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Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance

could open avenues for novel therapeutics and diagnostics. It is thereby key to develop a

comprehensive genome-wide understanding of how bacteria process antibiotic stress, and

how modulation of the involved processes affects their ability to overcome said stress. Here

we undertake a comprehensive genetic analysis of how the human pathogen Streptococcus

pneumoniae responds to 20 antibiotics. We build a genome-wide atlas of drug susceptibility

determinants and generated a genetic interaction network that connects cellular processes

and genes of unknown function, which we show can be used as therapeutic targets. Pathway

analysis reveals a genome-wide atlas of cellular processes that can make a bacterium less

susceptible, and often tolerant, in an antibiotic specific manner. Importantly, modulation of

these processes confers fitness benefits during active infections under antibiotic selection.

Moreover, screening of sequenced clinical isolates demonstrates that mutations in genes

that decrease antibiotic sensitivity and increase tolerance readily evolve and are frequently

associated with resistant strains, indicating such mutations could be harbingers for the

emergence of antibiotic resistance.
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The emergence of antibiotic resistance in bacterial pathogens
is a continuously developing complex problem that is only
solvable if besides new drugs we also learn to understand

the exact (genetic) processes that enable resistance. For instance,
new antibiotics and treatment strategies are key to retain the
ability to treat resistant infections. However, a comprehensive
understanding of how and under which conditions resistance
emerges, which genes and pathways contribute to drug sensitivity,
and how resistance may be prevented or even taken advantage of,
are equally important, as it could make treatments more focused
and possibly less dependent on new drugs. For many antibiotics,
we know which genomic changes can cause resistance. However,
it is often not clear how we get there with respect to which
evolutionary paths are taken and whether for instance tolerance
or lowered drug sensitivity precedes resistance. Interestingly,
clinical strains isolated during antibiotic treatment failure may
lack known resistance markers and instead contain multiple
changes that may have no clear or known role in resistance1–5.
However, whether these changes play a role or not is often
unclear because the distribution of changes that can affect a
bacterium’s drug sensitivity are largely unknown1–7. Therefore,
understanding which genes, pathways and processes can con-
tribute to altered drug susceptibility, could help identify genomic
changes that not only sensitize bacteria to certain drugs, but
desensitize them and may thereby act as precursors for antibiotic
escape and/or resistance development.

Resistance emerges primarily through drug target mutations
blocking antibiotic lethal action, upregulation of efflux pumps,
and the acquisition of drug inactivating enzymes7–13. Impor-
tantly, an antibiotic’s effects go far beyond the interaction with its
direct target. We, and others, have shown that when a bacterium
is challenged by an antibiotic, the imposing stress can expand
throughout the bacterium and affect and demand the involve-
ment of many different processes6,14–17. For instance, while
fluoroquinolones like ciprofloxacin inhibit DNA replication by
targeting gyrase and/or topoisomerase, this also triggers double-
stranded breaks requiring the involvement of DNA repair
mechanisms, which in turn requires nucleotide and energy
metabolism. Antibiotics can thereby trigger a stress cascade, that
with mounting stress increasingly reverberates through the
organismal network, until the accumulating stress passes a
threshold at which point the organism succumbs to the
pressure15,17. This explains why mutations in genes or pathways
involved in dealing with the downstream (indirect) effects of
antibiotic exposure can often make a bacterium more sensitive to
a specific antibiotic. Indeed, we have shown for Streptococcus
pneumoniae and Acinetobacter baumannii that, for instance,
targeting DNA repair makes bacteria more susceptible to DNA
synthesis inhibitors (DSIs)6,16,18, or targeting the Rod-system
and/or Divisome makes A. baumannii more sensitive to cell-wall
synthesis inhibitors (CWSIs)6. This means that downstream
genes, pathways and processes can be used as new targets or drug
potentiators, either by themselves or in combination with
others6,14. Moreover, in most bacteria, as in any other organism,
the majority of genes are of unknown function, it is unclear what
role they play in a specific process and/or pathway, or how they
are connected within the organismal genomic network. Thus,
besides solving gene function, mapping-out which genes, path-
ways and processes are involved in dealing with and overcoming
antibiotic stress, and how they interact with each other, can
provide key insights into uncovering new drug targets, or for
instance rational combination strategies6.

While identifying off-target genes and pathways that increase
drug sensitivity may thus be useful, it is possible that changes in
associated processes could, in contrast, just as well reduce
the experienced antibiotic stress. Such changes would thereby

decrease antibiotic sensitivity and could possibly function as
precursors to the emergence of resistance. A possible example of
this is tolerance and/or persistence, where a small proportion of
cells in a population can be induced by external conditions
including nutrient starvation19, cell density20, antibiotic stress21

and stress from the immune system22 into a cell state that enables
them to tolerate high (transient) concentrations of antibiotics.
Cell states associated with tolerance include cell dormancy, slow
growth, transient expression of efflux pumps, and induction of
stress response pathways23–26. However, the mechanistic under-
pinnings of tolerance and decreased antibiotic sensitivity remain
largely undefined and possibly differ between bacterial species
and vary among antibiotics27. Moreover, specific mutations
can (dramatically) increase the fraction of the surviving
population28–30, indicating these tolerant phenotypes have a
genetic basis. Lastly, since clinical isolates often carry mutations
located outside well-characterized drug targets1–5,31,32, they could
thus be composed of variants with different antibiotic sensitiv-
ities. Consequently, such variants with decreased antibiotic sen-
sitivity could enable antibiotic escape, and/or enable multi-step
high-level resistance mutations to evolve as they are given an
extended opportunity to emerge25,33–36. Variants with decreased
antibiotic sensitivity may thereby play an important role in
antibiotic treatment failure5,37,38. However, the breadth of pos-
sible genetic alterations that can enable (increased) tolerance and/
or decrease antibiotic sensitivity are largely unknown, making it
unclear how often and probable it is that such variants arise.

In this study, we use Tn-Seq in S. pneumoniae exposed to 20
antibiotics, 17 additional environments, and two in vivo infection
conditions, to generate a genome-wide atlas of drug susceptibility
determinants and build a genome-wide interaction network that
connects cellular processes and genes of unknown function. We
explore several interactions as new leads for gene function, while
we show that specific interactions can be used to guide the
identification of targets for new antimicrobial strategies. We
highlight one such novel target in the membrane, by successfully
developing a combinatorial antibiotic-antibody strategy that sig-
nificantly reduces the bacterial load during an acute mouse lung
infection. Furthermore, detailed mapping of antibiotic sensitivity
data to pathways and genes with known function suggests a
multitude of genome-wide genomic changes exist that can make
the bacterium less susceptible and often tolerant to specific
antibiotics. We untangle some of the underlying genetic
mechanisms and show that decreased susceptibility and tolerance
can come from a variety of changes including those in (nucleo-
tide) metabolism, (p)ppGpp and ATP synthesis, transcription,
and translation, as well as different types of transport. By further
combining in vivo-infection- with antibiotic-Tn-Seq data we
predict and experimentally validate that many disruptions may
retain their decreased antibiotic sensitivity phenotype in vivo, and
thereby outcompete the wild type in the presence of antibiotics.
Moreover, by screening hundreds of clinical isolates we show that
changes in genes that can decrease antibiotic sensitivity readily
evolve in human patients and are often associated with antibiotic
resistance. Consequently, these data highlight the wide array of
possibilities that can lead to lowered antibiotic sensitivity and/or
tolerance and underscore the importance of understanding the
genetics of variants with altered drug susceptibility.

Results
A genome-wide view of antibiotic sensitivity. To obtain a
genome-wide view of the genetic determinants that can modulate
antibiotic stress in S. pneumoniae, Tn-Seq was employed in the
presence of 20 antibiotics (ABXs), representing 9 different ABX
groups and four classes including cell wall synthesis inhibitors
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(CWSIs), DNA synthesis inhibitors (DSIs), 30 S and 50 S protein
synthesis inhibitors (PSIs) and an RNA synthesis inhibitor (RSI)
(Fig. 1a). Six independent transposon libraries were generated and
grown for approximately 8 generations in the absence and pre-
sence of an antibiotic at a concentration that reduces growth by
approximately 30–50% (Supplementary Data 1). Tn-mutant fre-
quencies are determined through Illumina sequencing from the
beginning and end of the experiment with high reproducibility
between libraries (R2= 0.70–0.90; Supplementary Fig. 1) which
is consistent with previous Tn-Seq experiments6,15,16,18,39–42.
Combined with the population expansion during the experiment
each mutant’s fitness (WMT) is calculated to represent their
environment-specific relative growth rate, which means that a
mutant with for instance a fitness of 0.5 (WMT= 0.5) grows twice

as slow as the wild type (WT)6,18,39,43,44. Each gene’s antibiotic-
specific fitness is statistically compared to baseline fitness without
ABXs, and is represented as ΔW (WABX − WnoABX) and categor-
ized as: (1) Neutral, ΔW= 0, a mutant’s relative growth is similar
in the absence and presence of an ABX; (2) Negative, ΔW < 0, a
mutant’s fitness is significantly lower and thus grows relatively
slower in the presence of an ABX; (3) Positive, ΔW > 0, a mutant’s
fitness is significantly higher and thus grows relatively faster in the
presence of an ABX. All antibiotics trigger both positive and
negative fitness effects (Fig. 1b, Supplementary Data 2), which are
distributed across 22 different gene categories (Fig. 1c). Impor-
tantly, enrichment analysis shows there are multiple expected
patterns, for instance genes involved in DNA repair are enriched in
the presence of fluoroquinolones; cell-wall, peptidoglycan, and

Fig. 1 A genome-wide atlas of negative and positive fitness effects, highlights a multitude of processes that can modulate antibiotic susceptibility.
a Project setup and overview. Tn-Seq is performed with S. pneumoniae TIGR4, which is exposed to 20 antibiotics at a concentration that reduces growth by
30–50%. Genome-wide fitness is determined for each condition, suggesting a multitude of options exists to increase as well as decrease antibiotic
sensitivity. A co-fitness network is constructed by adding Tn-Seq data from 17 additional conditions, which through a SAFE analysis highlights functional
clusters, and connects known and unknown processes. The genome-wide atlas and network are used to develop an antibiotic-antibody combination
strategy, and to map out the wide-ranging options that can lead to decreased antibiotic sensitivity in vitro and in vivo and that are associated with a higher
rate of stop codons in clinical samples. b There are a large number of genetic options that can modulate antibiotic sensitivity; with significant increased
(ΔW <−0.15) and decreased sensitivity (ΔW > 0.15) split over all antibiotics almost equally likely. c Additionally, increased and decreased antibiotic
sensitivity are distributed across a wide variety of functional categories. d Enrichment analysis shows that some pathways/processes such as glycolysis are
relatively often involved in modulating responses to antibiotics, while other processes are more specific. e Validated growth experiments (n≥ 3
independent experiments) performed throughout the project highlight the Tn-Seq data is of high quality. ±SEM are shown for each data point. Source data
are provided as a Source Data file.
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cell-division genes are enriched in ß-lactams and glycopeptides;
membrane integrity genes in lipopeptides; and transcription and
translation in PSIs (Fig. 1d). Additionally, throughout the manu-
script, we validate a total of 49 predicted genotype × phenotype
interactions, which indicates the Tn-Seq data is of high quality and
in line with previously shown accuracy6,15,16,18,39–42 (Fig. 1e,
Supplementary Data 8).

Co-fitness interaction networks identify known and unknown
genetic relationships. Screens such as Tn-Seq are geared toward
highlighting the genetic regions and/or genes that are important
under a specific screening condition. With increasing conditions,
genes acquire profiles that reflect their involvement/importance
in those conditions, where genes with similar profiles indicate
having similar and/or shared tasks. Such profiles can thereby help
fill gaps in pathways, and/or identify genes and gene clusters with
similar roles. By building a correlation matrix based on each
gene’s ABX fitness-profile patterns emerge along a similarity
range; from genes with highly similar to contrasting profiles.
Moreover, to increase statistical power (i.e., more conditions
increases the ability to identify more and stronger associations)
the ABX dataset was supplemented with previously collected
Tn-Seq data from 17 additional non-antibiotic conditions18

(Supplementary Data 3). This results in a 1519 × 1519 gene
matrix where positive correlations between genes come from
shared phenotypes (i.e., similar profiles), while negative correla-
tions come from opposing phenotypic responses under the same
condition (i.e., contrasting profiles; Supplementary Data 4). By
repeatedly hiding random parts of the data the stability and
strength of each correlation is calculated and represented in a
stability score (Supplementary Data 5). The correlation matrix
and stability score are turned into a network, where each node is a
gene, and each edge is a correlation coefficient above a threshold
(>0.75), which combined with the stability score indicates the
strength of the relationship between two genes. (Fig. 2a; Sup-
plementary Data 6). Spatial Analysis of Functional Enrichment
(SAFE)45,46 is used to define local neighborhoods within the
network, i.e., areas enriched for a specific attribute (e.g., a path-
way or functional category), which identifies multiple clusters that
represent specific pathways and processes including purine
metabolism, cell-wall metabolism, cell division and DNA repair
(Fig. 2b; Supplementary Data 7). Moreover, the network contains
gene clusters of high connectivity identifying highly related genes
including those within the same operon such as the ami-operon,
an oligopeptide transporter, the dlt-operon which decorates wall
and lipoteichoic acids with d-alanine, and the pst-operon a
phosphate transporter (Fig. 2c, I–III). Besides identifying known
relationships, the network also uncovers interaction clusters
between genes with known and unknown interactions and
function. Several such clusters are highlighted in Fig. 2c
(IV–VIII), including genes involved in purine metabolism (fur-
ther explored below), threonine metabolism, and in secretion of
serine-rich repeat proteins (SRRPs), which are important for
biofilm formation and virulence47. Importantly, the identification
of biologically relevant relationships among (clusters of) genes
indicates the data is rich in known and new information.

Detailed pathway mapping identifies processes that simulta-
neously increase and decrease drug susceptibility in an
antibiotic-specific manner. Two hundred and twenty-four genes
with a known annotation are present in the data that have at least
one significant phenotype in response to an antibiotic, which can
be split over 21 functional groups according to a pathway or
process they belong to (Fig. 3a). Each group is characterized by
having multiple instances of decreased fitness, indicating genes

that upon disruption increase sensitivity to one or more anti-
biotics (negative phenotype). Additionally, each group, except for
cell division, also has multiple instances that increase fitness,
which is suggestive of genes that upon disruption decrease anti-
biotic sensitivity (Fig. 3a; positive phenotype). Moreover, each
antibiotic group triggers both negative and positive effects
(Fig. 3b). Where possible, the 21 functional groups are organized
according to a pathway or process they belong to and each gene is
combined with its antibiotic susceptibility profile. This results in
an antibiotic susceptibility atlas, which shows on a fine-grained
scale, how inhibiting a pathway or process can seemingly
simultaneously lead to increased and decreased drug suscept-
ibility in an antibiotic-specific manner (Fig. 3c and Supplemen-
tary Figs. 2 and 3). For instance, in the glycolysis group, knocking
out any of the three genes involved in forming the phospho-
transferase (PTS)-system (SP_0282-SP_0284) that imports glu-
cose to generate glucose-6-phosphate (G-6P), has a negative effect
on fitness in the presence of 30S and 50S PSIs as well as Synercid
(a synergistic combination of two PSIs), while it increases fitness
in the presence of all CWSIs (ß-lactams, glycopeptides, and
daptomycin) and fluoroquinolones. Also, knocking out SP_0668
(gki, glucokinase), an enzyme that converts α-D-Glucose into G-
6P, has a positive effect on fitness in all CWSIs and a negative
effect in 30S PSIs. In contrast, inhibiting SP_1498 (pgm, phos-
phoglucomutase), the major interconversion enzyme of G-6P and
G-1P, has a negative effect on fitness with all antibiotics (Fig. 3c).
Additional detailed examples are highlighted in Fig. 3c, for instance
for pyruvate metabolism, where inhibiting lactate, or acetaldehyde
production increases sensitivity to ß-lactams and glycopeptides and
decreases sensitivity to 30S PSIs, inhibiting formate production
decreases sensitivity to co-trimoxazole and 30S PSIs, and inhibiting
acetyl-phosphate production decreases sensitivity to ß-lactams,
glycopeptides, and co-trimoxazole. Within aspartate metabolism a
range of changes can be triggered from increased sensitivity to ß-
lactams, and glycopeptides, to decreased sensitivity to most other
antibiotics. Moreover, the four genes involved in the production of
threonine from L-aspartate trigger decreased sensitivity to fluor-
oquinolones and 30S and 50S PSIs. In the shikimate pathway
inhibiting the production of chorismate from phosphoenolpyr-
uvate (PEP) and erythrose-5-phosphate leads to increased sensi-
tivity to ß-lactams, co-trimoxazole, and Synercid. Cell division is
the only process that upon interference, only generates increased
sensitivity, specifically to CWSIs and co-trimoxazole. Interfering
with peptidoglycan synthesis also mostly leads to increased sensi-
tivity to CWSIs, as well as to 30 S PSIs, while changes to genes that
are involved in anchoring proteins to the cell wall (SP_1218 [srtA],
SP_1833) can decrease sensitivity to CWSIs. Lastly, interfering with
protein turnover, for instance through the protease complex ClpCP
(SP_2194, SP_0746) and the regulator CtsR (SP_2195), which
are generally assumed to be fundamental for responding to
stress48,49, leads to decreased CWSI sensitivity and increased sen-
sitivity to 30S and 50S PSIs (Fig. 3c and Supplementary Fig. 2).
Moreover, FtsH (SP_0013), important for clean-up of misfolded
proteins from the cell wall, increases sensitivity to 30S PSIs and
Synercid, indicating how important protein turnover is especially
for surviving 30S PSIs, which can trigger the production of faulty
proteins. Most importantly, these data show that, as expected,
hundreds of options exist where disruption of a pathway or process
leads to increased sensitivity to specific antibiotics. Remarkably,
there seem to be almost as many options that can lead to decreased
antibiotic sensitivity.

cozEb encodes a cell division and peptidoglycan synthesis
embedded membrane protein that can be critically targeted
in vivo through an antibody-antibiotic strategy. By identifying
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targets that (re)sensitize bacteria against existing antibiotics,
genome-wide antibiotic susceptibility data have the potential to
guide the development of new antimicrobial strategies. One such
strategy could be a combined therapeutic antibody-antibiotic
approach; the antibody would target a gene product that is
important for sensitivity to one or more antibiotics and ideally the
product would be easily accessible for the antibody at the bacterial
cell surface. To find suitable candidate targets, Tn-Seq data were
filtered for gene products that, based on a known function or
localization prediction, are likely to be present in the cell wall or
membrane, and that when disrupted, increase sensitivity to one or
more antibiotics. Moreover, it would likely be ideal if the gene is
also important for survival in vivo. A strong candidate is SP_1505,
which in the interaction network is most tightly linked to cell wall
metabolism and cell-division genes (Fig. 4a). After we previously
hypothesized that it may play a role in cell wall integrity14, it was
recently named cozEb, with a likely role in organizing peptidogly-
can synthesis during cell division50, which fits its interaction profile
(Fig. 4a). Importantly, the antibiotic Tn-Seq data suggest that
disruption creates increased sensitivity to vancomycin and rifam-
picin, while the product is critical in the presence of daptomycin,
which was confirmed through individual growth curves (Fig. 4b).
The protein has eight predicted membrane-spanning domains

(Fig. 4c), and in vivo Tn-Seq predicts it is important for survival in
both the nasopharynx and lungs (Fig. 4a, Supplementary Data 2).
The gene was cloned into an expression plasmid generating an
~30kD product (Fig. 4c), which was used to raise rabbit anti-CozEb
antibodies, which were confirmed to be specific for the cozEb gene
product (Fig. 4c). Potential antibody in vitro activity was deter-
mined through a bacterial survival assay in the absence and pre-
sence of antibodies and either vancomycin or daptomycin.
Incubating bacteria with antibodies or daptomycin has no sig-
nificant effect on bacterial survival, while vancomycin alone at
the concentration used slightly reduces the number of surviving
bacteria. Moreover, combining the antibody with either vanco-
mycin or daptomycin further reduces the number of surviving
bacteria in vitro compared to any agent individually (Fig. 4d). To
assess whether the antibody-antibiotic approach works in vivo,
mice were intranasally challenged with a bacterial inoculum
either containing WT or ΔcozEb. Two additional sets of mice
were challenged with WT and 8 h post infection they were either
treated with daptomycin and control IgG antibody or with
daptomycin and CozEb-specific antibody. Mice were sacrificed
24 h post infection, and bacteria in the lungs were enumerated.
As predicted by the in vivo Tn-Seq data the cozEb knockout has a
significantly lower fitness in the lungs highlighted by an up to
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2.5-log lower bacterial load compared to WT. Importantly, while
the WT survives equally well in the presence of the low dapto-
mycin concentration and the control IgG antibody, in the pre-
sence of daptomycin and the CozEb-targeting antibody, its
survival in the lungs is significantly reduced and resembles that
of the cozEb knockout (Fig. 4e). This shows that by combining
antibiotic and in vivo Tn-Seq with gene annotation information,
a gene product can be selected that is central and critical to cell-
wall synthesis and cell-division processes. Importantly, due to its
presence in the membrane, it is directly targetable with an
antibody, thereby sensitizing the bacterium to an antibiotic
concentration it is normally not sensitive to.

The ami-operon encodes an antibiotic importer, and inhibi-
tion triggers tolerance. The example above illustrates how
negative fitness indicates increased antibiotic sensitivity reflected

by reduced relative growth, which can guide the development of
(re)sensitizing approaches. In contrast, the occurrences of
increased fitness in the dataset indicate that a large number of
options exist that could lead to reduced antibiotic sensitivity
(Fig. 3). With increased fitness to 3 out of 4 antibiotic classes, the
ami-operon is among genes with the greatest number of positive
fitness effects. The operon forms a tight cluster in the interaction
network (Figs. 3 and 5a) and it is annotated as an oligopeptide
transporter with no clear function. Two separate knockouts
for SP_1888 (amiE) and SP_1890 (amiC) confirm that increased
fitness results in decreased drug sensitivity in the form
of increased relative growth in the presence of ciprofloxacin,
vancomycin and gentamicin, and increased sensitivity (i.e.,
decreased relative growth) to Synercid (Fig. 5b). There is limited
evidence that the ami-transporter may have (some) affinity for
at least two different peptides (P1 and P2)51–53. These have
been theorized to possibly function as signaling molecules and
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under certain circumstances may be generated by the bacterium
itself51–53. Both peptides were synthesized and while neither
peptide affects growth of the WT or knockout mutants in the
absence of antibiotics (Supplementary Fig. 4), the WT grows
slightly better in the presence of gentamicin and peptide P2, but
not P1 (Fig. 5b). This shows that some peptides may, at least
partially, inhibit or occupy the ami-transporter, and thereby
trigger decreased antibiotic sensitivity, in a similar manner as a
knockout does. Besides peptides, the ami-transporter may be
(non-selectively) transporting antibiotics into the cell, which
could explain its effect on antibiotic sensitivity. To explore this,
bacteria were exposed to ciprofloxacin or kanamycin and
the internalized antibiotic concentration was determined
through mass spectrometry for WT and both ami knockout
mutants. In both mutants the amount of internalized cipro-
floxacin was significantly lower (~1.7× in ΔamiE, and ~2.3× in
ΔamiC), while the kanamycin concentration was found to be
significantly lower in ΔamiC (~2×; Fig. 5c). This shows that a
functional ami-transporter increases the concentration of
fluoroquinolones and 30S PSIs, suggestively by transporting
them into the cell, and thereby, due to a higher internal con-
centration, enhancing the antibiotic’s inhibitory effects on
growth. There are multiple examples that transporters can
contribute to tolerance54,55, which we recently showed is also the

case for the ade transporter in Acinetobacter baumannii, which
contributes to fluoroquinolone tolerance7. However, those
examples are mostly based on efflux pumps that actively decrease
the antibiotic concentration in the cell through upregulation of
such pumps. In contrast, with respect to the ami-operon it would
be the reverse, i.e., inhibition instead of upregulation would lead
to tolerance. To explore this possible effect on tolerance, the WT
and ΔamiE were exposed to either 10xMIC of gentamicin or
vancomycin over a period of 24 h. Approximately 1% of the WT
population survives 4 h exposure to gentamicin, while none of
the population survives exposure past 8 h. The ΔamiE popula-
tion displays a slower decline in survival with 1% of the popu-
lation surviving the first 8 h (tolerant cells)25. At ~10 h the
decline ceases and the remaining population (~0.01%) survives
at least up to 24 h, which is representative of a persister
fraction25. In contrast, the WT and amiE mutant populations
decline at similar rates when exposed to vancomycin, showing
that inhibition of the ami-transporter can lead to tolerance and
persistence in an antibiotic-specific manner while MICs of
gentamycin and vancomycin for WT and ΔamiE are similar
(Supplementary Data 1). Importantly, these data show that
increased fitness indeed leads to decreased ABX sensitivity,
which can translate into at least two phenotypes: increased
relative growth and increased survival (i.e., tolerance).

Fig. 4 CozEb an integral membrane protein increases antibiotic sensitivity and can be targeted with an antibody. a cozEb/SP_1505 is tightly clustered
with cell division and cell wall metabolism genes, it is predicted to increase sensitivity to glycopeptides and the lipopeptide daptomycin, and has a
decreased fitness in the mouse lung and nasopharynx. b Reduced relative growth of ΔcozEb validates its increased sensitivity to daptomycin and
vancomycin. c CozEb has 8 transmembrane domains, which generates a ~30 Kd product (BSA is shown as a control). The cloned protein was used to raise
antibodies, which proofed to be specific for a product in the WT membrane, but does not bind anything in ΔcozEb, indicating the antibodies are specific for
the membrane protein CozEb. d Incubation of WT for 2 h with vancomycin (Vanco) or daptomycin (Dapto) and in the presence of CozEb antibody, slightly
but significantly decreases bacterial survival. Mean values ± SEM are shown from n≥3 independent experiments. e An in vivo lung infection with WT or
ΔcozEb confirms the mutant is less fit in vivo. Challenging the WT with daptomycin and IgG does not affect bacterial survival. In contrast, challenging with
daptomycin and CozEb-specific antibodies, significantly reduces the recovered CFUs 24 h post infection. Mean values ± SEM are shown from n≥ 10 mice/
experiment. Significance is measured through a one-way ANOVA with Dunnett correction for multiple testing: *p= 0.03, **p= 0.001, ***p < 0.001. Source
data are provided as a Source Data file.
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Purine metabolism, (p)ppGpp and ATP production are tightly
linked to altered ABX susceptibility and tolerance. Among the
21 functional groups, purine metabolism has some of the largest
number of positive fitness effects, mostly with β-lactams and
glycopeptides (Figs. 3a and 6a). Moreover, two regulators
(SP_1821/1979) associated with this pathway decrease sensitivity
to β-lactams and/or glycopeptides and two ‘neighboring’ genes
with unknown function have either the same (SP_0830), or the
opposite effect (SP_1446) on antibiotic sensitivity as their defined
neighbor, suggesting they may be involved in the same process as
their neighbor (Fig. 6a). Furthermore, the global interaction
network positively links an ABC transporter (SP_0845-0848,
Figs. 2c, 6a) with multiple genes in this pathway due to their
similar profiles. This operon is annotated as a putative deoxyr-
ibose transporter, and to verify whether an interaction exists with
purine metabolism, single and double knockouts were created
between SP_0846 (the transporter’s ATP binding protein) and
SP_0829/deoB. Their profiles suggest they do not affect growth in
the absence of ABXs and have increased sensitivity to Synercid,
which was confirmed with individual growth curves (Fig. 6b).

However, when both knockouts are in the same background, their
increased sensitivity to Synercid is masked. Thus, as indicated by
the network, these results show that the ABC transporter indeed
has a genetic interaction with purine metabolism/salvage, but
plays an unknown role. Importantly, this confirms that the global
network includes valuable interactions that can be explored to
uncover functional relationships.

Furthermore, within purine metabolism the alarmone (p)
ppGpp is synthesized from GTP and/or GDP. Like other bacterial
species, S. pneumoniae likely responds to (some) ABXs via
induction of the stringent response pathway56, in which relA
(SP_1645) is the key player with both synthetase and hydrolase
activity57. Additionally, SP_1097 is annotated as a GTP dipho-
sphokinase and may be involved in the synthesis of pppGpp from
GTP (Fig. 6a). Our data suggests, and we confirmed for
the β-lactam cefepime (Fig. 6c), that when synthesis of the
alarmone is inhibited by deletion of relA, similar to many other
interactions in purine metabolism, this leads to reduced β-lactam
and glycopeptide sensitivity manifested by increased relative
growth (Fig. 6c). Moreover, while SP_1097, as predicted, does not

Fig. 5 Modulation of the ami-transporter decreases sensitivity to many antibiotics. a The ami-operon forms a tight cluster, and upon knockout is
predicted to decrease sensitivity to most antibiotics, and increase sensitivity to Synercid. b Growth curves of individual knockout mutants of amiE and amiC
validate changes in antibiotic sensitivity; i.e., they show that positive fitness translates into decreased ABX sensitivity and increased relative growth, while
negative fitness translates into increased ABX sensitivity and decreased relative growth. Additionally, growth curves suggest the transporter phenotypically
responds to peptide P2. Mean values ± SEM are shown from n≥ 3 independent experiments. c Intracellular antibiotic accumulation analysis shows that the
WT strain with an intact transporter reaches a higher intracellular antibiotic concentration, suggesting the transporter is involved in importing antibiotics,
explaining why a knockout or occupation with a peptide such as P2, can lead to decreased antibiotic sensitivity. Mean values ± SEM are shown from n≥3
independent experiments. d Besides that modulation of the transporter leads to positive fitness, which translates into decreased ABX sensitivity and
increased relative growth in the presence of gentamicin or vancomycin, it also leads to increased survival (i.e., tolerance) to gentamicin, but not
vancomycin. Mean values ± SEM are shown from n= 4 independent experiments. Significance is measured through a one-way ANOVA with Dunnett
correction for multiple testing: *p= 0.05, **p= 0.01, ***p= 0.001. Source data are provided as a Source Data file.
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change ABX sensitivity (Supplementary Data 2, Fig. 6), a double
knockout of relA-SP_1097 seems to further decrease sensitivity to
cefepime by further increasing relative growth (Figs. 6c and 7a).
Additionally, besides a change in growth, the single relA and
double knockout (ΔrelA-SP_1097), also increases tolerance to
cefepime by ~1000-fold at 24 h (Fig. 7b), without changing the
MIC (Supplementary Data 1). To understand how relA and
SP_1097 affect purine metabolism, we used LC/MS to measure
(p)ppGpp, ADP, ATP, GDP, and GTP. Additionally, we included
SP_0831 a purine nucleoside phosphorylase involved in nucleo-
tide salvage, which has the same ABX profile as ΔrelA (Fig. 6a, d),
but should not directly affect (p)ppGpp synthesis. While (p)
ppGpp is below the limit of detection during normal growth in

any of the strains, as expected ΔrelA and the double mutant
ΔrelA-SP_1097 are unable to synthesize the alarmone when
exposed to mupirocin, a strong activator of the stringent response
(Fig. 6e, Supplementary Data 9). In contrast, WT, ΔSP_0831, and
ΔSP_1097 synthesize (p)ppGpp upon mupirocin exposure to a
similar extent (Fig. 6e). Concerning the di- and trinucleotides in
the pathway, upon mupirocin exposure GTP and GDP are
significantly reduced in WT, ΔSP_0831, and ΔSP_1097, likely
because they are used for (p)ppGpp synthesis (Fig. 6f, Supple-
mentary Data 9). In contrast, while ATP and ADP again remain
constant for the ΔrelA mutants, ATP and ADP synthesis are
significantly increased upon mupirocin exposure, especially for
WT and ΔSP_1097. This suggests that during activation of the

Fig. 6 Modulation of purine metabolism affects (p)ppGpp and ATP synthesis and is linked to changes in ABX sensitivity. a Key steps in purine
metabolism with the same color coding as in Fig. 3. SP_1097 is listed as well, for which we found no change in ABX sensitivity, which is denoted with ‘np’
for no phenotype. The putative deoxyribose transporter (SP_0845-0848), a high-connectivity cluster in Fig. 2, is also shown. b Single knockouts for deoB/
SP_0829 and SP_0846, as well as a double knockout show that mutants and WT grow equally well in the absence of antibiotics. In the presence of
Synercid, as predicted and indicated by their ABX sensitivity bar, the single knockouts display a higher sensitivity to the drug then the WT. The double
mutant suppresses the increased Synercid sensitivity phenotype of the single mutants, indicating that the positive interaction that is found in the co-fitness
network leads to a positive genetic interaction between these genes. c Single and double knockouts of SP_1097 and SP_1645/relA grow just as well as WT
in the absence of antibiotics. As predicted SP_1097 is equally sensitive to cefepime as the WT, while ΔrelA has decreased sensitivity as indicated by its
ABX sensitivity bar in a. Additionally, the double knockout has decreased sensitivity to cefepime, indicating the dominant phenotype of ΔrelA. d The
phenotype of ΔSP_0831 was validated in growth as well, showing no change in growth in the absence of ABX, and decreased sensitivity (i.e., increased
relative growth) in the presence of cefepime (FEP). e The alarmone (p)ppGpp is below the limit of detection (b.l.d.) in the absence of stress, upon induction
with mupirocin it is synthesized in equal amounts in WT, ΔSP_0831 and ΔSP_1097, while it cannot be synthesized when relA is absent. f Synthesis of di-
and trinucleotides is significantly affected in the different mutants upon mupirocin exposure. Mean values ± SEM are shown from n≥3 independent
experiments. Significance is measured through a paired t-test with an FDR adjusted p value for multiple comparisons: *p < 0.05, **p < 0.01, ***p < 0.001, ns
not significant. Source data are provided as a Source Data file.
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stringent response, synthesis from IMP is directed toward AMP,
and not necessarily GMP, at least not enough to replenish GTP
and GDP. Additionally, upon mupirocin exposure, ATP only
minimally increases for ΔSP_0831, while it increases over twofold
for WT and ΔSP_1097 (Fig. 6f). It has been shown for bacteria
including Escherichia coli and Staphylococcus aureus that a
decreased ATP concentration can decrease sensitivity to ABXs
such as ciprofloxacin58. Additionally, in S. aureus (p)ppGpp
overexpression has been associated with decreased sensitivity to
linezolid59. Our data suggest that (p)ppGpp and ATP synthesis
may be intrinsically linked, i.e., at least in S. pneumoniae the
inability to produce the alarmone also results in lowered ATP
synthesis, which is associated with a lowered ABX sensitivity to β-
lactams and glycopeptides. However, ΔSP_0831 shows that even
if (p)ppGpp can be synthesized, modulation of purine metabo-
lism, for instance through the salvage pathway, can result in
decreased ATP synthesis, and can lead to lowered ABX sensitivity
(i.e., increased relative growth). Importantly, in many bacterial
species, alarmone production is generally assumed to be triggered

in response to different types of stress and has been shown to
affect a large variety of processes including nucleotide synthesis,
lipid metabolism, and translation. (p)ppGpp is thereby a
ubiquitous stress-signaling molecule that enables bacteria to
generate a response that is geared toward overcoming the
encountered stress. However, contradictory results between
species indicate a possible non-uniformity across bacteria, leaving
much to be learned about how the alarmone and the processes it
can control fit into the entire organismal (response) network56.
Our data suggest that the inability (i.e., due to mutations) to
generate the alarmone in S. pneumoniae in response to β-lactams
and glycopeptides is linked to reduced ATP, which under specific
circumstances may be an optimal response, as it results in
decreased ABX sensitivity translating into increased relative
growth and tolerance, and thereby a higher probability to survive
the insult (Figs. 6c and 7a, b).

There are a multitude of predictable pathways that lead to tol-
erance in vivo in an antibiotic dependent manner. For instance,

Fig. 7 Decreased antibiotic sensitivity and tolerance can be achieved by modulation of a wide variety of processes. a Relative growth rates (i.e., fitness)
of 16 knockout mutants involved in 7 processes measured in the presence of 7 antibiotics, validate that decreased ABX sensitivity (i.e., increased relative
growth) can be achieved by modulating a wide variety of processes. Mean values ± SEM are shown from n≥3 independent experiments. b Significantly
increased survival during exposure to 5–10xMIC of an ABX over a 24 h period is observed for 9 out of 12 knockouts. Significance is measured with an
ANOVA with Dunnett correction for multiple comparisons: **p < 0.01, ***p < 0.001. Mean values ± SEM are shown from n= 4 independent experiments.
c Tn-Seq data with a positive fitness in the presence of at least one antibiotic (y-axis) is plotted against in vivo Tn-Seq data (x-axis). Note that only in vivo
data is shown that is predicted to have no more than a small fitness defect, no fitness defect or an increased predicted in vivo fitness, either during
nasopharynx colonization or lung infection. Circled and indicated with arrows are SP_0829 in red and SP_1396 in black. d In vitro growth curves validate
decreased sensitivity (i.e., increased relative growth) to cefepime (SP_0829) and meropenem (SP_1396). Mean values ± SEM are shown from n= 3
independent experiments. eMice were challenged with WT and MT in a 1:1 ratio of which half received ABX 16 h post infection (p.i.), and all were sacrificed
24 h p.i. Displayed are the MT’s competitive index (CI) in the nasopharynx and lung, and in the presence and absence of cefepime (SP_0829) or
meropenem (SP_1396). In all instances, the addition of ABX significantly increases the CI of the mutant. Significance is measured with a Mann–Whitney
test **p < 0.01, ***p < 0.001. Mean values ± SEM are shown from n≥ 7 mice/experiment. Source data are provided as a Source Data file.
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in the glycolysisTo further confirm that antibiotic sensitivity can be
decreased by inhibiting a variety of processes, knockouts (KOs)
were generated for fourteen mutants from 8 different processes.
Moreover, an additional goal was to determine what increased
fitness (i.e., decreased ABX sensitivity) would look like phenoty-
pically, and thus whether it would translate into increased relative
growth and/or tolerance. Of the 14 mutants with a Tn-Seq pre-
dicted increased fitness, 13 display an increased ability to grow
in the presence of an ABX compared to the WT. Moreover,
eight mutants, which inhibit several different processes including
different metabolic pathways, transport, and transcription
and translation, displayed tolerance, while retaining a similar
MIC, and thereby have an increased ability to survive high-level
exposure to an ABX (5–10xMIC) for at least 24 h (Fig. 7a, b,
Supplementary Data 1,8). Note that we validated 49 single KO
genotype × phenotype associations in this study, with an equal
distribution across the entire spectrum of ABX sensitivity (Fig. 1e,
Supplementary Data 8). This highlights that our approach
uncovered a detailed genome-wide ABX sensitivity atlas composed
of a multitude of genes, pathways and processes that when
modulated can increase and/or decrease ABX sensitivity. The
validation experiments highlight that the resulting fitness accu-
rately predicts the relative growth rate of a mutant, which we have
previously shown for hundreds of other negative
fitness phenotypes6,14–16,18,39–42,44,60–62. Moreover, it turns out
that in the majority of cases, increased fitness not only results in
increased relative growth in the presence of an antibiotic, but also
tolerance. Thereby, the part of the atlas that depicts decreased ABX
sensitivity (i.e., increased fitness) includes a genome-wide ‘toler-
ome’, composed of a wide variety of pathways and processes that
when modulated trigger tolerance in vitro in an ABX dependent
manner.

Obviously, the selection regime in vivo is far more complex
and stricter than in a test tube, which raises the question whether
many of the options that decrease ABX sensitivity in vitro,
including those that increase tolerance, would be available in vivo
as well. To explore this, all the Tn-Seq data with a positive fitness
in the presence of at least one antibiotic was combined with
in vivo Tn-Seq data and filtered for those genes with no or only a
small fitness defect predicted in vivo during nasopharynx
colonization or lung infection (Fig. 7c, Supplementary Data 2).
Two genes were selected that we had confirmed for decreased
ABX sensitivity in vitro: (1) SP_0829/deoB synthesizes Ribose-1P
and is involved in purine metabolism (Fig. 6a). ΔdeoB has no
effect on in vitro growth in the absence of ABX (Fig. 7a, d), as
predicted it grows better in the presence of cefepime (Fig. 7a, d),
but it does not affect survival/tolerance (Fig. 7b); (2) SP_1396/
pstA is the ATP binding protein of a phosphate ABC transporter
(Supplementary Fig. 3). ΔpstA has no effect on in vitro growth
(Fig. 7a, d), it has a higher relative growth rate in the presence of
meropenem (Fig. 7a, d), and it also increases survival/tolerance
(Fig. 7b). Both mutants were mixed with WT in a 1:1 ratio and
used in an in vivo mouse infection competition model as we have
done previously18. Of the infected mice, half were administered
antibiotics at 16 h post infection, and were sacrificed 6 h later to
determine the strain’s competitive index (CI) (Fig. 7e). Impor-
tantly, while both mutants may have a slight disadvantage
compared to the WT when colonizing the lung or nasopharynx,
their CI increases significantly in the presence of ABXs, leading
to increased survival compared to the WT (Fig. 7e, Supplemen-
tary Data 10). Combining antibiotic- with in vivo Tn-Seq
highlights the ability to predict the existence of a wide array of
possible alterations of specific genes, pathways and processes that
can have a beneficial effect in vivo in the presence of antibiotics.
Such changes could thereby contribute to escape from antibiotic

pressure and even create a path toward the emergence of
antibiotic resistance.

There is likely significant overlap in the selective pressures a
bacterial pathogen would experience in a mouse infection model
compared to the human host. This raises the possibility that those
gene disruptions that are predicted by Tn-Seq to lead to decreased
antibiotic sensitivity and that simultaneously have no more than a
minimal defect in vivo, could also have an advantage in the
human host in the presence of ABXs and thereby contribute to
ABX escape and/or the emergence of resistance. A premature stop
codon most closely reflects the effect a transposon insertion has
on a gene; i.e., it disables a gene. We thereby hypothesized that
stop codons in certain gene sets predicted by Tn-Seq could
be enriched for in antibiotic-resistant clinical isolates. To test this
hypothesis 4 gene sets were compiled consisting of those that
upon disruption: (1) decrease antibiotic sensitivity in at least 1
antibiotic and have no strong defect in vivo; (2) decrease
antibiotic sensitivity in at least 1 antibiotic and have a defect
in vivo; (3) have little to no effect on antibiotic sensitivity and
in vivo; (4) have no effect or increase antibiotic sensitivity and
have a defect in vivo (Fig. 8a, b; Supplementary Fig. 5).
Thousands of strains were selected from the PATRIC63,64

database that could be split into a group of co-trimoxazole
(SXT) resistant and a group of β-lactam resistant strains, and each
group was matched with an equal number of sensitive strains
from the database. In all strains in the SXT and β-lactam groups,
irrespective of resistant or sensitive status, the number of stop
codons in gene sets 1 and 3 are highest, which reflects the Tn-Seq
predicted in vivo effects, i.e., while gene sets 1 and 3 contain
mostly genes with potentially neutral effects, gene sets 2 and 4
contain many genes that are suggested to have a defect in vivo
when disabled (e.g. with a stop codon) (Fig. 8c). Moreover, SXT
resistant isolates in gene set 1 more often contain a stop codon
compared to sensitive strains, and in β-lactam resistant isolates
this is true for gene sets 1–3 (Fig. 8d). While these are not ideal
comparisons, for instance the entire ABX profile is not clear for
many strains, different changes than premature stops could have
ABX/in vivo modulating effects, strains could have experienced
different ABX and/or in vivo selective pressures, and genetic
changes can be strain-background dependent, it shows that
genetic changes that can affect ABX and/or in vivo sensitivity,
which are predictable with Tn-Seq, readily occur in clinical
samples. This in turn underscores that ongoing infections may
consist of variants that enable different paths to adjusting to, or
overcoming a challenging host/ABX environment.

Discussion
The emergence and increase in antibiotic resistance among most
bacterial pathogens is a continuously developing problem with
several important drivers, which include: (1) a lagging develop-
ment of new drugs and treatment strategies; (2) a lack of (rapid)
diagnostics and prognostics; and (3) an incomplete under-
standing of how antibiotic resistance develops. Moreover, these
drivers are inherently connected making it a complex problem to
solve. First, the ability of bacteria to evolve resistance elicits an
arms-race that requires the development of new drugs and
treatment strategies to keep the balance of infection-control tip-
ped in our favor. Thus, while developing new drugs would keep
the arms-race in place, the ability to slow or prevent the emer-
gence of resistance could resolve the status quo. Furthermore,
even though it is critical to understand how and under which
circumstances resistance evolves, the applicability of this knowl-
edge depends on the availability of diagnostics that could inform
on the emergence of resistance (precursors) and thereby guide
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and enable timely, tailored, and targeted treatments. To progress
toward a comprehensive understanding of how an infection is
developing in the absence or presence of treatment, and how to
decide what to do next, we believe that a detailed genetic
understanding of how a bacterium deals with and overcomes
stress, as well as its genetic potential to achieve this, are key
aspects. In this study, we contribute to reaching such an under-
standing by building and exploring a detailed atlas of ABX sen-
sitivities, which highlights how modulation of specific genes,
pathways and processes does not only result (as expected) in
increased ABX sensitivity, but surprisingly often in decreased
ABX sensitivity. We show that such an atlas can be used to
identify leads for gene function, to uncover the genome’s
underlying architecture and genetic relationships among genes,
for the identification of new drug targets, and the development of
new proof-of-principle antimicrobial (ABX sensitizing) strategies.
Most importantly, these data identify genome-wide genetic
changes that show how modulation of genes, pathways, and
processes can lead to reduced antibiotic sensitivity (i.e., increased
relative growth and tolerance), not only in vitro, but also in vivo.
Moreover, we show that mutations that have the potential to
trigger the same phenotypes readily occur in patients.

While the primary processes targeted by ABXs are mostly
known, this work contributes to the increasing notion that
downstream processes, not directly related to the target and
which include metabolism, can significantly contribute to anti-
biotic efficacy14,15,18,65–68. In E. coli it has been shown that
inhibition of specific steps in purine metabolism can lead to
decreased sensitivity to ampicillin and ciprofloxacin, and
increased sensitivity to gentamycin69. Our data explores a wider
set of alterations in purine metabolism in S. pneumoniae, which
also leads to a wider distribution of changes. However, the
overlap with E. coli includes decreased sensitivity to β-lactams (an
ABX class that includes ampicillin) and we show that inhibition
of some reactions in purine metabolism can also lead to decreased
sensitivity to fluoroquinolones (an ABX class that includes
ciprofloxacin). Additionally, it has been shown for E. coli that
antibiotic sensitivity to ampicillin and ciprofloxacin can be
increased, at least over 4 h, by supplementing with adenine, but
not guanine, which is possibly linked to a reduced ATP demand
and synthesis69. Our results show that limiting the ability to
synthesize adenine, but also guanine, leads to significantly low-
ered ABX sensitivity to β-lactams and glycopeptides. Moreover,
we show that limiting the ability to synthesize adenine, as well as

Fig. 8 Stop codons are enriched in clinical samples in Tn-Seq predicted tolerome genes. a Based on in vivo and ABX Tn-Seq data, four gene sets
consisting of 34 genes each were compiled with specific fitness profiles in the presence of antibiotics and in vivo. Shown are the in vivo effects for
nasopharynx, while lung data are depicted in Supplementary Fig. 5. ΔW represents the fitness difference of a gene in a specific condition (e.g., an antibiotic,
in vivo) minus its fitness in vitro in rich medium. Dashed lines indicate significance cut-offs, grayed-out dots indicate genes with no significant change in
fitness in the presence of antibiotics, colors represent antibiotics and are the same as in Fig. 1. b Detailed distributions for each gene set highlight whether
effects in the presence of antibiotics, in the nasopharynx and lungs increase (+), do not affect (0) or decrease (−) relative fitness. Gene set rationales are
described in the text. c The total number of stop codons in each gene set for 2296 co-trimoxazole and 1166 β-lactam resistant and sensitive strains. d The
number of sensitive and resistant strains with at least one stop codon in a gene in each gene set. Significance is measured through a Fisher’s exact test:
**p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source Data file.
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(p)ppGpp, leads to lowered ATP synthesis. The association
between decreased ATP synthesis/availability and decreased
sensitivity and/or tolerance to antibiotics including β-lactams,
glycopeptides and fluoroquinolones has now been shown for a
variety of Gram-positive and -negative organisms35,58,70,71. While
this suggests that low ATP demand/synthesis/availability may be
at the root of a general mechanism that leads to decreased sen-
sitivity to some antibiotics, our genome-wide atlas shows that
decreased ABX sensitivity and tolerance to β-lactams, and gly-
copeptides can be triggered by alterations to pathways and pro-
cesses other than those directly related to ATP synthesis,
which include parts of glycolysis, pyruvate, ascorbate, glucose and
purine metabolism, protein turnover and c-di-AMP synthesis
(Supplementary Figs. 2 and 3). While, it is possible that many of
these alterations do affect ATP demand, availability and/or
synthesis, it is likely that they trigger a much more complex and
varied set of changes. Importantly, the full extent of signals
and (genetic) alterations that can lead to decreased ABX
sensitivity, including tolerance, remain mechanistically poorly
understood25,34. This also means that it remains unclear whether
there are common denominators or universal rules that are
applicable across strains and species7,25,34,35,58,70,71. Different
(computational) approaches are being explored to build such a
comprehensive understanding6,15,17,69,72,73, however, unequi-
vocally more genome-wide data from more species remain nee-
ded. Thereby, the genome-wide insights we present here are
helping build a rationale to measure and model this complexity.
One goal of such models would be to obtain a detailed under-
standing and ability to predict how alterations to specific pro-
cesses affect responses to ABXs and thereby drive changes in
sensitivity15,17,25,34,69. Lastly, these detailed data on reduced
antibiotic sensitivities also suggest that more potential routes to
ABX escape, and eventually resistance, may exist than assumed.
We believe these data are thereby both an argument and potential
starting point for a platform to predict clinically relevant muta-
tions and determinants of antibiotic resistance and/or tolerance.
Consequently, they underscore the importance of understanding
the genetics of variants with altered drug susceptibility, as their
genetics makes them diagnostically identifiable and trackable,
while their often-associated collateral sensitivities to other ABXs
or drugs could make them targetable.

Methods
The research presented within complies with all relevant ethical regulations and
protocols as approved by the Boston College environmental health and
safety board.

Bacterial culturing, growth curves, and tolerance experiments. Experiments
were performed with S. pneumoniae strain TIGR4 (NCBI Reference Sequence:
NC_003028.3). TIGR4 is a serotype 4 strain that was originally isolated from a
patient from Norway with Invasive Pneumococcal Disease (IPD)74,75. All ‘SP_’
gene numbers in the tables and figures are according to the TIGR4 genome. Single
gene knockouts were constructed by replacing the coding sequence with a chlor-
amphenicol and/or spectinomycin resistance cassette as described
previously18,39,40. S. pneumoniae was grown on sheep’s blood agar plates or sta-
tically in THY, C+ Y or semi-defined minimal media at pH 7.3, with 5 µL/mL
Oxyrase (Oxyrase, Inc), at 37 °C in a 5% CO2 atmosphere15. Where appropriate,
cultures and blood plates contained 4 µg/mL chloramphenicol (Cm) and/or
200 µg/mL spectinomycin (Spec). Single strain growth assays were performed
three times using 96-well plates by taking OD600 measurements on a Tecan Infinite
200 PRO plate reader or BioSpa 8 (BioTek). Growth curves are fitted to an
exponential growth equation to calculate their doubling time. WT doubling time is
divided by a mutant’s (MT) doubling time to represent each mutant’s fitness (i.e.,
relative growth rate; WTdoubling time/MTdoubling time=Wmutant), making it directly
comparable to Tn-Seq fitness14,15,18,39–41,44,60,62,76,77. Tolerance experiments were
performed by exposing exponentially growing bacteria to 5–10xMIC of an anti-
biotic. Samples were taken at different time points over a 24 h period, washed with
PBS, and plated on blood agar for enumeration. The number of surviving bacteria
at different time points are divided by the starting population to determine the

surviving proportion at each time point. The proportion of surviving MT bacteria
are divided by the proportion of surviving WT bacteria to determine the fold
survival (MT/WT) at each time point as depicted in Fig. 7b, Supplementary Data 8.

Tn-Seq experiments, fitness (W) and enrichment analyses. Six independent
transposon libraries, each containing ~10,000 insertion mutants, were constructed
with transposon Magellan6 in WT-T4 as described previously14,18,39,77. Selection
experiments were conducted in rich medium with glucose as a carbon source in the
presence or absence of 20 different antibiotics at a concentration that slows growth
by ~30–50% (Supplementary Data 1). Libraries are grown in ~10 mL medium
(wo/w ABX), from a starting OD600 of ~0.003 (~40,000 CFU/mL) up to an OD600

of ~0.3–0.6 (~1.107 CFU/mL), representing ~7–8 generations. Sample preparation,
Illumina sequencing and fitness calculations were done as described14,18,39,44,60,77.
Sequencing analyses and fitness calculations are performed with analysis platform
Aerobio v2.378. In short, fitness of a single mutant (Wi) is calculated by comparing
the fold expansion of the mutant to the fold expansion of the population and is
determined by the following exponential growth equation we previously
developed18,39,60:

Wi ¼
ln Ni t2

� �
´ d=Ni t1

� �� �

ln 1� Ni t2
� �� �

´ d= 1� Ni t1
� �� �� � ð1Þ

in which Ni(t1) and Ni(t2) are the mutant frequency at the beginning and end of the
experiment respectively and d is the population expansion. All of the insertions in a
specified region or gene are then used to calculate the average fitness and standard
deviation of the gene knockout in question. The advantage of using this approach is
that Wi represents the actual growth rate per generation, which makes fitness
independent of time and enables comparisons between conditions. To determine
whether fitness effects are significantly different between conditions three
requirements have to be fulfilled: (1) Wi is calculated from at least three data
points, (2) the difference in fitness between the presence and absence of antibiotic
has to be larger than 15% (thusWi −Wj= <−0.15 or >0.15), and (3) the difference
in fitness has to be significantly different in a one sample t-test with Bonferroni
correction for multiple testing18,39,60. Importantly, we have previously validated
that a mutant’s Tn-Seq fitness is indeed directly related to its relative growth rate,
which means that a mutant with for instance a Tn-Seq fitness of 0.5 (Wi= 0.5)
grows twice as slow as the WT. In this study, we show that fitness is also directly
related to a mutant’s relative growth rate, where negative fitness indicates increased
ABX sensitivity and decreased relative growth, while positive fitness indicates
decreased ABX sensitivity and increased relative growth. Moreover, while Tn-Seq
selection is performed under ABX pressure during growth for 7–8 generations we
find here that positive fitness in many cases also leads to increased survival, i.e.,
tolerance.

In multiple figures ΔW (WABX − WnoABX) is displayed, which means that each
gene’s antibiotic-specific fitness is statistically compared to baseline fitness without
ABXs. ΔW thereby indicates a gene’s antibiotic-specific fitness effect which can be
categorized as: (1) Neutral, ΔW= 0, a mutant’s relative growth is similar in the
absence and presence of an ABX; (2) Negative, ΔW < 0, a mutant’s fitness is
significantly lower and thus grows relatively slower in the presence of an ABX; (3)
Positive, ΔW > 0, a mutant’s fitness is significantly higher and thus grows relatively
faster in the presence of an ABX. For instance, if a gene knockout’s ΔW= 0.25, it
means that its relative growth rate is ~25% higher in the presence of an ABX than
in the absence of the ABX.

To determine whether a particular process or pathway is specifically involved in
responding to an antibiotic group, a hypergeometric test was performed to test for
enrichment. The distribution of significant genes within each process was
compared to the distribution of the pathways in the overall genome. A p value and
Benjamini–Hochberg adjusted p value were calculated for each process and
antibiotic group, where an adjusted p value below 5% is considered to identify
statistical enrichment.

Determination of minimum inhibitory concentration (MIC). MICs were deter-
mined as previously described in ref. 17. In short, ~1 × 105 CFU of mid-exponential
bacteria are cultured in 200 μL in 96-well plates in fresh medium containing a
single antibiotic at the following concentration gradients and increments: Cipro-
floxacin gradient 0.4–1.8 μg/mL with 0.1 μg/mL increments; Cefepime 0.0175-
0.03 μg/mL with 0.0025 μg/mL increments; Gentamicin 17–39.5 μg/mL with
2.5 μg/mL increments; Meropenem 0.006-0.02 μg/mL with 0.002 μg/mL incre-
ments; co-trimoxazole 4.5–10 μg/mL with 0.5 μg/mL increments; vancomycin
0.12–0.32 μg/mL with 0.04 μg/mL increments. MICs were determined in triplicate
and monitored on a Tecan Infinite 200 PRO plate reader or BioSpa 8 (BioTek) at
37 °C for 12 h. MIC is determined as the lowest concentration that abolishes
bacterial growth (Supplementary Data 1).

Co-fitness network construction and SAFE analysis. A gene x condition matrix
was constructed to identify correlating fitness profiles and built a co-fitness net-
work. The matrix is based on 20 antibiotic conditions from experiments performed
here, supplemented with 17 conditions from van Opijnen and Camilli18 (Supple-
mentary Data 3). The additional conditions consist of sucrose, fructose, cellobiose,
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raffinose, sialic acid, galactose, mannose, maltose, GlcNac, bipyridyl, transforma-
tion, hydrogen-peroxide, methyl-methane sulfonate, pH6, temperature, Nor-
floxacin. Genes with missing data were removed resulting in a 1519 gene × 37
condition matrix (Supplementary Data 3). Genes and conditions were correlated
using a Pearson’s correlation coefficient and a Spearman’s correlation coefficient.
Resulting in two 1519 × 1519, gene vs gene matrices. A significance cut-off was
applied and correlations ≥0.75 were retained and used as edges to build a co-fitness
network consisting of 1519 genes and 2399 edges. An edge-weighted spring
embedded layout was applied with Cytoscape79, with the absolute correlation value
as the edge weight. This results in a network with several major clusters and
multiple genes unconnected to the main network. A stability test was performed to
determine the robustness and quality of each edge in the network by building a
correlation matrix from partial data. Thirty conditions were selected 100 times to
build a correlation matrix and using the same cut-off criteria a co-fitness matrix
was compiled. Every edge with a correlation value above the threshold was assigned
a 1 and every edge below the cut-off 0. This resulted in 100 binary matrices which
were then summated, resulting in every gene vs gene interaction being assigned a
stability score with a value N out of 100. A SAFE (Spatial Analysis of Functional
Enrichment) analysis45,46 on the co-fitness network was performed with Cytoscape.
A SAFE analysis is geared toward defining local neighborhoods for each node
within a network and calculates an enrichment score for every functional attribute.
It then highlights the areas that are the most enriched for that attribute. Attributes
were assigned by merging KEGG80 pathway annotation and available functional
category annotations, which covers 94% of the genes within the network. The
distance threshold was set to the 1st percentile of the map-weighted distance, the
Jaccard similarity index was set to 0.5, and nodes in different landscapes were
retained.

CozEb (SP_1505) cloning and protein expression. Cloning and expression of
SP_1505 was undertaken commercially (Genscript). Codon-optimized SP_1505
was cloned into pET28a with a C-terminal His-tag. E. coli BL21 (DE3) was
transformed with recombinant plasmid. A single colony was inoculated into LB
medium containing kanamycin; cultures were incubated at 37 °C at 200 rpm and
IPTG was introduced for induction. SDS‐PAGE and western blot were used to
monitor the expression. Protein was purified from 1 L batch culture in Terrific
Broth. Cells were harvested by centrifugation, cell pellets were lysed by sonication,
and supernatant after centrifugation was kept for future purifications. SP_1505
protein was obtained by three‐step purification using Ni column, Superdex 200
column, and Q Sepharose. Fractions were pooled and dialyzed followed by 0.22 μm
filter sterilization. Protein was initially analyzed by SDS‐PAGE and Western blot by
using standard protocols for molecular weight and purity measurements. The
concentration was determined by BCA protein assay with BSA as a standard. Final
protein product was stored in 50 mM Tris-HCl, 150 mM NaCl, 10% Glycerol, 0.2%
DDM, pH 8.0 and stored at −80 °C. Lab confirmation of the expression construct
was undertaken using a 1:3000 dilution of mouse-anti-His-antibody, sourced from
LIFE Technologies (catalog #37-2900) followed by Goat Anti-Mouse IgG (H+ L)-
HRP Conjugate (Biorad, catalog# 1706516), used at 1:5000 dilution.

CozEb (SP_1505) antibody generation, purification and quantification. A
single rabbit was vaccinated by a commercial vendor (Rockland) with recombinant
SP_1505 via the following schedule. Rabbit was immunized via intradermal route
with 0.1 mgs SP_1505 with Complete Freund’s Adjuvant (CFA) followed by an
intradermal 0.1 mg booster injection with Incomplete Freund’s Adjuvant IFA as an
adjuvant at day 7, followed by two subcutaneous 0.1 mg booster injections at days
14 and 28 with IFA. Terminal bleed was collected on day 52 following challenge.
SP_1505 IgG was purified from immunized rabbit serum using protein G resin and
columns (Pierce) according to manufacturer specifications. Following purification,
antibody was concentrated using 10,000 MWCO centrifugal filters (Millipore) and
was dialyzed three times against PBS in a 3.5 kDa Slide-A-Lyzer dialysis cassette
(Thermo Scientific). Antibody specificity was determined by western Blot against
the parental wild-type and isogenic SP_1505 mutant, performed in duplicate as
indicated in Fig. 4. Cellular fractionation of the wild-type and isogenic mutant was
used to confirm the cross-reactive band localized to the membrane fraction, as
predicted for the SP_1505 protein. No cross-reactivity was observed for the mutant
in any of the blots.

Cell fractionation, TCA precipitation and western blotting. Strains were grown
in Todd-Hewitt broth to OD 0.4. Following this, cells were fractionated as pre-
viously described in ref. 81. Briefly, 2 mL of culture was centrifuged at maximum
speed. The pellet was resuspended in cell wall digestion buffer [1× Protease inhi-
bitor cocktail (Roche), 300 U/µL mutanolysin, 1 mg/mL lysozyme in a 30%
sucrose-10mM Tris (pH 7.5) buffer with 20 mMMgCl2 and 20 mMMES (pH 6.5)]
and incubated at 37 °C for 60 min. After centrifugation, the supernatant containing
the cell wall was saved. Pelleted protoplasts were snap frozen in a dry ice ethanol
bath, then treated with MgCl2, CaCl2, DNase I (Qiagen), and RNAse A (Roche) in
50 mM Tris buffer (pH 7.5) with 20 mM HEPES (pH 8.0), 20 mM NaCl, and 1 mM
DTT with protease inhibitors. The pellet was incubated on ice for 1 h, then spun at
max speed for 30 min at 4 °C. The supernatant, which contained the cytoplasmic
fraction, and the pellet, which contained the membrane fraction, were saved. 100%

TCA was added to the samples so that the final concentration of TCA was 20%.
Samples were incubated on ice for 30 min, then centrifuged at full speed at 4 °C to
pellet precipitated protein. The TCA supernatant was aspirated, and the pellet was
washed twice with 100% acetone, then air-dried at 95 °C for 1 min. Pellets were
resuspended in NuPage LDS sample buffer (Thermo Scientific) and boiled at
100 °C for 10 min. Samples were loaded into NuPage SDS-PAGE gels (Thermo
Scientific) and transferred to nitrocellulose membranes using the XCell Sure-Lock
mini-cell electrophoresis system (Thermo Scientific). Nitrocellulose membranes
were blocked overnight in 5% NFDM and treated with primary antibody against
SP_1505 at a concentration of 1:500. After washing, membranes were treated with
secondary antibody goat anti-rabbit IgG-HRP (Bio-Rad catalog #1721019) at a
concentration of 1:3000. Membranes were developed using the SuperSignal West
Dura Extended Duration Substrate (Thermo Scientific) and were visualized using a
BioRad ChemiDoc MP imaging system.

Antibiotic-antibody targeted in vitro bacterial survival. Bacteria were inocu-
lated from TSA plates into C+ Y media, at OD 0.4, culture was split into 1 mL
aliquots and treated with vancomycin (0.25 μg/mL) or daptomycin (0.5 μg/mL).
For antibody treatment, strains were grown in C+ Y media until OD 0.3. At this
time, samples were treated with SP_1505 antibody or control rabbit IgG antibody
(Sigma) at concentrations indicated in figure legends, incubated for 30 min, fol-
lowed by antibiotic treatment. At 4 h post-antibiotic addition samples were plated
for bacterial enumeration.

Antibiotic-antibody mouse challenge. Isoflurane-anesthetized 7-week-old female
BALB/c mice were inoculated intranasally with 106 CFU of wild-type pneumo-
coccal cells in a volume of 100 µL. Eight hours following the challenge mice
were treated with vehicle (Plasmalyte), vancomycin (0.25 mg/kg), daptomycin
(2.5 mg/kg), a-SP_1505 antibody (100 uL), and control rabbit IgG. At 16 h fol-
lowing antibody/antibiotic treatment (24 h post challenge) mice were euthanized,
and lungs and chest cavity blood were removed for quantification of bacteria.
Whole lungs were washed twice in PBS, and lung tissue was subsequently
homogenized in 1 mL PBS. Homogenized lung samples were centrifuged at 300xg,
and bacteria-containing supernatant was plated onto Neomycin-containing blood
agar plates for CFU titers. Mouse experiments were approved under St. Jude
Children’s Research Hospital IACUC approved protocol #538 and Boston College
IACUC approved protocol #2019-007-01. Mice were housed with a 12 h/12 h:dark/
light cycle. The room temperature set point was 71 degrees F (±2 degrees) and the
humidity setpoint was 40%.

Peptide production. Peptide P1 (Ser-Asn-Gly-Leu-Asp-Val-Gly-Lys-Ala-Asp) and
peptide P2 (Ala-Lys-Thr-Ile-Lys-Ile-Thr-Gln-Thr-Arg) were synthesized on a
preloaded Wang resin using the standard Fmoc/tBu chemistry for peptide synth-
esis. All coupling reactions were carried out in DMF using HBTU as the coupling
reagent, 0.4 N-Methyl Morpholine in DMF as base. After each coupling, depro-
tection of the Fmoc group was done by using 20% piperidine in DMF. After
completion of synthesis, peptides were cleaved from resin using TFA and purified
using RP-HPLC. The integrity and purity of the peptides were confirmed
using LC–MS.

Antibiotic accumulation. Antibiotic accumulation was determined as previously
described82. S. pneumoniae were grown in THY to OD 0.6. Cells were pelleted,
washed twice in PBS and resuspended in 3.5 mL PBS. 1 mL of cells were incubated
with 50 μM antibiotic for 10 min at 37 °C. Following incubation, 800 μL of drugged
cells were spun (3 min, 13,000xg) through 700 μL of a 9:1 mix of AR20 and high
temperature silicon oils (cooled to −80 °C), after which the supernatant of silicone
oil and free compound were carefully removed. For lysis, pelleted cells were
resuspended in 200 μL dH2O and lysed via bead beating (3x 15 s at 5 m/s). Debris
was pelleted (10’ at 20,000xg) and 100 μL of supernatant was removed and saved.
Cell debris was resuspended in the remaining 50 μL dH2O and mixed with 200 μL
methanol. Potential cell debris was pellet again and 150 μL of the methanol extract
was mixed with the 200 μL dH2O supernatant from the previous step. The extract
was pelleted one final time (10’ at 20,000 g) before being filtered (0.22 μm).

Samples were analyzed with a Waters Acquity M Class series UPLC system and
Xevo G2 QTOF tandem MS/MS with Zspray. Hundred nanoliters of extract was
separated using a Phenomenex Kinetex 2.6 μm XB-C18, 100 Å (300 μm× 150mm)
column with solvent A, 0.1% formic acid in water, and solvent B, 0.1% formic acid in
acetonitrile. The inlet method utilized a flow rate of 8 μLmin−1 with the following
gradient: 0−4min, 99.9% solvent A and 0.1% solvent B; 4–5min, 10% solvent A and
90% solvent B; 5–6min, 99.9% solvent A and 0.1% solvent B. Tandem mass spectra
were acquired with the following conditions: Ciprofloxacin: CV:20, CE:25, m/z ion:
333.14.→245.11; Kanamycin: CV:40, CE:20, m/z ion: 485.25→163.11. High-
resolution spectra were calibrated by co-infusion of 2 ngmL−1 leucine enkephalin
lockspray (Waters). Data were quantified using Waters MassLynx software v4.2
where the AUC was determined by integrating the corresponding daughter peak of
the parent compound. Concentrations of the unknown compounds were determined
by the linear fit of the corresponding standard curve. Concentrations are reported as
the average of three biological replicates.
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(p)ppGpp induction and LC/MS analysis. S. pneumoniae strains were grown at
37 °C in 10 mL ThyB to an OD of ~0.5. Cultures were split into 5 mL aliquots for
mupirocin-treated versus untreated controls. To induce the stringent response and
ppGpp production, mupirocin was added in a final concentration of 25 µg/mL and
incubated at 37 °C for 30 min. Cells were centrifuged at 6000 × g for 5′, supernatant
was discarded and cell pellets were frozen at −80 °C. For LC/MS analysis cell
pellets were resuspended in 2 mL cold methanol, and 150 pmol of [13C10]-GTP
(Sigma) was added and incubated at −80 °C for 30 min. Samples were centrifuged
at 4000 × g for 10′, and the supernatant was removed and dried overnight in a
Savant Speedvac Concentrator SPD 1010 (Thermo Fisher). Samples were analyzed
using a Shimadzu Prominence UFLC attached to a QTrap 4500 equipped with a
Turbo V ion source (Sciex). Samples (5 μL) were injected onto a SeQuant ZIC-
cHILIC, 3 μm, 2.1 × 150 mm column at 30 °C (Millipore) using a flow rate of
0.3 mL/min. Solvent A was 25 mM ammonium acetate, and Solvent B was 75%
acetonitrile + 25 mM ammonium acetate. The HPLC program was the following:
starting solvent mixture of 0% A/100% B, 0 to 2 min isocratic with 100% B; 2 to
4 min linear gradient to 85% B; 4 to 17 min linear gradient to 65% B; 17 to 22 min
isocratic with 65% B; 22 to 25 min linear gradient to 100% B; 25 to 30 min isocratic
with 100% B. The QTrap 4500 was operated in the negative mode, and the ion
source parameters were: ion spray voltage, −4500 V; curtain gas, 30 psi; tem-
perature, 400 °C; collision gas, medium; ion source gas 1, 20 psi; ion source gas 2,
35 psi; declustering potential, −40 V; and collision energy, −40 V. The MRM
transitions are: ppGpp, 602.0/159.0; pppGpp, 682.0/159.0, and [13C10]-GTP, 522.0/
159.0. [13C10]-GTP was used as the internal standard. The system was controlled
by the Analyst softwarev1.7 (Sciex) and analyzed with MultiQuant™ 3.0.2 software
(Sciex). Peaks corresponding to ppGpp and pppGpp were quantified relative to the
internal standard. The limit of detection for ppGpp and pppGpp is 5 pmol, and for
GTP, GDP, ATP and ADP 0.05pmol.

In vivo mouse competition experiment wo/w antibiotics. In vivo competition
experiments were essentially performed as previously described (van Opijnen and
Camilli 2012). Specifically, groups of at least 12 outbred 4-6-week-old Swiss
Webster mice (Taconic Inc.,) were anesthetized by isoflurane inhalation and
challenged intranasally (i.n.) with 50 µL, ~1.5 × 107 CFU, bacterial suspension in 1×
PBS. Each bacterial suspension contained a 1:1 mixture of S. pneumoniae TIGR4
wild type and ΔSP_0829 or ΔSP_1396. The challenge dose was always confirmed
by serial dilution and plating on blood agar plates. Infected mice receiving anti-
biotic treatment were administered either 1 mg/kg cefepime (WTvsΔSP_0829) or
10 mg/kg meropenem (WTvsΔSP_1396) 16 h post-bacterial challenge by intra-
peritoneal (i.p.) injection. Antibiotic dosing was previously determined to reduce
bacterial loads 10-100-fold in vivo. Mice were euthanized by CO2 asphyxiation at
6 h post-antibiotic administration (or 22 h post-bacterial challenge). Blood by
cardiac puncture, nasopharynx lavage, and total homogenized lungs were collected
from each animal to determine bacterial burden by serial dilution and plating blood
agar plates as previously described18. Mouse experiments were approved under St.
Jude Children’s Research Hospital IACUC approved protocol #538 and Boston
College IACUC approved protocol #2019-007-01. Mice were housed with a 12 h/
12 h:dark/light cycle. The room temperature set point was 71 degrees F (±22
degrees) and the humidity setpoint was 40%.

Clinical-strain stop-codon analysis. Four gene sets were compiled to test for the
differential occurrence of stop codons in patient samples. Each gene set consists of 34
genes and are defined as: Set 1 consists of genes that when disrupted lead to a
significant decrease in antibiotic sensitivity in the presence of at least one antibiotic
(in vitro ABx fitness positive), and have no fitness defect in lung and nasopharynx
(in vivo neutral or positive); Set 2 consists of genes that when disrupted lead to a
significant decrease in antibiotic sensitivity in the presence of at least one antibiotic
(in vitro ABx fitness positive), and have a significant fitness defect in lung and
nasopharynx (in vivo fitness negative); Set 3 consists of genes that when disrupted
have no fitness benefit in any of the antibiotics (in vitro ABx fitness neutral), but with
a significant fitness benefit in lung and nasopharynx (in vivo fitness positive); Set 4
consists of genes that have decreased fitness in the presence of antibiotics (in vitro
ABx fitness negative), and that have a significant fitness defect of >15% in lung and
nasopharynx (in vivo fitness negative). The PATRIC database (https://www.patricbrc.
org/) was screened for antibiotic-resistant S. pneumoniae isolates. There is a potential
risk that isolates in the database are clonally related, which could mean that multiple
isolates would contain exactly the same sequence and for instance the same stop
codon, which could bias the analysis. To reduce this potential bias candidate isolates
were limited to those belonging to a different MLST type. While this considerably
reduced the number of potential isolates, we were able to collect 533 β-lactam
resistant and 1147 co-trimoxazole resistant strains. Moreover, an equal number of
non-resistant strains were compiled. From each genome, gene sequences were
extracted that match those from each of the 4 gene sets. Each gene was scanned for
premature stop codons occurring in the first 90% of a gene. For each gene set the
number of strains with at least one stop codon in the gene set were recorded, as well as
the total number of stop codons in all genes in a set. To test for differences in the
number of isolates containing a stop codon within (susceptible vs. resistant) and
between sets a Fisher’s exact test was performed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study is available at the Short Read Archive (BioProject
accession number PRJNA750080). Tn-Seq fitness data used across the manuscript can be
found in Supplementary Data 2. Growth and tolerance data can be found in
Supplementary Data 8 and Purine Metabolism data in Supplementary Data 9. Gene
annotation information was obtained from PATRIC (https://www.patricbrc.org/),
GenomeNet (https://www.genome.jp) and UniProt (https://www.uniprot.org/). Gene sets
were assembled from sequences obtained from PATRIC. Source data are provided with
this paper.
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