
RESEARCH ARTICLE

The challenges of theory-software translation [version 1; peer

review: 2 approved, 1 approved with reservations]

Caroline Jay 1, Robert Haines1, Daniel S. Katz 2, Jeffrey C. Carver3,
Sandra Gesing4, Steven R. Brandt 5, James Howison 6, Anshu Dubey7,
James C. Phillips2, Hui Wan 8, Matthew J. Turk2

1University of Manchester, Manchester, UK
2University of Illinois at Urbana-Champaign, Urbana, USA
3University of Alabama, Tuscaloosa, USA
4University of Notre Dame, Notre Dame, USA
5Louisiana State University, Louisiana, USA
6University of Texas at Austin, Austin, USA
7Argonne National Laboratory, Argonne, USA
8Pacific Northwest National Laboratory, Richland, USA

First published: 02 Oct 2020, 9:1192
https://doi.org/10.12688/f1000research.25561.1
Latest published: 02 Oct 2020, 9:1192
https://doi.org/10.12688/f1000research.25561.1

v1

Abstract
Background: Software is now ubiquitous within research. In addition
to the general challenges common to all software development
projects, research software must also represent, manipulate, and
provide data for complex theoretical constructs. Ensuring this process
of theory-software translation is robust is essential to maintaining the
integrity of the science resulting from it, and yet there has been little
formal recognition or exploration of the challenges associated with it.
Methods: We thematically analyse the outputs of the discussion
sessions at the Theory-Software Translation Workshop 2019, where
academic researchers and research software engineers from a variety
of domains, and with particular expertise in high performance
computing, explored the process of translating between scientific
theory and software.
Results: We identify a wide range of challenges to implementing
scientific theory in research software and using the resulting data and
models for the advancement of knowledge. We categorise these
within the emergent themes of design, infrastructure, and culture,
and map them to associated research questions.
Conclusions: Systematically investigating how software is constructed
and its outputs used within science has the potential to improve the
robustness of research software and accelerate progress in its
development. We propose that this issue be examined within a new
research area of theory-software translation, which would aim to
significantly advance both knowledge and scientific practice.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2 3

version 1
02 Oct 2020 report report report

Konrad Hinsen , CNRS, Orléans, France

Synchrotron SOEIL, Saint Aubin, France

1.

Mike Heroux , Sandia National

Laboratories (SNL), Albuquerque, USA

St. John's University, Collegeville, USA

2.

Mozhgan Kabiri Chimeh, NVIDIA, UK,

Sheffield, UK

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

https://f1000research.com/articles/9-1192/v1
https://orcid.org/0000-0002-6080-1382
https://orcid.org/0000-0001-5934-7525
https://orcid.org/0000-0002-7979-2906
https://orcid.org/0000-0002-5702-149X
https://orcid.org/0000-0001-5294-4116
https://doi.org/10.12688/f1000research.25561.1
https://doi.org/10.12688/f1000research.25561.1
https://f1000research.com/articles/9-1192/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0003-0330-9428
https://orcid.org/0000-0002-5893-0273
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.25561.1&domain=pdf&date_stamp=2020-10-02

Corresponding author: Caroline Jay (Caroline.Jay@manchester.ac.uk)
Author roles: Jay C: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project
Administration, Writing – Original Draft Preparation, Writing – Review & Editing; Haines R: Conceptualization, Data Curation, Formal
Analysis, Investigation, Methodology, Project Administration, Writing – Review & Editing; Katz DS: Conceptualization, Funding
Acquisition, Investigation, Methodology, Project Administration, Writing – Review & Editing; Carver JC: Conceptualization, Methodology,
Project Administration, Writing – Review & Editing; Gesing S: Methodology, Project Administration, Writing – Review & Editing; Brandt
SR: Project Administration, Writing – Review & Editing; Howison J: Writing – Review & Editing; Dubey A: Methodology, Project
Administration, Writing – Review & Editing; Phillips JC: Writing – Review & Editing; Wan H: Writing – Review & Editing; Turk MJ: Writing –
Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the National Science Foundation [1551592]. CJ work on the data analysis was supported
by a Engineering and Physical Sciences Research Council grant to the Software Sustainability Institute [EP/S021779/1]
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 Jay C et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Jay C, Haines R, Katz DS et al. The challenges of theory-software translation [version 1; peer review: 2
approved, 1 approved with reservations] F1000Research 2020, 9:1192 https://doi.org/10.12688/f1000research.25561.1
First published: 02 Oct 2020, 9:1192 https://doi.org/10.12688/f1000research.25561.1

Keywords
scientific software, research software engineering, research software,
scientific computing, high performance computing, scientific software
development

This article is included in the Science Policy

Research gateway.

Page 2 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

mailto:Caroline.Jay@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.25561.1
https://doi.org/10.12688/f1000research.25561.1
https://f1000research.com/gateways/scipolresearch
https://f1000research.com/gateways/scipolresearch
https://f1000research.com/gateways/scipolresearch

Introduction
Software has transformed scientific practice, creating new forms
of analysis and representation, and enabling research or thinking
that was not previously possible. The growing use of computa-
tion has also added significantly to the complexity of conducting
research.

The process of representing, precisely, a scientific entity, method,
or system in software is extremely challenging. Having suf-
ficient accuracy is paramount: the more the implementation
deviates from the concept it is intended to represent, the lower
the value of the resulting knowledge. Verification and valida-
tion—commonly referred to as V&V—have the potential to
give a level of confidence that the software is both a correct
representation of the theory and free of defects1. Verifying the
accuracy of a scientific artefact is difficult, however, as there
may not be an oracle against which to test it. The artefact may
also pass a set of tests, yet still contain errors that have been
introduced, unnoticed, during the engineering process. Valida-
tion of the artefact—being sure it is a true representation of the
theory—is even more challenging.

The fact that we are able to design and build computational
systems does not mean we fully understand them or what
they do, or that they do exactly what we want them to do; the
proliferation of defects found during the lifetime of any
software system illustrates how difficult it is to accurately pre-
dict how software will behave at runtime. Huge progress towards
system reliability has been made through formal approaches
to software verification, and comprehensive tooling exists to
assist with many aspects of programming, from detecting code
smells (e.g., duplicated code, highly coupled entities, or high
cyclomatic complexity), to monitoring test coverage. In spite
of this, defects remain a significant problem.

In addition to addressing the general difficulties common to
all software development projects, research software must
represent, manipulate, and provide data for complex theoretical
constructs. Such a construct may take many forms: an equa-
tion, a heuristic, a method, a model; here we encapsulate all of
these, and others, in the term theory. In the process of mapping
a theory to a programmatic or software-based implementation,
defects may occur at a number of points:

• The science is wrong: The theory itself may contain
defects, which are discovered through the process
of trying to represent it computationally.

• The software is wrong: The way in which the code is
written may contain defects—although it is possible
to translate from theory to implementation, the chosen
form is not appropriate.

• The translation process incurs loss or ambiguity:
whilst it may be straightforward to represent a theory
verbally or mathematically, it may be difficult to rep-
resent it computationally— “Mathematics provides a
framework for dealing precisely with ‘what is.’ Compu-
tation provides a framework for dealing precisely with
‘how to”’2.

All of these situations, and the last in particular, interact to make
the process of conducting computational research complicated
and defect-prone, resulting in a human-machine translation
gap.

Within science, any form of defect or unreliability is highly
problematic: if the software does not behave as desired or
anticipated, the results may not stand. At present, we lack any
formal means of explaining how and why an implementation
differs from a concept in unanticipated ways. Whilst a mis-
match may be due to obvious limitations of the representation
(e.g., floating point rounding errors), the way in which an imple-
mentation is constructed can also result in inaccuracies that
were not apparent at the time they were created. Understand-
ing these issues, via empirical research, is vital to ensuring the
accuracy and validity of research software.

Compounding the difficulties of formally translating between
theory and software are the many cultural and organisational
factors that add further challenges to the process of building
research software and using its results to advance science. These
include the bespoke and highly dynamic nature of research
software, the funding model, the academic hierarchy and career
structure (in particular the difference in status accorded to
domain and software specialists), the difficulties communicating
in large scientific teams, and the pressures exerted by the current
publication model3.

In this paper, we provide evidence to motivate the systematic
investigation of the Theory-Software Translation process. We
achieve this through analysis of the discussion sessions that
occurred at the Theory-Software Translation Workshop held in
New Orleans4 in February 2019, which explored in depth the
process of both instantiating theory in software—for example,
implementing a mathematical model in code as part of a simula-
tion—and using the outputs of software—such as the behavior
of a simulation—to advance knowledge.

In the Methods section, we describe the workshop format
and goals, its participants, and the process used to collect and
systematically analyse data from the discussion sessions. In the
Results section, we present the themes that emerged from the
analysis, and map these to potential research questions. In
the Discussion section, we compare our findings to those of
other work in this area, in particular the earlier Code/Theory
workshop that took place in the UK3. We conclude by sum-
marising the case for theory-software translation research, and
proposing future activities that will lead towards establishing
it as a new and fruitful domain.

Methods
The workshop report5 contains a full description of the event,
including the agenda, participant list, talk titles and supplemen-
tary materials. Below, we describe the key details relevant to
the analysis reported here.

Format
The workshop started with an introduction from the organ-
isers, which was followed by talks from the participants on

Page 3 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

their background and interest in the topic. The main part of
the workshop consisted of a series of breakouts. The first, where
participants were pre-allocated to groups to ensure each group
had people with a mix of backgrounds, focused on defining the
overall challenges of theory-software translation. Following
a feedback session, and noting the themes that were starting to
emerge, the organisers divided the next set of breakouts into
groups that considered training and culture, software design,
software stack and tools, and miscellaneous (to catch any issues
falling outside the first three). Participants self-selected to join
one of these groups for one session, and then moved to a differ-
ent group for the next session. In each case, participants were
asked to discuss the topic, list challenges, identify current suc-
cesses, and indicate how we could make progress. A final
plenary session considered the prospects for Theory-Software
Translation as a research area, and considered next steps.

Participants
Workshop participants comprised 20 experts in the field of High
Performance Computing and researchers interested in the proc-
ess of research software engineering. Nine participants were
employed at the time at US national laboratories, and 11 at
US or UK universities. Three participants were academics whose
main focus was studying the process of research software engi-
neering. The rest were involved in research software engineering
or the management thereof, with an interest in the idea of the-
ory-software translation, and a desire to improve the process of
research software engineering. A full list of participants and their
talk materials can be found in the workshop report and on
the website4,5.

Analysis
During the breakout sessions, groups kept a record of their con-
versation, transcribing as much of the discussion as possible,
and then summarising key points at the top of the document.
There were three breakout sessions, each with four groups,
resulting in 12 discussion documents. The first breakout session
was split into two parts: in the first part, people wrote notes; in
the second, the topic document was given to a different group
who added to and commented (using the ‘add comment’ func-
tionality) on the contents. Because common topics arose across
groups and sessions, the breakout notes were analysed as a single
corpus. Two of the authors (CJ and RH) performed a thematic
analysis, with CJ coding the full set of discussion notes and
generating initial themes, RH reviewing these and cross-check-
ing with the discussion notes, and both iteratively refining the
final set. Formal analysis software was not used for this process;
instead the text was collated into a single document, and then
parts were grouped together and labelled under subheadings,
following familiarisation with the data.

Following this initial analysis, all workshop attendees were
invited to review and comment on the results, and 13 subsequently
endorsed the output as authors of the workshop report5. None
of the participants raised any issues with regard to the results of
the analysis, or expressed a view that they were unrepresenta-
tive. The final stage of the analysis is presented in this paper,
in which the authors (a self-selecting subset of the workshop

attendees) have collectively further refined the sub-themes within
this document via working on the manuscript draft together,
providing more detail and adding examples.

Consent
The discussion documents are collectively owned by the work-
shop participants. During the workshop, it was agreed verbally
that these would be analysed and written up in a report, which all
participants would be invited to author. This model of collec-
tive data ownership and knowledge production had previously
been used successfully in the Code/Theory Workshop3.

Results
Three overarching themes emerged during the analysis, align-
ing to the challenges of design, infrastructure, and culture.
We explain these below and describe the key areas of research
identified within each, framed as open questions.

Design
Participants considered design in terms of software design,
research design, and the way in which the two interact. Topics
covered included the extent to which it is possible to separate
concerns, whether theory should be ‘readable’ from software,
and potential techniques for evaluating and improving the design
process.

Can/should we separate concerns? In an era of growing com-
plexity in research models and questions, translating scientific
theories to software in a reliable way is becoming increasingly
difficult. One perspective on the process is that of moving from
‘science’ to ‘equations to be solved’ to ‘computational algorithms/
numerical analysis’ to ‘computer science/software engineering’.
(See Babuska and Oden1 for a formal description of this process
and these domains.) Each of these is a discipline in its own right,
and each is complex. There was a view that it is not realistic for
every scientist to understand all of these, and thus an informed
‘separation of concerns’ is crucial. Considering these parts
of the process independently also allows each individual in a
research team to focus on the aspect(s) for which they are most
qualified.

An alternative view was that concerns cannot always be sepa-
rated within computational research, from both a theoretical and
a practical perspective. At present, a paper and a code are sepa-
rate things, but the boundaries are blurring. Jupyter notebooks
are an example of documentation interspersed with executable
code, but this approach is unlikely to be sufficient or scalable on
its own. If the boundaries between publication and code increas-
ingly overlap, then it becomes difficult to see where the theory
ends and the software begins. Simply documenting the code
by commenting it with the theory increases the maintenance
cost of the code and risks the two becoming out of sync. Code
marked up with the wrong theory is worse than useless, even
dangerous, so it is important to be able to verify that the code
and theory are consistent. Ince et al.6 argue for the necessity of
source code provision along with papers, citing research show-
ing poor effectiveness of specifications in producing equivalency
across implementations7.

Page 4 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

Another example of how boundaries are becoming blurred by
the introduction of computational methods, is the fact that code
and theory are increasingly developed alongside each other.
Although it is natural to think (and is most often indeed the
case) that one needs to formulate the equations and then apply
computational algorithms to obtain the numerical solutions, the
formulation of the equations can be affected by the choice of
computational method. For example, the equations represent-
ing the physics behind a wave will be written for different quan-
tities and hence take different forms, depending on whether a
wave pattern is numerically described by a collection of discrete
values sampled at selected locations, or the superposition of a
number of Fourier modes.

Should theory be readable from software? There was
considerable discussion about the extent to which it is possible to
write research software in a way that maintains the essence and
readability of the underlying theory. Software is highly com-
plex, and can unintentionally obfuscate the theory it contains,
particularly when it is optimized for high performance. Preserv-
ing a balance between readability (in terms of how easy it is to
understand the code) and performance can be difficult. Opti-
mizing code often makes it harder to understand, potentially
obfuscating the theory that the software represents, and making
it more difficult to reproduce, maintain and modify.

In an ideal project, mathematical concepts are contained in soft-
ware components, offering reuse, support for testing, and a clear
map to and from the underlying theory. Modular representa-
tion of theory is likely to be more readable and testable, but it
would be interesting to investigate whether there are areas
where this approach is not suitable.

A number of questions emerged from this discussion: Is there a
particular design process that should be used for embedding
theory within software such that it is readable? To what extent
is it necessary for someone reading the software to understand
the underpinning theory? When software is assembled from
many components, each having their own theoretical founda-
tions, what does this mean for conveying the overall theory
underlying the whole? Is there value in an unoptimized, under-
standable version of a simulation serving as a reference
implementation?

To facilitate theory-software translation in practical terms,
domain norms and expertise may need to be taken into account.
An example of this can be found in the US Department Of
Energy’s effort to develop a new version of its Earth system
model8 for cutting-edge computational platforms. The final pro-
duction code will be written in C++ using Kokkos9 for perform-
ance and portability. Because most climate scientists are trained
in Fortran, a two-step approach is being used: the domain sci-
entists develop their code in Fortran, then the computational
scientists and software engineers take the Fortran code, trans-
late it to C++, and then work on HPC performance. What are the
benefits and trade-offs of introducing these further translation
steps into the software development process?

What are the effects of automation in programming?
In the future, code generators may offer a route to translat-
ing theory to software. This approach could do a better job of
preserving information during implementation and lead to a
higher order transformation, due to higher order input. It may
allow for timely cross-code validation, where different theory
comparisons are made, as it is less human-resource-intensive.
This may also be a way to reduce human error (for example, one
of the General Relativity solvers10 in the relativistic astrophys-
ics Einstein Toolkit11 uses a Mathematica-based code generator
called Kranc12, as this work would otherwise be repetitive and
error prone), although it should be noted that code generators,
being software themselves, may also introduce defects. Record-
ing the provenance of the code is important in understanding
how theory is ultimately arrived at through software outputs.
Does using a code generator obfuscate that provenance, or make it
clearer?

How can we evaluate the design process? There are many
ways of expressing theory in software. Gathering evidence for
what works well would help to inform and refine the software
design process. One approach to empirically examining software
design is model inter-comparison, which is the process of com-
paring the results of different implementations of the same
underlying theory, such as different climate models, and trying
to understand the reasons for, and sources of, similarities and
differences in model outputs.

This is a technically challenging endeavour, and how to do it
remains an open research question, but the results could pro-
vide an understanding of the efficiency and effectiveness of
different implementations, and open up opportunities for code
adaptation and reuse. Could we adapt existing codes to new para-
digms? Domain specific languages (DSLs) are generally com-
munity specific at present. Could we make progress through
merging or integrating them, at least where we can be reasonably
certain that the models that they are representing are comparable?
There is an explosion of tools and services across all domains.
How can we tell if they are reliable? Would being able to com-
pare them across domains help with the verification and
validation of these tools?

How can we better link domain science and computer
science? There appears to be a disconnect between compu-
ter science research and its deployment in scientific discovery;
improving the linkage could lead to better science, and more
efficient use of computing resources. There are many areas that
require computer science research: new languages; more flexible
operators; code generation; code transformation; test generation.
Theory-software translation research was recognised as having
the potential to expose and contribute to these challenges.

Infrastructure
Theory-software translation is not solely about mapping sci-
entific constructs to algorithms, but rooted in and affected by
a wider software and hardware infrastructure. This part of the
discussion gave consideration to verification and validation,

Page 5 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

sustainability and portability, and how the uncertainty introduced
by infrastructure might be recognised and measured.

How should we verify results arrived at through computation?
There is currently no formally established, efficient means of
verifying a software simulation, and as such this is an area that
requires further attention. Where there is unexpected behav-
ior in a simulation, both software and data provenance are cru-
cial to knowing whether it is caused by a defect or highlights
a discovery. Where there is a defect, how can we tell where it
lies? Is it in the theory, or the mathematics, or the code? Knowl-
edge is required, not just of the code and the theory, but of the
full software stack, including the sequence of dependencies,
and how the code is compiled or interpreted.

The number of potential inputs to most codes is much larger
than can be tested in its entirety. A further barrier to compre-
hensive test coverage is presented by the way in which some
applications are configured—both at build-time and run-time.
In large, flexible codes features, methods and algorithms can
be switched on or off, or swapped; how do we test all of these
permutations and combinations of configurations to ensure
that they do not interact with each other in unexpected ways?
Is there a way we can express theory as a set of tests for code
to pass, and ultimately automate test generation from theory
specification?

How should we address reproducibility and sustainability?
The importance of reproducibility within research is becom-
ing increasingly recognised. The extent to which true repro-
ducibility is possible in computational science is not clear, due
to portability problems, continually changing technology and
‘software collapse’, where software stops working due to changes
in underlying layers13. Nevertheless, it was seen as impor-
tant to strive to get as close as possible to this ideal, and also to
work out practical ways of achieving something that approxi-
mates this. Having different teams trying to reproduce results,
through multiple people running the same codes, could be useful
in terms of verification and building knowledge.

Whilst sustaining software for reproducibility is difficult and
resource intensive, paradoxically, software almost always lives
longer than planned, as (for example) adding features to a pro-
totype is quicker and cheaper than engineering a new and
robust code from scratch. What are the implications of this for
theory-software translation? What are the effects on the soft-
ware’s integrity, the way new theory must subsequently be
implemented, and the results it produces? What are the issues
caused by technical debt?

What are the constraints posed by platforms and architec-
tures? Scientific software is generally going to be utilized on
multiple generations of computational architectures, and the
original developers of the software typically do not (and cannot)
take this into account. Changing hardware impedes both port-
ability and reproducibility. Build systems and supporting infra-
structure also require maintenance, and any updates to these

also have the potential to introduce defects. Where concepts or
operations require workarounds to implement on current hard-
ware—such as the representation of real numbers14—the view was
that we should ideally aim to change the hardware, rather
than restrict the theory, while accepting that this is rarely
possible.

We should also remain mindful that hardware, as well as
software, can be an error source, as code that functions cor-
rectly on one platform may not on another, unbeknownst to the
programmer.

Measuring uncertainty in theory-software translation Whilst
theory is often exact, code has tolerances and approxima-
tions. Recognising this was seen as an important part of under-
standing and improving theory-software translation. One
suggestion was to frame this issue in terms of implementation
decisions introducing uncertainty. Rather than assuming, ‘this
output is correct,’ would it be better to state, ‘there is x%
chance some error has been introduced along the way, accord-
ing to the architecture/code size etc., and therefore we should
interpret the result accordingly?’ Could we develop diagnos-
tics that verify the ‘health’ of the simulation, such that we could
estimate the potential for defects caused by issues with code
quality or age? There is also loss when moving between dif-
ferent stages of theory-software translation (theory, equations,
algorithms, software). How can we measure this, and understand
its effects?

Culture
The environment in which theory-software translation takes
place was recognised as a key influence on the process.
Discussion relating to this topic covered collaboration, expecta-
tions, research environments and use of software engineering
process.

How can we foster a culture of collaboration? Computa-
tional science, particularly that conducted in large projects,
is necessarily interdisciplinary. The heavily domain-contex-
tual specification of the problem and the deep technical knowl-
edge required to implement solutions can lead to an initial
communication barrier between domain scientists and com-
puter/computational scientists. Embedding software engineers
and applied mathematicians in research teams is a good way
of facilitating communication, and there was discussion about
what more could be done. One question was whether explic-
itly recognising the idea that software is a translation of theory
might change the communication process. Could conversations
across different roles be improved using this approach? The US
Department of Energy’s Scientific Discovery Through Advanced
Computing program15 is an example of interdisciplinary efforts
that directly engage computer scientists and applied math-
ematicians with the scientists of targeted application domains,
with promising results.

Implementing theory in code was viewed as different from
implementing non-research software, especially where the

Page 6 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

requirements are concerned. A key issue was that it may not
be possible to separate specification from design, a situa-
tion analogous to building an aircraft in flight. Given this, there
is a lack of clarity about the best way to approach requirements
engineering within research projects.

It was viewed as crucial to emphasise that software engineer-
ing is a core intellectual contribution to the research, not just
a service. Close interaction between an application scientist
and an applied mathematician can be helpful in designing the
appropriate mathematical/numerical method. The discussion
about the ‘separation of concerns’ within research software
design extends to research software teams. Separating concerns
too strictly may lead to different people concentrating on their
own tasks, with their own goals and motivations, neglecting the
overall picture. On the other hand, focusing on a particular aspect
can provide better abstractions and more performant solutions.
How do we balance these two pressures?

What are the external expectations of the reliability of the
software? Validation, which was discussed extensively from a
technical perspective, was also considered from an administra-
tive/organisational perspective. Software may need to be con-
sidered as a scientific instrument that needs to be validated
and/or calibrated. A current example of this is that in the UK,
any software that collects patient symptom data, that can be
used to access medical advice, or that can be used to assist
with a diagnosis, must be developed as a ‘medical device’16.
Might there be a requirement to think of software as an instru-
ment that meets formal standards in other research settings17?
Would this make results more reliable, or would it stifle crea-
tivity? Can we expect complete ‘precision’? If not, should
there be ‘guards’ or ‘contracts’ to detail this?

Software is not an oracle. There needs to be an improved
understanding of which parts of a software tool can be treated
as a black box and taken on faith, and which cannot. With-
out this understanding, software may be used in ways it is not
designed for and so give spurious results. Software can be
flexible, and because of this, be used in domains for which it was
not originally intended, and may not be appropriate; in this case,
it should be validated within the new domain before any results
are published.

How does the research environment affect the translation-
process? There is a perception that academic researchers are
under pressure to publish at all costs, diminishing the atten-
tion paid to good software engineering practices, which are per-
ceived as slowing down the research and publication process.
Valuing software as a deliverable in its own right was viewed
as an important part of improving its quality and avail-
ability. Citing software (via, e.g., the Journal of Open Source
Software18 or by more direct citations to the software19) is
another part of this process. Considering software explicitly as
an output of research, and systematically assessing the impact
of research software20,21, remains relatively unusual, and there is
still work to be done in understanding how to achieve this.

There was a view that funding bodies should be involved in
discussions regarding theory-software translation. Many of
the costs of software development, maintenance, and evolu-
tion are hidden; they need to be articulated, and be part of an
open, ongoing conversation. The cost of developing software
is often underestimated by principal investigators and fund-
ing bodies. A lot of time is spent porting software to new
hardware, but it is difficult to obtain funding for this, with a nega-
tive impact on the quality of the software as a result.

What is the best way to embed software engineering skills in
science? Often the people writing scientific code are graduate
students or researchers who do not have a background in soft-
ware engineering22,23. Data Carpentry/Software Carpentry was
viewed as a good start, but not sufficient. Instilling the neces-
sity of thinking about theory-software translation in gradu-
ate students right from the start would help to avoid the need
to continually fix poorly-written and poorly-designed code.
While this lack of training is a specific problem, software devel-
opment training is a general challenge, because academic
supervisors do not necessarily see the value of it, or even know
about it themselves. Awareness that training exists, and a belief
in the necessity of undertaking the training, is critical. There
is potential for technical training to be conceptualised as a
hierarchy, covering: the issues of theory-software translation at
an abstract level; the principles of translating between theory
and software at a process level; and in-depth expertise in the
implementation of theory-software translation at the developer
level (with possible specialization).

Training in communication was also seen as essential, and
should go both ways: all members of a research team need to
be proficient in cross-disciplinary communication. Being able
to communicate scientific requirements to software developers
is essential. Being a careful and skeptical user of simulation
outputs is also essential, and this requires an understanding of
the workings and limitations of the software method, such that
the outputs are viewed through the appropriate lens.

Discussion
The material gathered from the workshop revealed a number
of areas where theory-software translation research could
significantly advance both knowledge and scientific practice.

Supporting evidence for the identified themes comes from
the Code/Theory workshop organised by authors CJ and RH
in the UK, which examined the challenges faced by prac-
tising research software engineers and data scientists3. The
primary themes that emerged at the UK event related to design-
ing software, sustaining software, and communication issues
between domain scientists and software engineers, all of which
map to our themes of research software design, infrastructure,
and culture. The UK workshop focused on identifying practical
solutions to these issues, with suggestions including improving
communication, tools and training, and raising the profile of
software in research, such that people understood its com-
plexity and intellectual contribution. This last issue was also

Page 7 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

identified as a priority in a survey of Software Sustainability
Institute Fellows, who comprise people who have been recog-
nised for their contribution to the research software engineering
community24.

Another activity that has provided insight into this area is the
United States Research Software Sustainability Institute (URSSI)
conceptualization project, funded by the US National Science
Foundation. As part of this effort, the researchers conducted
a survey of research software developers and users25. Based
on the 1,194 responses, they made some observations rel-
evant to the results we report here. First, relating to our Design
and Culture themes, the majority of respondents said they
had not received software development training. Furthermore,
only half of the respondents indicated sufficient training was
available and only 25% said there was sufficient time for training.
Second, regarding Culture, the vast majority of respondents indi-
cated that the level of funding for research software was “insuf-
ficient and creates barriers to their work”. A wide-scale survey
providing further strong evidence for the utility of theory-soft-
ware translation research explicitly examined problems within
research software engineering, providing a taxonomy of ‘pains’
covering technical, scientific and social issues26. This work
highlights that many common software engineering chal-
lenges, such as requirements gathering, communication diffi-
culties and debugging, are particularly challenging— and often
qualitatively different—within science, due to the nature of the
research process, and the environment in which the work is
conducted.

Theory-software translation research has the potential to con-
tribute to the evidence base for research software infrastructure
strategy and practice at a local (individual/group), institutional
(organization), national, and international level. It could also
identify cross-cutting challenges for computational research,
and advance the techniques we use to perform such research.
We anticipate that a better understanding of the theory-soft-
ware translation process will lead to more robust and accurate
research software.

The results of our analysis demonstrate that research software
is not merely used to perform a task, but to understand a prob-
lem and advance knowledge. While current software engineer-
ing research outputs and methods are relevant to addressing
these challenges, theory-software translation research would
involve tackling new problems that are rooted within the scien-
tific domain. We summarise key, emergent areas for research as
follows:

• The translation process moves from theory to algo-
rithm to software (and vice-versa). Information is lost
in moving from one domain to another, as the way in
which ideas are represented changes. Can we quan-
tify or explain this loss/difference, and articulate the
trade-offs resulting from translation?

• How does incorporating theory in software (e.g., a
simulation) differ from standard requirements engi-
neering? The development of software and theory

happen together. While requirements changes are
generally constrained for typical software, theory
can change much more dramatically, resulting in not
just an addition, but a fundamental divergence from
what the software was initially designed to do.

• How do we understand the results of a simulation,
and translate this back to the underlying theory? How
should real world data be used in the verification
process?

• How do we go from viable theory to validated, veri-
fied code in a time-efficient way? Can theory be
expressed as a set of tests?

• There is a distinction between theory, model, numer-
ics, and code, and there are difficulties mapping
between them. There can be errors in any part of the
mapping process that may affect the resulting science.
How can we detect and handle these errors?

• Is a true separation of concerns (theory, and its
implementation in software) possible? What are the
implications for how we write scientific software?

• Should theory be recoverable from software (where
software includes documentation)? Can theory today
be represented solely in papers, or is it really also
in the code? How can we help people to read and
understand it?

• The increase in model complexity and sophistica-
tion of questions that models are designed to answer
makes translating them into software increasingly dif-
ficult. How do we determine the appropriate level of
complexity? Is it possible to optimise for complexity
reduction, as well as performance?

• How can we define functional reproducibility? Long-
term reproducibility is likely to remain out of reach
due to software collapse13. Can we create ways of
representing theory that will persist and remain
usable, so as to increase software sustainability and
prolong the period of reproducibility? Is there a way
of providing a reference implementation that can
be used as a blueprint for the theory?

• Can we identify the range of practices currently used,
and gather empirical data concerning their efficacy,
to result in evidence-based best practice?

• What are the benefits and implications of the
increasing use of automation in research software
engineering?

• Software is unlikely to ever be 100% ‘correct’. Can
we measure how well software represents theory,
and estimate the error that might have been intro-
duced during the translation process? Can we develop
ways to quantify uncertainty for software function-
ing such that appropriate probabilities can be applied
to results?

Page 8 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

Conclusions
The discussion sessions at the theory-software translation work-
shop identified a series of challenges in building and using
scientific software. Related research questions map to the
areas of research software design, infrastructure, and culture.
Whilst the distinctions between these categories are not abso-
lute, they provide a means of structuring our understanding of
the theory-software translation process, and advocating for its
improvement via research.

Data availability
The workshop documents have all been retained in their origi-
nal form, but they are highly identifying (including the names
of all individuals who contributed to and commented on
them, as well as personal views and experiences). Formal IRB
approval was not sought for the study, as we instead used the

collective ownership model described in the Methods section.
We do not have explicit permission from workshop participants
to share the original documents.

Emails between the authors, and iterative refinement of the
manuscript draft on the Overleaf platform also formed part
of the analysis process, and could be viewed as contributing
additional data/metadata. We would be happy to answer questions
on the data and analysis process. All queries should be directed
to the corresponding author, CJ. The validity of the results is
guaranteed in that they are co-produced and represent the cumu-
lative, collective reflections of the authors, as they see them,
based on the workshop discussions. The workshop report4 can
be considered as a published, interim stage in the analysis proc-
ess of moving from the discussion documents to this final
output.

References

1. Babuska I, Tinsley Oden J: Verification and validation in computational
engineering and science: basic concepts. Comput Methods Appl Mech Eng.
2004; 19(3): 4057–4066.
Publisher Full Text

2. Abelson H, Sussman GJ, Sussman J: Structure and Interpretation of
Computer Programs. MIT Press, 2nd edition, 1996.
Reference Source

3. Jay C, Haines R, Vigo M, et al.: Identifying the challenges of code/theory
translation: report from the code/theory 2017 workshop. Res Ideas
Outcomes. 2017; 3: e13236.
Publisher Full Text

4. Theory-Software Translation Workshop - US Edition in New Orleans, LA
(February 4-5, 2019). Accessed: 2020-06-21.
Reference Source

5. Jay C, Haines R, Katz DS, et al.: Theory-software translation: Research
challenges and future directions. 2019.
Reference Source

6. Ince DC, Hatton L, Graham-Cumming J: The case for open computer
programs. Nature. 2012; 482(7386): 485–488.
PubMed Abstract | Publisher Full Text

7. van der Meulen MJP, Revilla MA: The Effectiveness of Software Diversity in
a Large Population of Programs. IEEE T Software Eng. 2008; 34(6): 753–764.
Publisher Full Text

8. E3SM Project: Energy Exascale Earth System Model (E3SM). [Computer
Software]. Accessed: 2020-06-23.
Publisher Full Text

9. Kokkos: The C++Performance Portability Programming Model. Accessed:
2020-06-21.
Reference Source

10. Brown D, Diener P, Sarbach O, et al.: Turduckening black holes: An analytical
and computational study. Phys Rev D. 2009; 79: 044023.
Publisher Full Text

11. Babiuc-Hamilton M, Brandt SR, Diener P, et al.: The Einstein Toolkit. Zenodo.
2019.
Publisher Full Text

12. Husa S, Hinder I, Lechner C: Kranc: a mathematica package to generate
numerical codes for tensorial evolution equations. Comput Phys Commun.
2006; 174(12): 983–1004.
Publisher Full Text

13. Hinsen K: Dealing with software collapse. Comput Sci Eng. 2019; 21(3):
104–108.
Publisher Full Text

14. IEEE Standard for Floating-Point Arithmetic - 754-2019. Accessed: 2020-06-
19.
Reference Source

15. US Department of Energy, Office of Science: Scientific Discovery Through
Advanced Computing (SciDAC). Accessed: 2020-06-23.
Reference Source

16. Medicines and Healthcare products Regulatory Agency: Medical devices:
software applications (apps). 2018.
Reference Source

17. Carver JC: Software engineering for science. Comput Sci Eng. 2016; 18(2):
4–5.
Publisher Full Text

18. Journal of Open Source Software. Accessed: 2020-06-21.
Reference Source

19. Smith AM, Katz DS, Kyle E, et al.: Software citation principles. PeerJ Comput Sci.
2016; 2: e86.
Publisher Full Text

20. Howison J, Deelman E, McLennan MJ, et al.: Understanding the scientific
software ecosystem and its impact: Current and future measures. Res Eval.
2015; 24(4): 454–470.
Publisher Full Text

21. Dubey A, Tzeferacos P, Lamb D: The dividends of investing in computational
software design: a case study. Int J High Perform Comput Appl. 2018.
Publisher Full Text

22. Heaton D, Carver JC: Claims about the use of software engineering practices
in science: A systematic literature review. Inf Softw Technol. 2015; 67:
207–219.
Publisher Full Text

23. Carver J, Heaton D, Hochstein L, et al.: Self-perceptions about software
engineering: A survey of scientists and engineers. Comput Sci Eng. 2013;
15(1): 7–11.
Publisher Full Text

24. Sufi S, Jay C: Raising the status of software in research: A survey-based
evaluation of the software sustainability institute fellowship programme
[version 1; peer review: 3 approved with reservations]. F1000Res. 2018; 7:
1599.
Publisher Full Text

25. Carver J: URSSI Conceptualization Survey Results. 2019; Accessed: 2020-06-15.
Reference Source

26. Wiese I, Polato I, Pinto G: Naming the pain in developing scientific software.
IEEE Softw. 2020; 37(4): 75–82.
Publisher Full Text

Page 9 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

http://dx.doi.org/10.1016/j.cma.2004.03.002
https://sarabander.github.io/sicp/html/index.xhtml
http://dx.doi.org/10.3897/rio.3.e13236
https://se4science.org/workshops/tst-us/
https://arxiv.org/ftp/arxiv/papers/1910/1910.09902.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22358837
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1109/TSE.2008.70
http://dx.doi.org/10.11578/E3SM/dc.20180418.36
https://github.com/kokkos/kokkos/wiki
http://dx.doi.org/10.1103/PhysRevD.79.044023
http://dx.doi.org/10.5281/zenodo.3522086
http://dx.doi.org/10.1016/j.cpc.2006.02.002
http://dx.doi.org/10.1109/MCSE.2019.2900945
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://scidac.org/
https://www.gov.uk/government/publications/medical-devices-software-applications-apps
http://dx.doi.org/10.1109/MCSE.2016.31
https://joss.theoj.org/
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.1093/reseval/rvv014
http://dx.doi.org/10.1177/1094342017747692
http://dx.doi.org/10.1016/j.infsof.2015.07.011
http://dx.doi.org/10.1109/MCSE.2013.12
http://dx.doi.org/10.12688/f1000research.16231.1
http://urssi.us/blog/2019/05/20/urssi-conceptualization-survey-results/
http://dx.doi.org/10.1109/MS.2019.2899838

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 10 November 2020

https://doi.org/10.5256/f1000research.28209.r72412

© 2020 Kabiri Chimeh M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Mozhgan Kabiri Chimeh
NVIDIA, UK, Sheffield, UK

The abstract and title reflect the content of the article. The motivation and contribution of the
paper are clear. It’s well written. A good range of papers were included in the related work paper.

Very good, comprehensive workshop report that can be used as a good base for future similar
events for further discussion.

My only negative feedback is for the workshop itself. Looking at the speakers' list, I can hardly see
a diverse and inclusive list! That is something that is missing really, and I hope in future events
and workshops as such could be kept as diverse and inclusive as possible to give stronger
meaning to the results and conclusions.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Page 10 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

https://doi.org/10.5256/f1000research.28209.r72412
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://se4science.org/workshops/tst-us/talks/

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: High-performance computing. Simulation acceleration. Optimization and
tuning of scientific applications.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 26 October 2020

https://doi.org/10.5256/f1000research.28209.r72420

© 2020 Heroux M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Mike Heroux
1 Sandia National Laboratories (SNL), Albuquerque, NM, USA
2 St. John's University, Collegeville, MN, USA

This article represents a summary and analysis of the output from the 2019 Theory-Software
Translation workshop held in New Orleans, LA, USA in February 2019.

The authors summarize the purpose and format of the workshop and then present an analysis of
the workshop breakout session content, folding the content into a holistic discussion that
characterizes the challenges of theory-software translation, key research questions, and some
discussion of potential solution strategies.

Overall, the article is very well written. The authors are some of the leaders in this field, which is
reflected in the scope of discussion. I have just a few comments and suggestions:

While this article is about theory-software translation, did the topic of model-free
approaches come up during the workshop or subsequent discussions? For example, some
scientific teams are successfully using machine learning (ML) approaches, where prediction
and insight may come from an inference engine constructed from raw data with no explicit
mathematical model. These approaches are increasingly integrated into more established
theoretical frameworks, with promising impact. If there were no comments in the
workshop, then omitting the topic from this article is appropriate.

○

In the introduction, you state that “Validation of the artefact—being sure it is a true
representation of the theory—is even more challenging.” Is this a sufficiently expansive
definition of validation? The terse definition of validation as “Doing things right.” is often
interpreted as meaning that the computational results are consistent with physical
experiments, not just the theory that the software encodes.

○

You state that the workshop discussion notes were coded. To a software person who is not
familiar with text coding, this term may be unfamiliar, and may indeed be confused by their

○

Page 11 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

https://doi.org/10.5256/f1000research.28209.r72420
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5893-0273

familiarity with software coding. A brief footnote, parenthetic explanation, or similar
explanation could improve the accessibility of the paper, since the coding activity was
important for producing the article content.

At the end of page 4, you state, “Ince et al. argue for the necessity of source code provision
along with papers, citing research showing poor effectiveness of specifications in producing
equivalency across implementations.” I think this sentence could be expanded and better
explained for the reader. In particular, what are the definitions of provision, specification,
and equivalency? I think I understand the statement, but a simple example might help the
reader.

○

While I have no concerns about the validity of the content in this article, the unavailability of
the raw workshop discussion notes and the informal nature of the coding process used on
the combined discussion notes text, prohibits rigorous reproducibility of the results. The
omission is clearly acknowledged and explained, so I do not view it as a critical
problem. Perhaps future approaches could be designed to permit availability of raw content
by anonymizing attribution or getting ARB approval. Automated, or carefully documented
coding would be useful too.

○

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: I have been a collaborator with Daniel S. Katz, Jeffrey C. Carver, Sandra
Gesing, and Anshu Dubey over the past few years in community workshops and similar activities. I
believe my interactions do not represent concern for the objectivity of my review.

Reviewer Expertise: Scientific software, high-performance computing, mathematical modeling and
simulation

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Page 12 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

Reviewer Report 14 October 2020

https://doi.org/10.5256/f1000research.28209.r72416

© 2020 Hinsen K. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Konrad Hinsen
1 Center for Molecular Biophysics, CNRS, Orléans, France
2 Synchrotron SOEIL, Saint Aubin, France

This article presents a structured summary of the discussion sessions of a recent workshop on
theory-software translation, followed by carefully crafted arguments for establishing theory-
software translation as a new field of research. It represents a significant effort at making
progress on an important question, but I don't consider it a "research article" for the reasons
outlined below, and therefore I can approve it only with reservations. My recommendation to the
authors is to relabel their work as an opinion article.

A research article should start with a research question, and my first task as a reviewer would be
to judge if the method design is appropriate to answer this question. Indeed, a question in the
review form is "Is the study design appropriate and is the work technically sound?" In the absence
of a research question, I cannot answer it meaningfully. One can imagine an underlying research
question such as "Which issues do practicing scientists and engineers see with the current state of
theory-software translation?", and then the method design could be evaluated critically (for
example, I would criticize the overrepresentation of HPC practitioners, and the complete absence
of theoretical scientists not involved with software development). But then, the call for action in
the final sections would be inappropriate and would have to be replaced by something like "We
find that practitioners believe that...". Put differently, you can study science policy or shape science
policy, but you cannot do both at the same time. My remaining comments on this article assume
that its main intention is to shape science policy.

The authors state the goal of the proposed new research area of theory-software translation as
"investigating how software is constructed and its outputs used within science". This indicates a
strong focus on the software end of the bridge being envisaged. In my opinion, it is also necessary
to investigate how theoretical work is being performed in science, how computers have impacted
the practices of theoreticians, and how their use of computers could be improved in the future.
This would lead to a stronger focus on non-numerical computational tools, for example, computer
algebra systems, which I expect to be important in improving theory-software translation. It would
also help with answering some of the questions raised in the workshop. The answer to "Should
theory be readable from software?" is clearly "yes" for computer algebra applications. And that
means that if we succeed in creating formally verifiable correspondences between computer
algebra and high-performance simulation software, the readability of the latter is no longer an
issue.

It would also be useful to separate the challenges and goals of theory-software translation
research into short-term and long-term. Short-term work, which is what the article seems to

Page 13 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

https://doi.org/10.5256/f1000research.28209.r72416
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0330-9428

concentrate on, must take into account the constraints of existing technology that cannot be
overcome quickly. Long-term work can be more ambitious and envisage completely new software
and tool stacks designed specifically for supporting scientific research. Importantly, long-term
research is necessary to detect if short-term efforts are likely to create additional technical debt
that then becomes an obstacle to more substantial progress.

There is one sentence in the article that I strongly disagree with: "Whilst theory is often exact,
code has tolerances and approximations." (page 6). Approximations are an important aspect of all
theoretical work in the natural sciences. Exact theory can only exist in what Herbert Simon called
the "sciences of the articifial". In particular, the approximations made in simulation and data
analysis, for example, numerical approximations, clearly belong to the domain of theory, not
software. The best evidence is that such questions are discussed in research articles on numerical
algorithms, independently of any concrete implementation. In the final list of research questions
for the new field, the one starting with "There is a distinction between theory, model, numerics,
and code" is related to this point and suggests that the authors are mainly considering the
scientific disciplines represented in HPC applications. There are disciplines that do not have
theories as frameworks for their models or use models that are not numerical.

The section on "Measuring uncertainty in theory-software translation" (page 6) overlooks the
fundamental lack of robustness in software. Unlike in many other domains of engineering, there is
no way to ensure that small mistakes have small consequences (see
https://dx.doi.org/10.1109/MCSE.2016.67 for a detailed discussion)1. As a consequence, the "x%
chance some error has been introduced along the way" is of little practical relevance because it
permits no conclusion about the possible magnitude of the resulting error in the output produced
by the software. Long-term work on theory-software translation should therefore investigate
paths to higher robustness. For example, do we really need Turing-complete languages to
implement scientific models? Maybe a less powerful medium could help reduce the impact of
errors.

Finally, a minor technical point: "such as the representation of real numbers" (page 6) suggests
that real numbers can be represented in a computer, whereas the root issue with precision-
related problems is that a finite-size representation for arbitrary real numbers doesn't exist. The
largest subset of the real numbers that are representable in a computer is the set of computable
numbers, which were first studied by Alan Turing in his seminal paper introducing the Turing
machine.

References
1. Hinsen K: The Power to Create Chaos. Computing in Science & Engineering. 2016; 18 (4): 75-79
Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?

Page 14 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-72416-1
https://doi.org/10.1109/MCSE.2016.67

Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: scientific computing, statistical physics, biomolecular simulation, protein
dynamics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 15 of 15

F1000Research 2020, 9:1192 Last updated: 10 NOV 2020

mailto:research@f1000.com

