-9 Ab reduced IFN-γ
production in NK cells from healthy donors in response to
primary AML blasts.113 TIGIT and CD96 are inhibitory
receptors that compete with DNAM-1 (CD226), an activating
receptor, for CD155 as their common ligand. CD155 is highly
expressed on many types of tumor cells. Blockade of CD96 or
TIGIT with mAbs has been shown to improve anti-tumor
activity in mice.114 In particular, the combined blockade of
TIGIT and PD-1 showed significant tumor clearance.115

Similar to most immune checkpoint molecules, CD96 and
TIGIT are expressed on cytotoxic T cells, as well as on NK cells.
Thus, the effect of the blockade involves the enhancement of
cytotoxic T cells as well.

CAR/BIKE/TRIKE FOR NK CELL ACTIVATION

The initial idea behind CAR was to overcome MHC-restriction
of T cells, which enables allogeneic T-cell infusion, and to
reduce the risks of GVHD, as well as to increase the number of
tumor antigen-specific T cells and receptor affinities. CAR is
designed to replace the antigen-binding site of TCR with the
antigen-binding site of an immunoglobulin with high affinity
and specificity to an antigen and without MHC-restriction.
Transmembrane and cytosolic signaling domains of CD3ξ and
co-stimulatory motifs (for example, CD28, 4-1BB and OX40)
are linked to transmit signals to T cells. Consequently,
CAR-activated T cells efficiently remove tumor cells using
cytolytic molecules, such as perforin and granzymes. T cells
and NK cells share some elements of activating signaling
pathways, and designing NK-specific signaling domains may
improve CAR-NK cell therapy. NK cells tend to have shorter
lives than T cells. Thus, it might be advantageous, regarding
the potential side-effects and off-target effects of long-lived
CAR-T cells. It is no surprise that many researchers have
attempted to produce CAR-NK cells.2,116 Some of these studies
exploit established NK cell lines, such as NK-92 cells, but
approval may be difficult due to the potential safety issues of
the established cell lines. All the published results using
established NK cell lines are preclinical, but clinical trials
are following soon. A single institution, phase I trial
(NCT00995137) in children with B-cell acute lymphoid
leukemia was performed to investigate the safety of donor
NK cells bearing CD19-specific CARs, but the results have not
yet been published. Phase II clinical trial is on-going in B-cell
acute lymphoid leukemia patients using donor NK cells at the
present (NCT 01974479). Well-defined tumor-specific antigens
are a prerequisite for CAR, and it is therefore difficult to
develop CAR for certain cancers for which no tumor-specific
antigens are known. In conclusion, CAR-NK cells are very
promising for cancer immunotherapy as a single agent or in
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combination with CAR-T cells, but they may require the
discovery of novel tumor-specific antigens as well as an
adaptation of techniques specifically to NK cells, such as
evaluating better signaling domains for NK cells.

Since the great success of the first ever anti-tumor antibody,
Rituximab (Roche, Basel, Switzerland), antibodies (Abs) have
been an indispensable component of standard anti-tumor
regimens. Rituximab is a chimeric (mouse and human)
monoclonal Ab specific to CD20, and functions as a marker
for B-cell lymphoma and leukemia. The effector functions of
the Ab are complement-dependent cytotoxicity and antibody-
dependent cellular cytotoxicity. The latter is mediated by the Fc
receptor on NK cells and macrophages. CD16 is the Fc receptor
on NK cells. However, not all Abs can remove or reduce
targeted tumors, and thus efforts have been made to improve
therapeutic Abs. Bispecific Abs were initially developed by
chemical cross-linking and the technique was soon replaced by
fusion with peptide linkers or by genetic engineering to
facilitate the proximity between cytotoxic T cells or
macrophages and tumor cells.117–120 When the bispecific Ab
detects T cells, it is called a bispecific T-cell engager (BiTE); the
bispecific Ab detects NK cells and is therefore called a bispecific
killer cell engager (BiKE). Several preclinical studies have been
published, although there are no current clinical trials. CD16/
CD19 BiKE and CD16/CD19/CD22 TriKE were generated to
target CD19+ B-cell lymphoma and leukemia.121 They trigger
NK cell activation and cytotoxicity in vitro. CD22 is a B-cell co-
receptor with an immunoreceptor tyrosine-based inhibition
motif and is involved in the negative regulation of B-cell
function. More recently, CD16/CD133 BiKE is produced to
target colorectal cancer.122 BiKE enhances NK cytotoxicity
in vitro. CD16/CD33/IL-15 TriKE was developed to target
AML.123 TriKE is incorporated a novel modified human IL-15
crosslinker to CD16/CD33 BiKE. TriKE induces better
anti-tumor activities than a CD16/CD33 BiKE in a xenograft
model using HL-60 human AML cells. Abs can deplete,
activate or block, with high affinity, high specificity and
MHC-independence. Thus, the application of Abs is versatile
and promising for cancer immunotherapy.

MIRNAS FOR NK CELL ACTIVATION

miRNAs are non-coding RNAs of 18–22 nucleic acids, which
often function as post-transcriptional regulators. Many
miRNAs have been discovered to regulate NK cell development
and function.124 In this review, we were particularly interested
in several miRNAs that regulate cytotoxicity or immune
checkpoints, as they could be developed as cancer immu-
notherapeutics. miR-27a is one of the first miRNAs discovered
to target cytotoxicity of NK cells.125 miR-27a was identified
as a suppressor of both Prf1 and GzmB mRNA in response to
IL-15 from human miRNA microarray data. The same group
also revealed that miR-150 regulates the cytotoxicity of NK cells
by targeting perforin-1 in mice.126 In a human NK cell line,
NKL cells, miR-30c-1 expression is decreased after DNAM-1
(CD226) cross-linking.127 Overexpression of miR-30c-1
promoted the cytotoxicity of the NK cells against hepatoma

cell lines via an upregulation of transmembrane TNF-α. The
target gene of miR-30c-1 is HMBOX1. TGF-β induces miR-183
in human NK cells to repress DAP12 transcription/translation
and reduces tumor cytolysis and abrogated perforin polariza-
tion to immune synapses. Taken together, these findings
suggest that the modification of miRNA expression may
enhance cytotoxicity and anti-tumor effect of NK cells.

Another possibility to improve NK cell therapy is to regulate
the immune checkpoint using miRNAs. HLA-G, a ligand of
inhibitory KIR2DL4, is known to be expressed at a high
frequency in various cancer cells. Several miRNAs regulate
HLA-G expression: miR-548q, miR628-5p and miR152.128,129

miR-548q and miR628-5p interact with the 3′ untranslated
region of HLA-G directly and overexpression of these miRNAs
enhanced NK-cell-mediated HLA-G-dependent cytotoxicity.128

HLA-G expression is upregulated and miR-152 is downregu-
lated by HBV infection in human samples.129 HBV-infected
hepatocarcinoma cells express more HLA-G and are resistant
to NK cytotoxicity. CYLD, a negative regulator of NF-κB
signaling, is a target of miR-362-5p in NK cells.130 Human
peripheral NK cells express high levels of miR362-5p.
Overexpression of miR362-5p enhances the expression of
IFN-γ, perforin, granzyme B and CD107a in human primary
NK cells. Thus, miRNAs may be used to boost NK cytotoxicity
against cancer cells. To apply these results to clinical trials,
efficient, safe and specific methods to deliver miRNAs to
NK cells or cancer cells must be developed beforehand.

CONCLUSION

NK cells are innate immune cells but share certain properties
with adaptive immune cells, such as memory responses. They
have two key functions: cytotoxicity to the tumor and virus-
infected cells and cytokine production, which bridges the
innate and adaptive immune responses. In particular, NK cells
can kill cancer cells efficiently without MHC-restriction and
risk of GVHD. Thus, they have been explored as an attractive
cell population for cancer immunotherapy since Ruggeri et al.
showed that allogeneic NK cells could eliminate leukemia
relapses without GVHD.131 Recent clinical studies have proven
the usefulness of NK cell therapy for various cancer
patients.132,133 For example, high-dose infusion (2× 108 cells
per kg) of ex vivo cultured NK cells following haploidentical
hematopoietic cell transplantation significantly reduced leuke-
mia progression (74–46%).134 However, the success is still
limited, and thus there is an urgent need to improve cancer
immunotherapy using NK cells. Current efforts for NK cell-
based therapy have mainly relied on strategies that manipulate
the function of inhibitory receptors. Recent progress in under-
standing the mechanisms of NK cell activation, including those
regulated by diverse molecular checkpoints, has provided new
and promising therapeutic strategies to optimize NK cell
reactivity against cancer. Although therapeutic benefits of such
strategies need to be assessed, the knowledge of the activation
and stimulation of NK cells provides a firm basis for how to
modify NK cell activities for better outcomes in the clinic. If we
can better understand the mechanisms governing NK cell
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reactivity toward cancer, then this knowledge can be applied to
the development of an optimal design for cancer immunother-
apy by targeting NK cells either alone or in combination with
other therapies.
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