
Frontiers in Endocrinology | www.frontiersi

Edited by:
Antonio Mancini

Catholic University of the Sacred
Heart, Rome, Italy

Reviewed by:
Vera Chesnokova,

Cedars Sinai Medical Center,
United States

Carolina Di Somma,
University of Naples Federico II, Italy

*Correspondence:
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The classic concept of how pituitary GH is regulated by somatostatin and GHRH has
changed in recent years, following the discovery of peripheral hormones involved in the
regulation of energy homeostasis and mineral homeostasis. These hormones are ghrelin,
nesfatins, and klotho. Ghrelin is an orexigenic hormone, released primarily by the gastric
mucosa, although it is widely expressed in many different tissues, including the central
nervous system and the pituitary. To be active, ghrelin must bind to an n-octanoyl group
(n = 8, generally) on serine 3, forming acyl ghrelin which can then bind and activate a G-
protein-coupled receptor leading to phospholipase C activation that induces the formation
of inositol 1,4,5-triphosphate and diacylglycerol that produce an increase in cytosolic
calcium that allows the release of GH. In addition to its direct action on somatotrophs,
ghrelin co-localizes with GHRH in several neurons, facilitating its release by inhibiting
somatostatin, and acts synergistically with GHRH stimulating the synthesis and secretion
of pituitary GH. Gastric ghrelin production declines with age, as does GH. Klotho is an
anti-aging agent, produced mainly in the kidneys, whose soluble circulating form directly
induces GH secretion through the activation of ERK1/2 and inhibits the inhibitory effect
that IGF-I exerts on GH. Children and adults with untreated GH-deficiency show reduced
plasma levels of klotho, but treatment with GH restores them to normal values. Deletions
or mutations of the Klotho gene affect GH production. Nesfatins 1 and 2 are satiety
hormones, they inhibit food intake. They have been found in GH3 cell cultures where they
significantly reduce the expression of gh mRNA and that of pituitary-specific positive
transcription factor 1, consequently acting as inhibitors of GH production. This is a
consequence of the down-regulation of the cAMP/PKA/CREB signaling pathway.
Interestingly, nesfatins eliminate the strong positive effect that ghrelin has on GH
synthesis and secretion. Throughout this review, we will attempt to broadly analyze the
role of these hormones in the complex world of GH regulation, a world in which these
hormones already play a very important role.
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INTRODUCTION

Our group was the first to describe in humans the existence of an
intrinsichypothalamic-somatotrophic rhythm, sexually
dimorphic, that conditions the secretion of growth hormone
(GH) (1). We also described for the first time that this rhythm
depends mainly on the negative tonic effect of somatostatin (SS)
on hypothalamic GHRH release and pituitary GH secretion (2).
Several studies by our group showed that the control of SS and
GHRH depends on the rate of delivery of hypothalamic
norepinephrine (NA) to the SS and GHRH neurons (3–7). The
role of catecholamines in the control of GH release is related to
the classically known metabolic actions of GH as a
counterregulatory (hyperglycemic-inducing), lipolytic, and
anabolic hormone. This is the reason why most of the tests
used to analyze deficient GH secretion are based on increasing
the supply of NA to SS neurons, as occurs with the
administration of insulin (ITT) to induce hypoglycemia and
consequently the release of NA, or the administration of
clonidine, an alpha 2 agonist, alone or followed by the
administration of GHRH (8). Other classical tests, such as
arginine administration, are known to inhibit SS secretion (9,
10), but the exact mechanism by which it occurs has not yet been
established. However, in recent years, the complex world of GH
secretion regulation has changed due to two main factors:

1. We currently know that GH is a pleiotropic hormone that, in
addition to its metabolic and growth effects, has very
important positive effects on practically all organs and
tissues (11).

2. GH expression has been shown to exist at many extra-
pituitary sites, including the nervous system, reproductive
system, immune system, cardiovascular system, muscle
tissue, dermal tissue, skeletal tissue, and even in the eyes
(11–14), where the hormone exerts physiological or
pathological auto/paracrine roles.

It seems logical, then, that both the knowledge of the multiple
functions that GH plays in the body and the peripheral
expression of the hormone have increased the knowledge of
the complexity of GH regulation, far beyond the classical concept
(2), with the discovery of new factors involved in
neuroregulation and/or paracrine regulation of the expression
of this hormone. In this review, we will analyze how three of
these factors, ghrelin, klotho, and nesfatins, act on the expression
and release of pituitary GH.
GHRELIN

In 1990 it was published that a synthetic hexapeptide called GH-
releasing peptide (GHRP) could act as a potent GH secretagogue
in normal humans (15). Furthermore, the effect of this peptide
was independent from that of GHRH and it acted synergistically
with this GH-releasing hormone discovered a few years earlier
(16, 17). The discovery of synthetic GH secretagogues (GHS) led
to investigate on how they could act on the secretion of this
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hormone. Thus, in 1996 a heterotrimeric receptor coupled to a
GTP-binding protein was discovered; it was present in the
pituitary and arcuate ventromedial and infundibular
hypothalamus of several species, including humans (18).
Detection of such a receptor implied that an unknown natural
hormone had to exist. This hormone was identified and purified
in the rat stomach in 1999 and was called ghrelin (19). Ghrelin is
a 28 amino acid peptide hormone in which the third amino acid,
normally serine, is modified by a fatty acid, a key modification
for ghrelin activity (20). Therefore, GH secretion from the
pituitary is regulated not only by the GHRH-SS interaction,
but also by gastric ghrelin. The question should now be: why
does a gastric hormone play a positive role in GH secretion? The
answer to this question is given by the different actions that
ghrelin performs in the body. Soon after its characterization, it
was found that ghrelin is an orexigenic hormone that is present
in the blood in times of fasting and reaches the central nervous
system to which it transmits a hunger signal. This is the reason
why patients with anorexia nervosa normally show increased
plasma concentrations of ghrelin, whereas in obesity they are
reduced (21). These facts also explain why GH secretion is
increased in anorexia nervosa and reduced in obesity, and also
why there is an age-related decrease in plasma ghrelin
concentrations in the elderly, a stage of life in which GH
secretion is practically absent and there is a decrease in
appetite (21). Based on these apparently unrelated effects of
ghrelin, the stimulation of hunger and the induction of GH
secretion in the pituitary, it is feasible to think that ghrelin
appeared in evolution to induce eating behavior and optimize the
use of food digested by promoting the release of an anabolic
hormone, as GH (22). These concepts are schematized in
Figure 1.

There are two forms of ghrelin: acyl ghrelin (octanoylated
form) and des-acyl ghrelin (non-octanoylated form). The former
is the active form responsible for most of the physiological
functions of this peptide, including the induction of pituitary
GH secretion. Acyl ghrelin is produced by attaching an n-
octanoyl group to serine at position 3 (23) (Figure 2).

As indicated above, the discovery of ghrelin occurred as a
consequence of the interest in the search for a natural hormone
capable of interacting with the receptor for synthetic
secretagogues that induce GH secretion. This receptor is a G-
protein-coupled receptor (GHSR-1a) expressed mainly in the
pituitary and hypothalamus, and responsible for mediating the
endocrine activities of acyl ghrelin (Figure 2). This receptor
cannot be activated by des-acyl ghrelin (19, 24, 25), which despite
being more abundant than acyl ghrelin lacks known endocrine
activity (26), although more studies are needed to better
understanding its actions.
Ghrelin Gene and Ghrelin Production Sites
The Ghrelin gene is made up of six exons and three introns,
located on chromosome 3, at the 3p25-2 locus, although the first
exon made up of 20 bp is a non-coding exon (exon 0 of 20 bp)
(27). In humans, ghrelin is produced primarily in P/D1 cells (X/
A-like cells in rats) and is distributed throughout the stomach
March 2021 | Volume 12 | Article 636403
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FIGURE 1 | Ghrelin production by the stomach and effects of ghrelin on pituitary GH synthesis and secretion. (1)In fasting situations, an empty stomach increases
ghrelin production in specific P/DI cells (2) in humans located in oxyntic cells. Then, ghrelin is released into the circulation (3, 4) from where it reaches (5) the pituitary
gland, inducing the synthesis and secretion of GH (6). Circulating ghrelin also reaches the hypothalamus (7), where it induces stimulation (8) of the appetite neurons,
GHRH, and inhibits the release of SS. (9)Furthermore, circulating ghrelin inhibits the inhibitory effects of IGF-I on the synthesis and pituitary secretion of GH (10). In
turn, IGF-I inhibits the increase in circulating ghrelin (11) produced in response to fasting. Blue arrows: stimulation; Red arrows: Inhibition; Yellow arrow: synthesis
and secretion of GH; Black arrow: Hypothalamic effects of ghrelin; +, stimulation; −, inhibition.
FIGURE 2 | Ghrelin acylation and ghrelin receptor. The endocrine active form of ghrelin is produced by attaching an n-octanoyl group (usually 8 C) to serine at
position 3 of the ghrelin molecule (blue arrow). This is done by the enzyme ghrelin-O-acyl-transferase (GOAT). Active acyl ghrelin acts on a receptor (blue arrow)
expressed mainly in the pituitary and hypothalamus. This receptor is a G-protein-coupled receptor (GHSR-1a), and cannot be activated by des-acyl ghrelin.
Frontiers in Endocrinology | www.frontiersin.org March 2021 | Volume 12 | Article 6364033
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mucosa (28, 29); the greatest amount of ghrelin found in plasma
comes from these cells (30, 31) (Figure 1).

However, despite the fact that after its discovery, ghrelin was
considered a “hunger hormone” and a regulator of GH secretion
in the pituitary, current data indicate that it is a pleiotropic
hormone that exerts many different effects on the human body
and, therefore, can be produced, as its receptor, in a wide variety
of tissues and organs. Besides the stomach, ghrelin and its
receptor are expressed in many different regions of the brain
(32–34), pituitary (35, 36), kidneys (34), heart (37, 38), lung (34),
ovaries (34), intestine (39), and pancreatic islets (40, 41). This
indicates that the hormone exerts multiple actions, endocrine
and/or auto/paracrine, in these tissues, although this is not the
objective of this review.

Ghrelin Acylation and Secretion
As stated above, ghrelin requires acylation to interact with and
activate its receptor. This acylation is performed by ghrelin O-
acyl-transferase (GOAT), which links a fatty acid side chain (C8)
to serine 3 of ghrelin (42, 43) (Figure 2). At this point is of
interest to highlight that the lipids involved in this acylation are
mainly those present in nutrition because the ghrelin-producing
cells in the stomach are located within the oxyntic gastric glands,
which allows direct access to the ingested lipids (44), mainly
middle chain fatty acids, because they can be absorbed into the
circulation without undergoing breakdown by lipases and bile
acids (45).

The GOAT-ghrelin system appears to be a nutrient sensor to
signal to the brain that calorie-rich foods are available, leading to
optimization of nutrient partitioning and growth signals (46, 47).

Acyl ghrelin is deacylated by plasma esterases and then
degraded by plasma proteases and excreted in the urine.
Frontiers in Endocrinology | www.frontiersin.org 4
Knowledge about how gastric ghrelin secretion is regulated
can be useful to know how this peptide acts on GH secretion in
the pituitary.

Gastric ghrelin synthesis and secretion increase during fasting
and decrease during feeding (48). This is the reason why chronic
intake of high-calorie diets, prolonged ingestion of high fats, and
obesity lead to a reduction in gastric ghrelin production and
secretion (48, 49), while a low protein supply significantly
increases plasma ghrelin (49) (Figure 3).

Interestingly, some studies have shown that ghrelin secretion
increases in response to stimulation of the sympathetic nerves
(50, 51) or by local infusion of adrenergic hormones in the
stomach (52), while SS inhibits it (52).

Adrenergic hormones stimulate the release of gastric ghrelin
by acting directly on the ß1 receptors of ghrelin-producing cells,
especially rich in this type of adrenergic receptors (53). In the
same study, the authors confirmed the role of these ß1 receptors
in ghrelin production by administering the ß1 receptor blocker
atenolol. This prevented the increase in plasma ghrelin that
appears after fasting. Furthermore, when they depleted
neuronal catecholamines with reserpine, they again observed
that there was no ghrelin release after fasting. All this led these
authors to propose that fasting acts on gastric ghrelin-secreting
cells through the sympathetic nervous system (53). Of course,
alpha-adrenergic antagonists also induce an increase in plasma
ghrelin concentration (30), as does the administration of
muscarinic agonists (54). Furthermore, excitation of the vagus
nerve in the gastric mucosa directly stimulates ghrelin-producing
cells (55).

As indicated in the Introduction, the autonomic nervous
system plays a prominent role in the neuroregulation of GH
(2), but also in the regulation of gastric ghrelin secretion, as we
FIGURE 3 | Factors involved in the regulation of gastric ghrelin secretion. As ghrelin is an orexigenic hormone, the main factors that regulate its gastric secretion are
fasting (stimulates it, blue arrow) and feeding (inhibits it, red arrow). But in addition, a series of factors such as hormones and neurotransmitters, and metabolic
factors play an important role in this regulation. Among neurotransmitters, ß-1 adrenergic pathways and the cholinergic system (Ach) stimulate gastric ghrelin
production (blue arrow). Among the hormones, increased plasma cortisol and glucagon levels also stimulate gastric ghrelin production, although in the case of
glucagon its effect is most likely to depend on an action carried out synergistically with NA. In contrast, other hormones such as GH, SS, insulin, IGF-I and leptin
inhibit gastric ghrelin production (red arrow). Among metabolic factors, glucose and high fat content inhibit gastric ghrelin production (red arrow), while low protein
intake stimulates it (blue arrow).
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have just seen. What then are the relationships between these
two hormones?

In addition to the autonomic system, some hormones and
metabolic factors contribute to modulate gastric ghrelin
production. For example, GH exerts a negative feedback effect on
ghrelin production and secretion, which makes sense (56). More
complex is the relationship between insulin and gastric ghrelin.
Insulin has been reported to affect ghrelin production and signaling
(57), but the reverse is also true (58). The mammalian target of
rapamycine (mTOR) is closely involved in metabolic changes in
various tissues after postprandial insulin secretion (59), and plays a
key role in insulin signaling (60). Components of the mTOR
signaling pathway are expressed in endocrine cells of the gastric
mucosa, and most of these ghrelin-producing cells show positivity
when stained for these components of the mTOR signaling
pathway (61). On the contrary, physiological levels of ghrelin
impair the functions of pancreatic ß-cells, inhibiting insulin
secretion of (62). Most likely, this inhibitory effect depends on the
stimulation of pancreatic SS production (63). The intricate
relationships between ghrelin and insulin, both peripherally and
in the CNS, deserve further explanation, but this is beyond the
scope of this review. In any case, it is clear that both hormones play
an important role in balancing energy expenditure and
metabolic homeostasis.

Another important hormone, such as cortisol, exerts a
positive effect on gastric ghrelin secretion (64), which seems to
depend directly on cortisol itself and not on CRH or ACTH,
since although plasma ghrelin concentrations increase in
response to stimulation by ACTH (induced by stress or after
exogenous ACTH administration), when metyrapone (which
blocks cortisol synthesis) was administered, ACTH increases
but plasma ghrelin levels decrease (64). This and other studies
by the same group indicate that the hypothalamic-pituitary-
adrenal axis is only capable of increasing ghrelin secretion when
plasma cortisol is elevated (64). Furthermore, this positive effect
of cortisol seems to depend on its plasma levels.

In the case of glucagon, another hormone related to
metabolism, mainly glucose homeostasis, this hormone has been
shown to induce a significant decrease in ghrelin secretion, which
seems not to depend on changes in glucose or insulin
concentrations (65), nor in ghrelin-producing cells in the
stomach (66), and is suppressed when there is a lesion in the
hypothalamic-pituitary axis (65), suggesting that the inhibitory
effect of glucagon on ghrelin release is exerted at the hypothalamic-
pituitary level, perhaps inducing hypothalamic somatostatin
Frontiers in Endocrinology | www.frontiersin.org 5
release (67). However, another study indicates that glucagon may
participate in the pre-prandial peak of ghrelin, because: a) the
glucagon receptor exists in the endocrine cells of the gastric
mucosa; b) ghrelin increases in rat plasma during glucagon
perfusion; c) glucagon can stimulate ghrelin gene transcription.
These led to the claim that ghrelin can be directly regulated by
glucagon which acts synergistically with NA (68).

Leptin is another hormone involved in controlling ghrelin
release, which is logical given its effects, different from ghrelin, on
appetite control. Leptin significantly reduces plasma ghrelin
levels and decreases food intake. The weight-reducing effects of
leptin are exerted by its direct central effects on the
hypothalamus and by its inhibitory actions on gastric release
and central actions of ghrelin (69).

Since plasma levels of IGF-I are important mediators of most
of the peripheral actions of GH, it is reasonable to assume that
there must be important relationships between IGF-I and gastric
ghrelin secretion. Data obtained from a large cohort of middle-
aged subjects indicate that plasma IGF-I concentration is a
significant determinant of plasma ghrelin concentration, with a
negative correlation between them (70). A similar negative
correlation had previously been found in children and
adolescents (71–73). It is important to note that a large
amount of circulating IGF-I binds to the transporter protein
IGFBP3, so when analyzing the relationships between IGF-I and
ghrelin, only free IGF-I, which is the bioactive form, should be
considered. On this basis, the highest concentration of ghrelin
was observed in GH-deficient children in whom there was low
bioavailability of IGF-I (74). That is, low plasma levels of IGF-I
induce the synthesis and secretion of ghrelin, while in turn
ghrelin decreases plasma levels of IGF-I.

Although many other hormones can help regulate gastric
ghrelin synthesis and secretion, their role is not as relevant as
that of the hormones just described.

With regard to metabolic factors, it is well known that plasma
ghrelin concentrations decrease in normal subjects after oral or
intravenous glucose administration (75). The effect of these
factors on gastric ghrelin secretion is schematized in Figure 3
and Table 1.

To finish this subsection on how gastric ghrelin synthesis and
secretion is regulated, it seems essential to describe a recent study
in which it is reported that there are specific cellular mechanisms
for the detection of nutrients in the mouse stomach; these are
chemosensors expressed primarily in a region-specific way in
gastric and stomach ghrelin cells, and their function is to
TABLE 1 | Main factors involved in the regulation of the gastric secretion of ghrelin.

Factors Inductors Inhibitors

Hormones and neurotransmitters ß1-adrenergic stimulation
Alpha-adrenergic antagonism

GH and Somatostatin

Ach Insulin
> Plasma cortisol Plasma IGF-I
Glucagon Leptin

Food Fasting Feeding
Metabolic Factors Low protein intake Glucose, High fat
March 2021 | Volum
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modulate gastrointestinal responses to food intake, for example
by inhibiting ghrelin secretion (76).

Ghrelin and Pituitary GH Secretion
Ghrelin stimulates GH release in the pituitary by acting at two
levels: 1) directly on the pituitary somatotrophs and 2)
antagonizing the hypothalamic and pituitary effects of SS and
inducing GHRH secretion. Indirectly, a third mechanism of
action could be considered since ghrelin decreases plasma
levels of IGF-I, consequently inhibiting the negative effect of
IGF-I on GH secretion exerted directly on the somatotrophs, and
indirectly because IGF-I induces hypothalamic secretion of SS
(2) (Figure 4A).

The first clear evidence that in addition to GHRH and SS,
another factor had to be involved in the regulation of GH
secretion came from several studies in humans in which it was
shown that the nocturnal increase in GH was not inhibited by the
infusion of octreotide, an analog of SS (77, 78). The last of these
studies proposed that ghrelin could be responsible for the diurnal
rhythm of GH secretion (78). This confirms other studies in
which it was shown that patients with inactive GHRH receptor,
due to mutations, still had rhythmic GH secretion, suggesting
that another factor, in addition to GHRH, was acting on pituitary
GH secretion (79).

There is a possibility that ghrelin interacts with GHRH at the
hypothalamic level, since it has been shown that transgenic rats
that have a decreased expression of the ghrelin receptor GHSR-
1a in the arcuate nucleus of the hypothalamus, where GHRH is
Frontiers in Endocrinology | www.frontiersin.org 6
produced, show a decrease of GHRH in the neurons that produce
it (80). Administration of a ghrelin receptor antagonist leads to a
decrease in the amplitude of GH pulses in rodents (81).
Consistent with this finding, in humans, a non-sense mutation
affecting ghrelin receptor activity is associated with short-stature
(82). This possibility of a hypothalamic ghrelin-GHRH
interaction appears to be reinforced by the finding of ghrelin
in the hypothalamic arcuate nucleus from where it increases
GHRH release and antagonizes the inhibitory effects of SS (83)
(Figure 4A).

The complicated relationships between ghrelin, GHRH, and
SS in controlling episodic GH release were extensively analyzed
in an elegant study conducted in male rats in 2003 (84). In that
study, intravenous administration of ghrelin during a
physiological GH peak was shown to induce a marked increase
in plasma GH, suggesting that ghrelin acted synergistically with
GHRH; this required the integrity of a functional GHRH system,
because the immunoneutralization of GHRH led to a virtual
absence of ghrelin-induced GH secretion; however, when ghrelin
was administered during a physiological trough period the GH
response was clearly attenuated, although a recovery in its
secretion was observed 15 min after ghrelin administration.
Immunoneutralization of SS reversed the early blunted
response to ghrelin in the trough periods, the GH response
being similar to that observed when ghrelin was administered
during episodes of peak GH. This indicates that ghrelin is a
functional SS antagonist. Interestingly, when ghrelin was
administered via intracerebroventricular during a trough
A B

FIGURE 4 | Ghrelin and pituitary GH secretion. (A) Ghrelin directly stimulates pituitary GH secretion (blue arrow), but indirectly it also contributes to this secretion,
since ghrelin inhibits IGF-I (red arrow) and, therefore, the inhibitory effect of this peptide on GH; furthermore, the inhibition of IGF-I impedes the stimulatory effect of
this hormone on the hypothalamic release of SS (blue arrow), which allows the release of GHRH to the portal circulation (blue arrow) with its consequent positive
effect on the synthesis and secretion of GH. Furthermore, it appears that ghrelin co-localizes with GHRH in the hypothalamic arcuate nucleus, inducing its release,
directly or inhibiting the release of SS from the periventricular nucleus (red arrow), thus inhibiting the inhibitory effect that SS exerts on the release of GHRH and on
the synthesis and secretion of pituitary GH. (B) ghrelin and its receptor are expressed in the pituitary, where they could play an auto/paracrine role in the regulation of
GH release. In fact, GHRH infusion (1) increases pituitary ghrelin mRNA levels that could induce GH stimulation (2) and release (3).
March 2021 | Volume 12 | Article 636403
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period, no increase in plasma GH was observed, indicating that
SS may behave as a functional ghrelin antagonist that acts
centrally (in GHRH neurons) and in the pituitary gland (84).

As noted above, ghrelin and its receptor are also expressed in the
pituitary (35, 36), thus the possibility exists that pituitary ghrelin
plays an auto/paracrine role in the regulation of GH release. GHRH
infusion increases pituitary ghrelin mRNA levels, suggesting that
GHRH may be a regulator of pituitary ghrelin production (85)
(Figure 4B). In situations where GHRH expression increases (GH
deficiency due to GH gene mutations, hypothyroidism, etc.),
pituitary ghrelin expression also increases; conversely, when
hypothalamic GHRH expression decreases (GH replacement
therapies, glucocorticoid treatments, hyperthyroidism, etc.),
pituitary ghrelin expression also decreases. All of this suggests
that pituitary ghrelin is dependent on an adequate supply of
GHRH to the pituitary gland. GHRH stimulation of pituitary cell
cultures in the presence of a specific ghrelin receptor inhibitor
significantly decreased the GH response to GHRH challenge,
although this effect was not observed in the absence of GHRH
stimulation. These results suggest that pituitary ghrelin may act
Frontiers in Endocrinology | www.frontiersin.org 7
physiologically on GH secretion, improving or optimizing the
response of somatotrophs to GHRH. Table 2 summarizes these
effects of ghrelin on pituitary GH secretion.

Regarding the signaling pathways involved in the release of
GH, GHRH binds to a G-protein-coupled receptor (GPCR) that
once activated induces the activation of adenylyl cyclase that
generates the conversion of ATP to cAMP; cAMP induces a
conformational change in protein kinase A (PKA) regulatory
subunits that allows phosphorylation of serine or threonine
residues in proteins that are then activated (83). Ghrelin also
acts through a GPCR but in this case the activation of this
receptor leads to the stimulation of the activity of phospholipase
C (PLC) that induces the formation of inositol 1,4,5-triphosphate
(IP3), and diacylglycerol (DAG) (Figure 5); both IP3 and DAG
induce an increase in cytosolic calcium that allows the release of
GH (83). Furthermore, in vitro studies demonstrated that ghrelin
requires activation of the NOS/NO pathway and its subsequent
guanylate cyclase (GC)/cGMP signal transduction pathway to
induce GH release from the pituitary (86). A more recent study
demonstrated that GH release from cultured bovine
somatotrophs during chronic ghrelin treatment is associated
with a significant increase in Na+ macroscopic current, the
blockade of which with tetrodotoxin (TTX) nullifies GH
release induced by ghrelin (87). In this study, it was also
observed that chronic treatment with ghrelin produced an
upregulation of GH transcription levels, as well as that of two
isoforms of Na+ channels sensitive to TTX expressed in
somatotrophs, such as NaV1.1 and NaV1.2, indicating that
ghrelin also regulates the expression of the Na+ channel gene
in these pituitary cells (87) (Figure 5). Of interest here is the
recent description that AMP-activated protein kinase (AMPK), a
hypothalamic enzymatic complex involved in the hypothalamic
control of energy and metabolic homeostasis, and activated by
ghrelin, participates in the control of GH secretion, as its
blocking or its functional impairment inhibits ghrelin- or
TABLE 2 | Ghrelin and pituitary GH secretion.

Level Effect

Anterior Pituitary Direct effect on GH secretion by inhibiting SS action
Arcuate nucleus
Periventricular nucleus

Increases GHRH releaseAntagonizes the inhibitory
effects of SS on GHRH release

Anterior Pituitary Inhibits the inhibitory effect of IGF-I on GH secretion
Anterior Pituitary Acts synergistically with GHRH in inducing GH secretion
Anterior Pituitary Auto/paracrine induction of GH secretion dependent

on GHRH supply.
Anterior Pituitary > Transcription Na+ channels

> NOS/NO
+ PLC > > Ca2+
Effects of ghrelin on GH secretion and levels at which it acts. >, Increases. +, Stimulates.
FIGURE 5 | Mechanism of action of ghrelin in pituitary somatotrophs. After binding to a G-protein-coupled receptor (GPR) and activating it, the signaling pathways
involve stimulation of phospholipase C (PLC) activity. This activation leads to the formation of inositol 1,4,5 triphosphate (IP3) and diacylglycerol (DAG) (blue arrows).
Both IP3 and DAG induce an increase in cytosolic calcium that allows GH release (yellow arrow), although activation of NOS/NO pathway is also required. In addition,
the effect of ghrelin includes the activation of the transcription of the Na+ channel gene that leads to the expression of two isoforms of Na+: NAV1.1 and NAV1.2.
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GHRH-induced GH secretion, most likely by increasing SS
tone (88).

The great importance of ghrelin in the regulation of GH could
perhaps be deduced from the data obtained in a study carried out
in six healthy young male volunteers in which GH secretion was
analyzed every 15 min (−30 to +210 min) in response to 1) iv
administration of acyl ghrelin (1 µg/kg); 2) iv infusion of
salbutamol (SLB; 0.06 µg/kg/min); 3) acyl ghrelin + SB; 4)
saline infusion. While SB led to a significant inhibition of
spontaneous GH secretion that remained abolished for up to
75 min after SB withdrawal, acyl ghrelin led to a marked increase
in plasma GH levels that was unaffected by SB (89). Since SB is a
ß-adrenergic agonist and ß-adrenergic agonists increase
hypothalamic SS secretion and inhibit hypothalamic GHRH
release (2), these data suggest that acyl ghrelin is refractory to
the inhibitory effect of SS. Perhaps this is the mechanism by
which gastric ghrelin acts at the pituitary level on the release
of GH.

It is of interest now to analyze what happens to the secretion
of ghrelin and GH in the elderly. It is well known that aging is
associated with a decrease in GH secretion from the second
decade of life (90). A similar age-related decline in circulating
ghrelin levels has been reported (21, 91). However, the pituitary
ghrelin receptor does not decline with aging, at least in mice (92),
and the GH response to ghrelin is still seen in the elderly,
although there is an age-related decline (93). This is an
interesting study topic because, as described, senescence is
associated with a decreased appetite (21). What is the reason
why the secretion of an orexigenic hormone, such as ghrelin, and
also that of an anabolic hormone, such as GH, is lost with aging?

Summary
In summary ghrelin is a very complex hormone, because in
addition to its two main actions: orexigenic and strong inducer of
GH release in the pituitary, ghrelin exerts many different effects
on practically the entire human body. The main source of ghrelin
is the stomach, from where this hormone is released in response
to different nervous, hormonal, and metabolic stimuli. These are
related to the main action of ghrelin as a “hunger hormone,”
which acts on the central nervous system to stimulate food
intake. Additionally, ghrelin induces the secretion of pituitary
GH, an anabolic hormone.

Ghrelin acts after being acylated by ghrelin O-acyl-transferase
(GOAT), which binds a fatty acid side chain (C8) to serine 3 of
ghrelin, forming acyl ghrelin, the active form, which acts on its
receptor, a G-protein-coupled receptor (GHSR-1a).

The effects of acyl ghrelin on pituitary GH secretion occur
both centrally and directly on pituitary somatotrophs. At the
central level, ghrelin is expressed in many neurons that produce
GHRH, which most likely facilitates the release of GHRH by
antagonizing the inhibitory effect of somatostatin on this
secretion. Furthermore, ghrelin exerts a synergistic effect with
GHRH in the induction of GH secretion. At the pituitary level,
acyl ghrelin has a direct effect on GH secretion; this effect
probably depends on gastric ghrelin. Ghrelin expression has
been detected in pituitary somatotrophs, which may suggest a
paracrine effect of this peptide on GH secretion. Another effect of
Frontiers in Endocrinology | www.frontiersin.org 8
ghrelin on GH secretion comes from its inhibitory effects on
plasma IGF-I. Since IGF-I inhibits GH secretion directly in
somatotrophs and indirectly by activating hypothalamic
somatostatin release, this action of ghrelin is another factor
that positively contributes to GH secretion in the pituitary gland.

Finally, gastric ghrelin secretion decreases with age, as occurs
with GH; however, the pituitary ghrelin receptor does not
experience this decrease, and a GH response to ghrelin is still
seen in the elderly.
KLOTHO

Like ghrelin, the klotho transmembrane protein performs many
different functions in the human body, among them it plays a
very important role in controlling GH secretion. Klotho was first
identified in 1997 as an anti-aging agent (94), since an
impairment in its genetic expression, in mice, leads to a
syndrome that mimics human aging: short lifespan, infertility,
arteriosclerosis, skin atrophy, osteoporosis, and emphysema.
Klotho-deficient mice (kl/kl) develop normally up to 3 weeks
of age, but from this age they begin to show a severe aging
phenotype, including growth retardation (94). Klotho was
initially thought to be expressed in the distal tubules of the
kidney and the choroid plexus of the brain, but was later shown
in many different tissues, including the gonads and the pituitary
gland. This may explain not only its role in the control of GH
secretion, but also how it acts positively in pathological
processes, such as arteriosclerosis, and many physiological
processes in healthy humans (22). We now know that klotho is
a circulating hormone that can be found in body fluids, including
blood and cerebrospinal fluid (95), and also in many territories
where klotho is not expressed.

The extracellular region of klotho contains two homologous
domains, KL1 and KL2, which can be shed from the cell surface
(96). Klotho cleavage occurs at a site directly above the plasma
membrane (a-cut) or between the KL1 and KL2 domain (ß-cut),
resulting in soluble full-length klotho or KL1 and KL2 fragments
(97) (Figure 6). These different cleavages are carried out by
proteases, including a disintegrin and metalloproteinase
(ADAM10 and ADAM 17), mainly responsible for a-cut
cleavage in kidney cells (97). After its release from the cell
membrane, circulating soluble klotho exerts its biological
effects on many different organs and tissues. There is no
known receptor for soluble klotho, rather there is a coreceptor
formed by shed klotho, fibroblast growth factor receptor (FGFR)
and FGF23, indicating that shed klotho is an enzyme-dependent
active scaffold protein (98). Thus, klotho is an essential cofactor
for the binding of FGF23 to its receptor.

Klotho Regulation and GH Secretion
To date, it has not been clearly established how klotho secretion
is regulated, although the fact that the kidneys are the main
source of klotho suggests that hormones and factors involved in
mineral homeostasis play a role in this regulation. This is the case
with adiponectin, a hormone that reduces renal secretion of
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klotho (99). Interestingly, adiponectin sensitizes insulin and
insulin stimulates the cleavage and release of the extracellular
domain of klotho (96). Similar to insulin, IGF-I appears to
stimulate klotho secretion (22, 100), whereas klotho inhibits
insulin/IGF-I signaling (101) (Figure 7), and activation of both
hormone receptors (101). Interestingly, in mice, intraperitoneal
injections of klotho for 4 weeks produced a significant increase in
the levels of liver mRNA of IGF-I and its carrier protein IGFBP3
(102), which seems to contradict the inhibition that klotho exerts
Frontiers in Endocrinology | www.frontiersin.org 9
on the inhibitory effect of IGF-I in the pituitary secretion of GH.
This and other studies indicate that klotho is a positive regulator
of GH release. Perhaps this is the reason why kl/kl mice have
hypotrophic somatotrophs and a reduced number of secretory
granules (94).

The mechanisms by which klotho induces GH secretion
involve the activation of the ERK1/2 pathway (Figure 8A), also
demonstrated in GH3 cells (102); in these cultured cells
cotreatment of klotho and bFGF further increased ERK1/2
FIGURE 7 | Main factors involved in the regulation of klotho secretion in the kidney. The kidneys are the main source of circulating klotho. Different hormones and
factors involved in mineral homeostasis contribute to the regulation of klotho secretion. For example, adiponectin decreases renal klotho secretion (red arrow), while
insulin stimulates cleavage and release of full-length soluble klotho (blue arrow), an effect that is sensitized by adiponectin (blue arrow). The same effect on klotho
secretion is carried out by IGF-I (blue arrow), whose hepatic production appears to be stimulated by klotho (blue arrow). This is curious because klotho inhibits the
insulin and IGF-I signaling pathways (red arrow).
FIGURE 6 | Klotho cleavage mechanisms. Klotho cleavage occurs in the extracellular domain of the klotho protein and is carried out by proteases (ADAM10 and
ADAM17). In kidney cells, cleavage at a site directly above the cell membrane (a-cut) results in full-length circulating soluble klotho, which can act in many different
organs and tissues. The other type of cleavage (ß-cut) occurs between the KL1 and KL2 domains that give rise to the KL2 and KL1 fragments. TM, membrane
portion of klotho. CYT, intracellular portion of klotho.
March 2021 | Volume 12 | Article 636403

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Devesa Ghrelin, Klotho, Nesfatins, and GH Secretion
phosphorylation, while inhibition of ERK1/2 activation leads to
abolition of klotho-induced GH release in normal pituitaries
(102). Klotho plasma levels are decreased in untreated GH-
deficient children and adults, but increased during GH
treatment (100) (Figure 8B). This was associated with an
increase in plasma IGF-I levels dependent on the activation of
Akt-mTOR pathway (100). However, in the case of klotho
genetic deletions (kl/kl in mice) GH administration cannot lead
to normal growth in these mice (103).

In acromegaly, increased levels of circulating klotho have
been reported, returning to normal values shortly after surgery
(104). This is most likely due to the fact that the elevated IGF-I
levels that exist in this pathology lead to increased klotho
secretion which, in turn, further increases GH secretion.
Another possibility, not investigated, is that since klotho is also
produced in the somatotrophs, perhaps to modulate auto/
paracrine GH production, increased klotho in acromegaly
could be a consequence of increased GH secretion; that is,
klotho would be released from the pathological pituitary
accompanying GH secretion.

Interestingly, a study in patients with pituitary adenomas
showed that there was expression of klotho in both GH-secreting
and non-GH-producing adenomas; this expression of klotho,
proven by immunohistochemistry, was higher in non-GH-
secreting adenomas, suggesting that non-GH-secreting
pituitary cells are capable of producing klotho.

Summary
Klotho is an anti-aging agent that is expressed primarily in the
kidneys and the cerebral choroid plexus, but also in many other
different tissues and organs, such as the gonads and the pituitary
gland. Although it is a transmembrane protein, it can be found in
the circulation, at the expense of proteolytic cleavage of its
extracellular region. The soluble form of klotho thus generated
is then capable of exerting multiple effects related to the mineral
homeostasis of the organism, but also with physiological functions
Frontiers in Endocrinology | www.frontiersin.org 10
in different organs and tissues. Interestingly, there is no known
receptor for klotho, rather there is a coreceptor formed by shed
klotho, FGFR, and FGF23, which indicates that shed klotho is an
enzyme-dependent active scaffold protein; therefore, klotho is a
key cofactor for the binding of FGF23 to its receptor.

Among the multiple effects of klotho, we have to comment in
relation to this review, the effect of klotho on pituitary GH
secretion. Klotho induces GH secretion at the expense of ERK1/2
phosphorylation. Children and adults with untreated GH-
deficiency show reduced plasma levels of klotho, but GH
replacement therapies restore these low levels of klotho to
normal values (Figure 8B). This does not occur when klotho is
absent due to genetic mutations or deletions (kl/kl in mice, for
example). In these situations, GH replacement therapy cannot
lead to normal growth.

Insulin and IGF-I appear to stimulate the secretion of klotho,
whereas klotho inhibits insulin/IGF-I signaling and the
activation of both hormone receptors.

Klotho is expressed in pituitary adenomas and its expression
is higher in non-GH-secreting adenomas than in GH-secreting
adenomas, suggesting that non-GH-secreting pituitary cells are
capable of producing klotho.

In summary, klotho is part of the complex world of regulating
pituitary GH secretion, acting positively on it. The relationships
between GH and klotho are summarized in Table 3.
A B

FIGURE 8 | Klotho induces pituitary GH secretion. (A) Circulating klotho directly stimulates GH secretion by activating the ERK1/2 pathway (blue arrows). Indirectly,
klotho also promotes GH secretion by inhibiting IGF-I and consequently its inhibitory effects on GH release (red arrows). Additionally, klotho is expressed in
somatotrophs, perhaps to modulate auto/paracrine GH production (blue arrow). (B) Interestingly, plasma klotho levels are decreased in untreated GH-deficient
children, but GH replacement therapy brings klotho to normal values.
TABLE 3 | Effects of klotho on GH secretion and vice versa.

Level Effect

Anterior Pituitary + Phosphorylation of ERK ½
Paracrine induction of GH secretion
Inhibits the inhibitory effect of IGF-I

Plasma levels of klotho Decreased in untreated GH-deficient patients
GH administration recovers normal values of klotho
+, Stimulates.
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NESFATINS

In 2006, a study described nesfatin-1 as a hypothalamic and
brainstem peptide whose expression decreased during fasting,
suggesting a role for this peptide in energy balance (105). Other
studies using RT-PCR demonstrated that nesfatin-1 was
expressed in various areas of the brain involved in metabolic
regulation and eating behavior (105–108). Nesfatin-1 is also
expressed in the adipose tissue and has been found in serum
(108). The wide distribution of nesfatin-1 in the CNS indicates
that this peptide also exerts endocrine and autonomic effects on
energy expenditure (109); for example, nesfatin-1 has been
found to be co-localized with neuroendocrine hormones,
including GHRH or somatostatin, among others (109).
Interestingly, nesfatin-1 has also been found to be produced
in ghrelin-producing cells of the stomach (31), where it may be
involved in the des-acyl ghrelin-induced inhibition of
peripherally administered orexigenic ghrelin in free-fed
rats (110).

In 2019, two DNA and calcium-binding peptides called
nucleobindins (NUCB1 and NUCB2) were reported to be
involved in many physiological processes as multifunctional
regulators of cell biology, including activation of G protein
signaling (111). These NUCBs can give rise to smaller peptides
called nesfatin-1 (NESF) and nesfatin-1-like peptide (NLP) that
share a 76.6% amino acid sequence identity with NESF (112).
Although the full function of these peptides is not well
understood, they suppress food intake and contribute to
modulating energy homeostasis (106, 113–115), and they also
produce endocrine effects, such as stimulating insulin secretion
(112, 116) or regulating gonadal function (117, 118). From these
data, it is feasible to assume that nesfatins are pleiotropic
hormones that act through G-protein-coupled receptors
(GPCR) (107, 119).

Nesfatins Inhibit GH Synthesis and
Secretion
In a very recent study, both NESF and NLP have been shown to
inhibit GH synthesis and its ghrelin-induced release in
mammalian somatotrophs (120). This study was carried out in
cultured cell lines (GH3 and RC-4B/C) in which the authors
demonstrated that both nucb1 and nucb2 mRNA expression
existed, as well as their corresponding NUCB1 and NUCB2
proteins. NLP was found to be mainly located in the cytoplasm,
while the distribution of NESF was more diffuse and was also
found in the nucleus. Both NESF and NLP bind to the membrane
of GH3 cells, suggesting the possibility of a GPCR-mediated
action of NESF and NLP in these cells.

The expression of gh mRNA was down-regulated in these
cells when incubated in the presence of low and high, but not
medium, concentrations of these nesfatins. The same occurred
with the expression of the pituitary-specific positive transcription
factor 1 (pit-1), although in this case a significant down-
regulation was only observed for NESF at 1 and 24 h of
incubation, while NLP only led to a significant down-
regulation of pit-1 at 24 h. Consequently, GH protein levels
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decreased by an amount of approximately 31% at low and high
concentrations of NESF after 1 and 6 h of incubation, while the
decrease observed when incubating with NLP was slightly less
(27%) in the same time periods.

Interestingly, the significant increase observed in gh and pit-1
expression when GH3 cells were incubated in the presence of
ghrelin was abrogated when these cells were pre-incubated or co-
incubated with NESF or NLP. The signaling pathway responsible
for these effects appears to be cAMP/PKA/CREB, which in this
study was shown to be negatively regulated by both NESF and
NLP (Figure 9).

Taken together, these results indicate that in mammalian
somatotrophs, nesfatins play an inhibitory role on GH synthesis
and secretion, although their physiological significance, for
example in humans, has not yet been established.

Summary
Although little is known about the role that nesfatins play in the
human body, their wide distribution and the fact that they are
circulating pleiotropic hormones indicates that they have to
contribute to the modulation of many different physiological
processes. For example, they have to act as counteracting
hormones that inhibit the orexigenic effects of ghrelin, acting
as signals that suppress food intake and modulate energy
homeostasis. They also appear to act as neurohormones that
modulate the function of many endocrine glands, such as the
pancreas, gonads, and pituitary, acting through G-protein-
coupled receptors.

In relation to its effects on the pituitary synthesis of GH and
its secretion, the action of nesfatins is inhibitory. They reduce
FIGURE 9 | Nesfatins and GH secretion. Nesfatins are involved in
suppressing food intake, although they also have many different endocrine
effects. Therefore, it is logical that in GH cells cultured with ghrelin, which
induces the expression of pit-1 and GH (blue arrows), the addition of
nesfatins to the medium blocks, if not totally to a great extent, these effects of
ghrelin on pit-1 and GH (red arrows), although its effects in intensity and time
vary depending on the nesfatin used. The mechanism by which nesfatins
induce these effects appears to be the downregulation of cAMP/PKA/CREB.
NESF, nesfatin-1; NLP, nesfatin-1-like peptide.
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the expression of pit-1, and consequently that of the gh gene, by
negatively regulating the cAMP/PKA/CREB signaling pathway
and also block the stimulating effects of ghrelin on GH
secretion in the pituitary. Given that these inhibitory effects
have been demonstrated in cultured GH-producing cells, they
appear to be paracrine and independent of any action on
hypothalamic somatostatin release, although it would
be interesting to analyze whether nesfatins play a role
in hypothalamic control of the synthesis and secretion
of p i tu i tary GH exer ted by SS-GHRH, or on the
neurotransmitters involved in this hypothalamic regulation
of GH. The fact that nesfat in-1 co- loca l izes with
neuroendocrine hormones, such as GHRH or somatostatin,
may support this possibility.
CONCLUSIONS

Throughout this review, we have analyzed the effects of three
peripheral hormonal factors, ghrelin, klotho, and nesfatins, on
pituitary GH synthesis and secretion. Adding these factors to
the world of GH regulation radically changes the classic
concept of how pituitary GH is regulated by somatostatin
and GHRH, and these neurohormones by hypothalamic
adrenergic pathways (2). These three factors act basically at
the pituitary level, although one of them, ghrelin, also performs
its GH-secreting action facilitating the release of hypothalamic
GHRH, perhaps inhibiting the hypothalamic release
of somatostatin.

Interestingly, two of these factors, ghrelin and nesfatins, are
involved in the regulation of energy homeostasis, although
with opposite actions since, while ghrelin could be considered
the hunger hormone, stimulating appetite, nesfatins would be
the hormones of satiety, inhibiting orexigenic action of
ghrelin. This may justify the fact that these hormones are
involved in the control of the synthesis and secretion of GH, a
hormone with important metabolic actions: hyperglycemic,
lipolytic, and anabolic, which is stimulated by ghrelin and
inhibited by nesfatins. Changes in the metabolic needs of
the body at each moment of the day and throughout life
would justify the secretion and actions of each of these
hormones to optimize energy homeostasis at the expense of
GH, among other factors. Interestingly, gastric ghrelin
secretion decreases with age, as occurs with GH, while the
pituitary ghrelin receptor remains present in the pituitary. It is
very important that ghrelin has to be acylated by ghrelin O-
acyl-transferase (GOAT), which binds a fatty acid side chain
(C8) to serine 3 of ghrelin, forming acyl ghrelin, the active
form that acts on its receptor, a G-protein-coupled receptor
(GHSR-1a).

The other factor, klotho, is an anti-aging agent, the soluble
circulating form of which directly induces GH secretion by
activating ERK1/2 and inhibits the inhibitory effect that IGF-I
exerts on GH. Klotho is also involved in the regulation of mineral
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homeostasis. Perhaps this is why the kidneys are the main source
of this peptide. Klotho expression has also been found in the
pituitary, where it perhaps induces a paracrine effect on GH
synthesis and secretion. There are very important relationships
between klotho and GH; untreated children and adults with GH-
deficiency show reduced plasma levels of klotho, but GH
treatment restores them to normal values (121). Deletions or
mutations of the klotho gene affect GH production, but GH
treatment cannot induce a normal growth in mice displaying
these deletions (kl/kl mice).

In summary, these three factors must be added to the world
of GH control. All of them act after being released from the
peripheral level, directly on the pituitary gland (not yet proven
for nesfatins) but they can also act on the GHRH-SS system
and even paracrine in the pituitary. The broad spectrum
of actions that these factors play in the body, along with
their actions on GH, reinforces the idea that GH is more
than just a growth hormone (11). The role of ghrelin
and nesfatins in pituitary GH transcription is summarized
in Table 4, along with the major GHRH-induced GH
transcription factor Pit-1.
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TABLE 4 | Growth Hormone transcription factors.

FACTORS Inducers Inhibitors

Pit-1 +
Ghrelin +
NESF and NLP +
Klotho ?, +?
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