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Abstract 
Background: Software is now ubiquitous within research. In addition 
to the general challenges common to all software development 
projects, research software must also represent, manipulate, and 
provide data for complex theoretical constructs. Ensuring this process 
of theory-software translation is robust is essential to maintaining the 
integrity of the science resulting from it, and yet there has been little 
formal recognition or exploration of the challenges associated with it. 
Methods: We thematically analyse the outputs of the discussion 
sessions at the Theory-Software Translation Workshop 2019, where 
academic researchers and research software engineers from a variety 
of domains, and with particular expertise in high performance 
computing, explored the process of translating between scientific 
theory and software. 
Results: We identify a wide range of challenges to implementing 
scientific theory in research software and using the resulting data and 
models for the advancement of knowledge. We categorise these 
within the emergent themes of design, infrastructure, and culture, 
and map them to associated research questions. 
Conclusions: Systematically investigating how software is constructed 
and its outputs used within science has the potential to improve the 
robustness of research software and accelerate progress in its 
development. We propose that this issue be examined within a new 
research area of theory-software translation, which would aim to 
significantly advance both knowledge and scientific practice.
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Introduction
Software has transformed scientific practice, creating new forms 
of analysis and representation, and enabling research or thinking 
that was not previously possible. The growing use of computa-
tion has also added significantly to the complexity of conducting  
research. 

The process of representing, precisely, a scientific entity, method, 
or system in software is extremely challenging. Having suf-
ficient accuracy is paramount: the more the implementation 
deviates from the concept it is intended to represent, the lower  
the value of the resulting knowledge. Verification and valida-
tion—commonly referred to as V&V—have the potential to 
give a level of confidence that the software is both a correct 
representation of the theory and free of defects1. Verifying the  
accuracy of a scientific artefact is difficult, however, as there 
may not be an oracle against which to test it. The artefact may 
also pass a set of tests, yet still contain errors that have been 
introduced, unnoticed, during the engineering process. Valida-
tion of the artefact—being sure it is a true representation of the  
theory—is even more challenging. 

The fact that we are able to design and build computational 
systems does not mean we fully understand them or what 
they do, or that they do exactly what we want them to do; the  
proliferation of defects found during the lifetime of any  
software system illustrates how difficult it is to accurately pre-
dict how software will behave at runtime. Huge progress towards 
system reliability has been made through formal approaches 
to software verification, and comprehensive tooling exists to 
assist with many aspects of programming, from detecting code  
smells (e.g., duplicated code, highly coupled entities, or high 
cyclomatic complexity), to monitoring test coverage. In spite  
of this, defects remain a significant problem. 

In addition to addressing the general difficulties common to 
all software development projects, research software must  
represent, manipulate, and provide data for complex theoretical  
constructs. Such a construct may take many forms: an equa-
tion, a heuristic, a method, a model; here we encapsulate all of 
these, and others, in the term theory. In the process of mapping 
a theory to a programmatic or software-based implementation,  
defects may occur at a number of points:

•  The science is wrong: The theory itself may contain 
defects, which are discovered through the process  
of trying to represent it computationally.

•  The software is wrong: The way in which the code is 
written may contain defects—although it is possible 
to translate from theory to implementation, the chosen 
form is not appropriate.

•  The translation process incurs loss or ambiguity: 
whilst it may be straightforward to represent a theory  
verbally or mathematically, it may be difficult to rep-
resent it computationally— “Mathematics provides a 
framework for dealing precisely with ‘what is.’ Compu-
tation provides a framework for dealing precisely with  
‘how to”’2.

All of these situations, and the last in particular, interact to make 
the process of conducting computational research complicated 
and defect-prone, resulting in a human-machine translation  
gap.

Within science, any form of defect or unreliability is highly 
problematic: if the software does not behave as desired or  
anticipated, the results may not stand. At present, we lack any 
formal means of explaining how and why an implementation  
differs from a concept in unanticipated ways. Whilst a mis-
match may be due to obvious limitations of the representation  
(e.g., floating point rounding errors), the way in which an imple-
mentation is constructed can also result in inaccuracies that 
were not apparent at the time they were created. Understand-
ing these issues, via empirical research, is vital to ensuring the  
accuracy and validity of research software.

Compounding the difficulties of formally translating between 
theory and software are the many cultural and organisational 
factors that add further challenges to the process of building 
research software and using its results to advance science. These 
include the bespoke and highly dynamic nature of research  
software, the funding model, the academic hierarchy and career 
structure (in particular the difference in status accorded to 
domain and software specialists), the difficulties communicating 
in large scientific teams, and the pressures exerted by the current  
publication model3.

In this paper, we provide evidence to motivate the systematic 
investigation of the Theory-Software Translation process. We 
achieve this through analysis of the discussion sessions that 
occurred at the Theory-Software Translation Workshop held in  
New Orleans4 in February 2019, which explored in depth the 
process of both instantiating theory in software—for example, 
implementing a mathematical model in code as part of a simula-
tion—and using the outputs of software—such as the behavior  
of a simulation—to advance knowledge.

In the Methods section, we describe the workshop format 
and goals, its participants, and the process used to collect and  
systematically analyse data from the discussion sessions. In the 
Results section, we present the themes that emerged from the  
analysis, and map these to potential research questions. In 
the Discussion section, we compare our findings to those of 
other work in this area, in particular the earlier Code/Theory  
workshop that took place in the UK3. We conclude by sum-
marising the case for theory-software translation research, and 
proposing future activities that will lead towards establishing  
it as a new and fruitful domain.

Methods
The workshop report5 contains a full description of the event, 
including the agenda, participant list, talk titles and supplemen-
tary materials. Below, we describe the key details relevant to  
the analysis reported here.

Format
The workshop started with an introduction from the organ-
isers, which was followed by talks from the participants on 
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their background and interest in the topic. The main part of  
the workshop consisted of a series of breakouts. The first, where 
participants were pre-allocated to groups to ensure each group 
had people with a mix of backgrounds, focused on defining the 
overall challenges of theory-software translation. Following 
a feedback session, and noting the themes that were starting to 
emerge, the organisers divided the next set of breakouts into  
groups that considered training and culture, software design, 
software stack and tools, and miscellaneous (to catch any issues 
falling outside the first three). Participants self-selected to join 
one of these groups for one session, and then moved to a differ-
ent group for the next session. In each case, participants were  
asked to discuss the topic, list challenges, identify current suc-
cesses, and indicate how we could make progress. A final  
plenary session considered the prospects for Theory-Software  
Translation as a research area, and considered next steps.

Participants
Workshop participants comprised 20 experts in the field of High 
Performance Computing and researchers interested in the proc-
ess of research software engineering. Nine participants were 
employed at the time at US national laboratories, and 11 at  
US or UK universities. Three participants were academics whose 
main focus was studying the process of research software engi-
neering. The rest were involved in research software engineering 
or the management thereof, with an interest in the idea of the-
ory-software translation, and a desire to improve the process of 
research software engineering. A full list of participants and their  
talk materials can be found in the workshop report and on  
the website4,5.

Analysis
During the breakout sessions, groups kept a record of their con-
versation, transcribing as much of the discussion as possible, 
and then summarising key points at the top of the document. 
There were three breakout sessions, each with four groups,  
resulting in 12 discussion documents. The first breakout session 
was split into two parts: in the first part, people wrote notes; in 
the second, the topic document was given to a different group 
who added to and commented (using the ‘add comment’ func-
tionality) on the contents. Because common topics arose across 
groups and sessions, the breakout notes were analysed as a single 
corpus. Two of the authors (CJ and RH) performed a thematic 
analysis, with CJ coding the full set of discussion notes and  
generating initial themes, RH reviewing these and cross-check-
ing with the discussion notes, and both iteratively refining the 
final set. Formal analysis software was not used for this process; 
instead the text was collated into a single document, and then 
parts were grouped together and labelled under subheadings,  
following familiarisation with the data.

Following this initial analysis, all workshop attendees were 
invited to review and comment on the results, and 13 subsequently 
endorsed the output as authors of the workshop report5. None  
of the participants raised any issues with regard to the results of 
the analysis, or expressed a view that they were unrepresenta-
tive. The final stage of the analysis is presented in this paper, 
in which the authors (a self-selecting subset of the workshop  

attendees) have collectively further refined the sub-themes within 
this document via working on the manuscript draft together,  
providing more detail and adding examples.

Consent
The discussion documents are collectively owned by the work-
shop participants. During the workshop, it was agreed verbally 
that these would be analysed and written up in a report, which all  
participants would be invited to author. This model of collec-
tive data ownership and knowledge production had previously  
been used successfully in the Code/Theory Workshop3.

Results
Three overarching themes emerged during the analysis, align-
ing to the challenges of design, infrastructure, and culture. 
We explain these below and describe the key areas of research  
identified within each, framed as open questions.

Design
Participants considered design in terms of software design, 
research design, and the way in which the two interact. Topics 
covered included the extent to which it is possible to separate 
concerns, whether theory should be ‘readable’ from software, 
and potential techniques for evaluating and improving the design  
process.

Can/should we separate concerns? In an era of growing com-
plexity in research models and questions, translating scientific 
theories to software in a reliable way is becoming increasingly 
difficult. One perspective on the process is that of moving from  
‘science’ to ‘equations to be solved’ to ‘computational algorithms/
numerical analysis’ to ‘computer science/software engineering’. 
(See Babuska and Oden1 for a formal description of this process 
and these domains.) Each of these is a discipline in its own right, 
and each is complex. There was a view that it is not realistic for 
every scientist to understand all of these, and thus an informed 
‘separation of concerns’ is crucial. Considering these parts  
of the process independently also allows each individual in a 
research team to focus on the aspect(s) for which they are most 
qualified. 

An alternative view was that concerns cannot always be sepa-
rated within computational research, from both a theoretical and 
a practical perspective. At present, a paper and a code are sepa-
rate things, but the boundaries are blurring. Jupyter notebooks  
are an example of documentation interspersed with executable 
code, but this approach is unlikely to be sufficient or scalable on 
its own. If the boundaries between publication and code increas-
ingly overlap, then it becomes difficult to see where the theory 
ends and the software begins. Simply documenting the code 
by commenting it with the theory increases the maintenance  
cost of the code and risks the two becoming out of sync. Code 
marked up with the wrong theory is worse than useless, even 
dangerous, so it is important to be able to verify that the code 
and theory are consistent. Ince et al.6 argue for the necessity of  
source code provision along with papers, citing research show-
ing poor effectiveness of specifications in producing equivalency  
across implementations7.
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Another example of how boundaries are becoming blurred by 
the introduction of computational methods, is the fact that code 
and theory are increasingly developed alongside each other. 
Although it is natural to think (and is most often indeed the  
case) that one needs to formulate the equations and then apply 
computational algorithms to obtain the numerical solutions, the 
formulation of the equations can be affected by the choice of 
computational method. For example, the equations represent-
ing the physics behind a wave will be written for different quan-
tities and hence take different forms, depending on whether a 
wave pattern is numerically described by a collection of discrete 
values sampled at selected locations, or the superposition of a  
number of Fourier modes.

Should theory be readable from software? There was  
considerable discussion about the extent to which it is possible to 
write research software in a way that maintains the essence and 
readability of the underlying theory. Software is highly com-
plex, and can unintentionally obfuscate the theory it contains,  
particularly when it is optimized for high performance. Preserv-
ing a balance between readability (in terms of how easy it is to 
understand the code) and performance can be difficult. Opti-
mizing code often makes it harder to understand, potentially  
obfuscating the theory that the software represents, and making  
it more difficult to reproduce, maintain and modify.

In an ideal project, mathematical concepts are contained in soft-
ware components, offering reuse, support for testing, and a clear 
map to and from the underlying theory. Modular representa-
tion of theory is likely to be more readable and testable, but it  
would be interesting to investigate whether there are areas  
where this approach is not suitable.

A number of questions emerged from this discussion: Is there a 
particular design process that should be used for embedding 
theory within software such that it is readable? To what extent 
is it necessary for someone reading the software to understand 
the underpinning theory? When software is assembled from  
many components, each having their own theoretical founda-
tions, what does this mean for conveying the overall theory 
underlying the whole? Is there value in an unoptimized, under-
standable version of a simulation serving as a reference  
implementation?

To facilitate theory-software translation in practical terms, 
domain norms and expertise may need to be taken into account. 
An example of this can be found in the US Department Of  
Energy’s effort to develop a new version of its Earth system  
model8 for cutting-edge computational platforms. The final pro-
duction code will be written in C++ using Kokkos9 for perform-
ance and portability. Because most climate scientists are trained 
in Fortran, a two-step approach is being used: the domain sci-
entists develop their code in Fortran, then the computational  
scientists and software engineers take the Fortran code, trans-
late it to C++, and then work on HPC performance. What are the 
benefits and trade-offs of introducing these further translation  
steps into the software development process?

What are the effects of automation in programming? 
In the future, code generators may offer a route to translat-
ing theory to software. This approach could do a better job of 
preserving information during implementation and lead to a  
higher order transformation, due to higher order input. It may 
allow for timely cross-code validation, where different theory 
comparisons are made, as it is less human-resource-intensive. 
This may also be a way to reduce human error (for example, one 
of the General Relativity solvers10 in the relativistic astrophys-
ics Einstein Toolkit11 uses a Mathematica-based code generator  
called Kranc12, as this work would otherwise be repetitive and 
error prone), although it should be noted that code generators, 
being software themselves, may also introduce defects. Record-
ing the provenance of the code is important in understanding 
how theory is ultimately arrived at through software outputs.  
Does using a code generator obfuscate that provenance, or make it 
clearer?

How can we evaluate the design process? There are many 
ways of expressing theory in software. Gathering evidence for 
what works well would help to inform and refine the software 
design process. One approach to empirically examining software  
design is model inter-comparison, which is the process of com-
paring the results of different implementations of the same 
underlying theory, such as different climate models, and trying 
to understand the reasons for, and sources of, similarities and  
differences in model outputs. 

This is a technically challenging endeavour, and how to do it 
remains an open research question, but the results could pro-
vide an understanding of the efficiency and effectiveness of  
different implementations, and open up opportunities for code  
adaptation and reuse. Could we adapt existing codes to new para-
digms? Domain specific languages (DSLs) are generally com-
munity specific at present. Could we make progress through 
merging or integrating them, at least where we can be reasonably 
certain that the models that they are representing are comparable?  
There is an explosion of tools and services across all domains. 
How can we tell if they are reliable? Would being able to com-
pare them across domains help with the verification and  
validation of these tools?

How can we better link domain science and computer  
science? There appears to be a disconnect between compu-
ter science research and its deployment in scientific discovery;  
improving the linkage could lead to better science, and more 
efficient use of computing resources. There are many areas that 
require computer science research: new languages; more flexible 
operators; code generation; code transformation; test generation. 
Theory-software translation research was recognised as having  
the potential to expose and contribute to these challenges.

Infrastructure
Theory-software translation is not solely about mapping sci-
entific constructs to algorithms, but rooted in and affected by 
a wider software and hardware infrastructure. This part of the 
discussion gave consideration to verification and validation,  
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sustainability and portability, and how the uncertainty introduced 
by infrastructure might be recognised and measured.

How should we verify results arrived at through computation? 
There is currently no formally established, efficient means of 
verifying a software simulation, and as such this is an area that 
requires further attention. Where there is unexpected behav-
ior in a simulation, both software and data provenance are cru-
cial to knowing whether it is caused by a defect or highlights  
a discovery. Where there is a defect, how can we tell where it 
lies? Is it in the theory, or the mathematics, or the code? Knowl-
edge is required, not just of the code and the theory, but of the 
full software stack, including the sequence of dependencies,  
and how the code is compiled or interpreted. 

The number of potential inputs to most codes is much larger 
than can be tested in its entirety. A further barrier to compre-
hensive test coverage is presented by the way in which some 
applications are configured—both at build-time and run-time.  
In large, flexible codes features, methods and algorithms can 
be switched on or off, or swapped; how do we test all of these 
permutations and combinations of configurations to ensure 
that they do not interact with each other in unexpected ways?  
Is there a way we can express theory as a set of tests for code 
to pass, and ultimately automate test generation from theory  
specification?

How should we address reproducibility and sustainability? 
The importance of reproducibility within research is becom-
ing increasingly recognised. The extent to which true repro-
ducibility is possible in computational science is not clear, due  
to portability problems, continually changing technology and 
‘software collapse’, where software stops working due to changes 
in underlying layers13. Nevertheless, it was seen as impor-
tant to strive to get as close as possible to this ideal, and also to  
work out practical ways of achieving something that approxi-
mates this. Having different teams trying to reproduce results, 
through multiple people running the same codes, could be useful  
in terms of verification and building knowledge. 

Whilst sustaining software for reproducibility is difficult and 
resource intensive, paradoxically, software almost always lives 
longer than planned, as (for example) adding features to a pro-
totype is quicker and cheaper than engineering a new and  
robust code from scratch. What are the implications of this for 
theory-software translation? What are the effects on the soft-
ware’s integrity, the way new theory must subsequently be  
implemented, and the results it produces? What are the issues 
caused by technical debt?

What are the constraints posed by platforms and architec-
tures? Scientific software is generally going to be utilized on 
multiple generations of computational architectures, and the  
original developers of the software typically do not (and cannot) 
take this into account. Changing hardware impedes both port-
ability and reproducibility. Build systems and supporting infra-
structure also require maintenance, and any updates to these 

also have the potential to introduce defects. Where concepts or 
operations require workarounds to implement on current hard-
ware—such as the representation of real numbers14—the view was  
that we should ideally aim to change the hardware, rather 
than restrict the theory, while accepting that this is rarely  
possible.

We should also remain mindful that hardware, as well as  
software, can be an error source, as code that functions cor-
rectly on one platform may not on another, unbeknownst to the  
programmer.

Measuring uncertainty in theory-software translation Whilst 
theory is often exact, code has tolerances and approxima-
tions. Recognising this was seen as an important part of under-
standing and improving theory-software translation. One  
suggestion was to frame this issue in terms of implementation 
decisions introducing uncertainty. Rather than assuming, ‘this  
output is correct,’ would it be better to state, ‘there is x% 
chance some error has been introduced along the way, accord-
ing to the architecture/code size etc., and therefore we should 
interpret the result accordingly?’ Could we develop diagnos-
tics that verify the ‘health’ of the simulation, such that we could 
estimate the potential for defects caused by issues with code  
quality or age? There is also loss when moving between dif-
ferent stages of theory-software translation (theory, equations, 
algorithms, software). How can we measure this, and understand 
its effects?

Culture
The environment in which theory-software translation takes 
place was recognised as a key influence on the process.  
Discussion relating to this topic covered collaboration, expecta-
tions, research environments and use of software engineering  
process.

How can we foster a culture of collaboration? Computa-
tional science, particularly that conducted in large projects, 
is necessarily interdisciplinary. The heavily domain-contex-
tual specification of the problem and the deep technical knowl-
edge required to implement solutions can lead to an initial  
communication barrier between domain scientists and com-
puter/computational scientists. Embedding software engineers 
and applied mathematicians in research teams is a good way 
of facilitating communication, and there was discussion about 
what more could be done. One question was whether explic-
itly recognising the idea that software is a translation of theory 
might change the communication process. Could conversations 
across different roles be improved using this approach? The US  
Department of Energy’s Scientific Discovery Through Advanced 
Computing program15 is an example of interdisciplinary efforts 
that directly engage computer scientists and applied math-
ematicians with the scientists of targeted application domains,  
with promising results. 

Implementing theory in code was viewed as different from  
implementing non-research software, especially where the 
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requirements are concerned. A key issue was that it may not 
be possible to separate specification from design, a situa-
tion analogous to building an aircraft in flight. Given this, there 
is a lack of clarity about the best way to approach requirements  
engineering within research projects. 

It was viewed as crucial to emphasise that software engineer-
ing is a core intellectual contribution to the research, not just 
a service. Close interaction between an application scientist 
and an applied mathematician can be helpful in designing the 
appropriate mathematical/numerical method. The discussion  
about the ‘separation of concerns’ within research software  
design extends to research software teams. Separating concerns 
too strictly may lead to different people concentrating on their 
own tasks, with their own goals and motivations, neglecting the 
overall picture. On the other hand, focusing on a particular aspect 
can provide better abstractions and more performant solutions.  
How do we balance these two pressures?

What are the external expectations of the reliability of the 
software? Validation, which was discussed extensively from a 
technical perspective, was also considered from an administra-
tive/organisational perspective. Software may need to be con-
sidered as a scientific instrument that needs to be validated  
and/or calibrated. A current example of this is that in the UK, 
any software that collects patient symptom data, that can be 
used to access medical advice, or that can be used to assist 
with a diagnosis, must be developed as a ‘medical device’16. 
Might there be a requirement to think of software as an instru-
ment that meets formal standards in other research settings17?  
Would this make results more reliable, or would it stifle crea-
tivity? Can we expect complete ‘precision’? If not, should  
there be ‘guards’ or ‘contracts’ to detail this? 

Software is not an oracle. There needs to be an improved 
understanding of which parts of a software tool can be treated 
as a black box and taken on faith, and which cannot. With-
out this understanding, software may be used in ways it is not  
designed for and so give spurious results. Software can be  
flexible, and because of this, be used in domains for which it was 
not originally intended, and may not be appropriate; in this case, 
it should be validated within the new domain before any results  
are published.

How does the research environment affect the translation-
process? There is a perception that academic researchers are 
under pressure to publish at all costs, diminishing the atten-
tion paid to good software engineering practices, which are per-
ceived as slowing down the research and publication process.  
Valuing software as a deliverable in its own right was viewed 
as an important part of improving its quality and avail-
ability. Citing software (via, e.g., the Journal of Open Source  
Software18 or by more direct citations to the software19) is 
another part of this process. Considering software explicitly as 
an output of research, and systematically assessing the impact 
of research software20,21, remains relatively unusual, and there is  
still work to be done in understanding how to achieve this. 

There was a view that funding bodies should be involved in 
discussions regarding theory-software translation. Many of 
the costs of software development, maintenance, and evolu-
tion are hidden; they need to be articulated, and be part of an  
open, ongoing conversation. The cost of developing software 
is often underestimated by principal investigators and fund-
ing bodies. A lot of time is spent porting software to new  
hardware, but it is difficult to obtain funding for this, with a nega-
tive impact on the quality of the software as a result.

What is the best way to embed software engineering skills in 
science? Often the people writing scientific code are graduate 
students or researchers who do not have a background in soft-
ware engineering22,23. Data Carpentry/Software Carpentry was  
viewed as a good start, but not sufficient. Instilling the neces-
sity of thinking about theory-software translation in gradu-
ate students right from the start would help to avoid the need 
to continually fix poorly-written and poorly-designed code.  
While this lack of training is a specific problem, software devel-
opment training is a general challenge, because academic 
supervisors do not necessarily see the value of it, or even know 
about it themselves. Awareness that training exists, and a belief 
in the necessity of undertaking the training, is critical. There 
is potential for technical training to be conceptualised as a  
hierarchy, covering: the issues of theory-software translation at 
an abstract level; the principles of translating between theory 
and software at a process level; and in-depth expertise in the 
implementation of theory-software translation at the developer  
level (with possible specialization). 

Training in communication was also seen as essential, and 
should go both ways: all members of a research team need to 
be proficient in cross-disciplinary communication. Being able 
to communicate scientific requirements to software developers  
is essential. Being a careful and skeptical user of simulation 
outputs is also essential, and this requires an understanding of 
the workings and limitations of the software method, such that  
the outputs are viewed through the appropriate lens.

Discussion
The material gathered from the workshop revealed a number 
of areas where theory-software translation research could  
significantly advance both knowledge and scientific practice. 

Supporting evidence for the identified themes comes from 
the Code/Theory workshop organised by authors CJ and RH 
in the UK, which examined the challenges faced by prac-
tising research software engineers and data scientists3. The  
primary themes that emerged at the UK event related to design-
ing software, sustaining software, and communication issues 
between domain scientists and software engineers, all of which 
map to our themes of research software design, infrastructure, 
and culture. The UK workshop focused on identifying practical 
solutions to these issues, with suggestions including improving  
communication, tools and training, and raising the profile of 
software in research, such that people understood its com-
plexity and intellectual contribution. This last issue was also  

Page 7 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020



identified as a priority in a survey of Software Sustainability  
Institute Fellows, who comprise people who have been recog-
nised for their contribution to the research software engineering  
community24. 

Another activity that has provided insight into this area is the 
United States Research Software Sustainability Institute (URSSI) 
conceptualization project, funded by the US National Science 
Foundation. As part of this effort, the researchers conducted  
a survey of research software developers and users25. Based 
on the 1,194 responses, they made some observations rel-
evant to the results we report here. First, relating to our Design 
and Culture themes, the majority of respondents said they 
had not received software development training. Furthermore, 
only half of the respondents indicated sufficient training was  
available and only 25% said there was sufficient time for training. 
Second, regarding Culture, the vast majority of respondents indi-
cated that the level of funding for research software was “insuf-
ficient and creates barriers to their work”. A wide-scale survey 
providing further strong evidence for the utility of theory-soft-
ware translation research explicitly examined problems within 
research software engineering, providing a taxonomy of ‘pains’ 
covering technical, scientific and social issues26. This work  
highlights that many common software engineering chal-
lenges, such as requirements gathering, communication diffi-
culties and debugging, are particularly challenging— and often 
qualitatively different—within science, due to the nature of the 
research process, and the environment in which the work is  
conducted. 

Theory-software translation research has the potential to con-
tribute to the evidence base for research software infrastructure 
strategy and practice at a local (individual/group), institutional 
(organization), national, and international level. It could also 
identify cross-cutting challenges for computational research,  
and advance the techniques we use to perform such research. 
We anticipate that a better understanding of the theory-soft-
ware translation process will lead to more robust and accurate  
research software. 

The results of our analysis demonstrate that research software 
is not merely used to perform a task, but to understand a prob-
lem and advance knowledge. While current software engineer-
ing research outputs and methods are relevant to addressing  
these challenges, theory-software translation research would 
involve tackling new problems that are rooted within the scien-
tific domain. We summarise key, emergent areas for research as  
follows:

•  The translation process moves from theory to algo-
rithm to software (and vice-versa). Information is lost 
in moving from one domain to another, as the way in 
which ideas are represented changes. Can we quan-
tify or explain this loss/difference, and articulate the  
trade-offs resulting from translation?

•  How does incorporating theory in software (e.g., a 
simulation) differ from standard requirements engi-
neering? The development of software and theory  

happen together. While requirements changes are  
generally constrained for typical software, theory 
can change much more dramatically, resulting in not 
just an addition, but a fundamental divergence from  
what the software was initially designed to do.

•  How do we understand the results of a simulation, 
and translate this back to the underlying theory? How 
should real world data be used in the verification  
process?

•  How do we go from viable theory to validated, veri-
fied code in a time-efficient way? Can theory be  
expressed as a set of tests?

•  There is a distinction between theory, model, numer-
ics, and code, and there are difficulties mapping 
between them. There can be errors in any part of the 
mapping process that may affect the resulting science.  
How can we detect and handle these errors?

•  Is a true separation of concerns (theory, and its 
implementation in software) possible? What are the  
implications for how we write scientific software?

•  Should theory be recoverable from software (where 
software includes documentation)? Can theory today 
be represented solely in papers, or is it really also 
in the code? How can we help people to read and  
understand it?

•  The increase in model complexity and sophistica-
tion of questions that models are designed to answer 
makes translating them into software increasingly dif-
ficult. How do we determine the appropriate level of 
complexity? Is it possible to optimise for complexity  
reduction, as well as performance?

•  How can we define functional reproducibility? Long-
term reproducibility is likely to remain out of reach 
due to software collapse13. Can we create ways of 
representing theory that will persist and remain  
usable, so as to increase software sustainability and 
prolong the period of reproducibility? Is there a way 
of providing a reference implementation that can  
be used as a blueprint for the theory?

•  Can we identify the range of practices currently used, 
and gather empirical data concerning their efficacy,  
to result in evidence-based best practice?

•  What are the benefits and implications of the 
increasing use of automation in research software  
engineering?

•  Software is unlikely to ever be 100% ‘correct’. Can 
we measure how well software represents theory, 
and estimate the error that might have been intro-
duced during the translation process? Can we develop  
ways to quantify uncertainty for software function-
ing such that appropriate probabilities can be applied  
to results?
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Conclusions
The discussion sessions at the theory-software translation work-
shop identified a series of challenges in building and using 
scientific software. Related research questions map to the 
areas of research software design, infrastructure, and culture.  
Whilst the distinctions between these categories are not abso-
lute, they provide a means of structuring our understanding of 
the theory-software translation process, and advocating for its  
improvement via research.

Data availability
The workshop documents have all been retained in their origi-
nal form, but they are highly identifying (including the names 
of all individuals who contributed to and commented on 
them, as well as personal views and experiences). Formal IRB  
approval was not sought for the study, as we instead used the 

collective ownership model described in the Methods section. 
We do not have explicit permission from workshop participants  
to share the original documents. 

Emails between the authors, and iterative refinement of the 
manuscript draft on the Overleaf platform also formed part 
of the analysis process, and could be viewed as contributing  
additional data/metadata. We would be happy to answer questions 
on the data and analysis process. All queries should be directed 
to the corresponding author, CJ. The validity of the results is 
guaranteed in that they are co-produced and represent the cumu-
lative, collective reflections of the authors, as they see them, 
based on the workshop discussions. The workshop report4 can  
be considered as a published, interim stage in the analysis proc-
ess of moving from the discussion documents to this final  
output.
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question such as "Which issues do practicing scientists and engineers see with the current state of 
theory-software translation?", and then the method design could be evaluated critically (for 
example, I would criticize the overrepresentation of HPC practitioners, and the complete absence 
of theoretical scientists not involved with software development). But then, the call for action in 
the final sections would be inappropriate and would have to be replaced by something like "We 
find that practitioners believe that...". Put differently, you can study science policy or shape science 
policy, but you cannot do both at the same time. My remaining comments on this article assume 
that its main intention is to shape science policy. 
 
The authors state the goal of the proposed new research area of theory-software translation as 
"investigating how software is constructed and its outputs used within science". This indicates a 
strong focus on the software end of the bridge being envisaged. In my opinion, it is also necessary 
to investigate how theoretical work is being performed in science, how computers have impacted 
the practices of theoreticians, and how their use of computers could be improved in the future. 
This would lead to a stronger focus on non-numerical computational tools, for example, computer 
algebra systems, which I expect to be important in improving theory-software translation. It would 
also help with answering some of the questions raised in the workshop. The answer to "Should 
theory be readable from software?" is clearly "yes" for computer algebra applications. And that 
means that if we succeed in creating formally verifiable correspondences between computer 
algebra and high-performance simulation software, the readability of the latter is no longer an 
issue. 
 
It would also be useful to separate the challenges and goals of theory-software translation 
research into short-term and long-term. Short-term work, which is what the article seems to 
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concentrate on, must take into account the constraints of existing technology that cannot be 
overcome quickly. Long-term work can be more ambitious and envisage completely new software 
and tool stacks designed specifically for supporting scientific research. Importantly, long-term 
research is necessary to detect if short-term efforts are likely to create additional technical debt 
that then becomes an obstacle to more substantial progress. 
 
There is one sentence in the article that I strongly disagree with: "Whilst theory is often exact, 
code has tolerances and approximations." (page 6). Approximations are an important aspect of all 
theoretical work in the natural sciences. Exact theory can only exist in what Herbert Simon called 
the "sciences of the articifial". In particular, the approximations made in simulation and data 
analysis, for example, numerical approximations, clearly belong to the domain of theory, not 
software. The best evidence is that such questions are discussed in research articles on numerical 
algorithms, independently of any concrete implementation. In the final list of research questions 
for the new field, the one starting with "There is a distinction between theory, model, numerics, 
and code" is related to this point and suggests that the authors are mainly considering the 
scientific disciplines represented in HPC applications. There are disciplines that do not have 
theories as frameworks for their models or use models that are not numerical. 
 
The section on "Measuring uncertainty in theory-software translation" (page 6) overlooks the 
fundamental lack of robustness in software. Unlike in many other domains of engineering, there is 
no way to ensure that small mistakes have small consequences (see 
https://dx.doi.org/10.1109/MCSE.2016.67 for a detailed discussion)1. As a consequence, the "x% 
chance some error has been introduced along the way" is of little practical relevance because it 
permits no conclusion about the possible magnitude of the resulting error in the output produced 
by the software. Long-term work on theory-software translation should therefore investigate 
paths to higher robustness. For example, do we really need Turing-complete languages to 
implement scientific models? Maybe a less powerful medium could help reduce the impact of 
errors. 
 
Finally, a minor technical point: "such as the representation of real numbers" (page 6) suggests 
that real numbers can be represented in a computer, whereas the root issue with precision-
related problems is that a finite-size representation for arbitrary real numbers doesn't exist. The 
largest subset of the real numbers that are representable in a computer is the set of computable 
numbers, which were first studied by Alan Turing in his seminal paper introducing the Turing 
machine. 
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