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Objective: It was demonstrated that inflammation and oxidative stress induced
by hyperglycemia were closely associated with alteration of miR-146a. Here, we
investigated the role of miR-146a in mediating inflammation and oxidative stress in the
brain of chronic T2DM rats.

Methods: The chronic T2DM (cT2DM) models were induced by intraperitoneal
administration of STZ (35 mg/kg) after being fed a high-fat, high-sugar diet for 6
weeks. H&E staining was conducted to observe the morphological impairment of the
rat hippocampus. The expressions of inflammatory mediators (COX-2, TNF-α, IL-1β)
and antioxidant proteins (Nrf2, HO-1) were measured by western blot. The levels of MDA
and SOD were detected by the respective activity assay kit. The levels of p22phox and
miR-146a were examined by quantitative real-time PCR (qRT-PCR). The expressions of
IRAK1, TRAF6 and NF-κB p65 were measured by western blot and qRT-PCR. Pearson
correlation analysis was performed to investigate the correlations between miR-146a
and inflammatory mediators as well as oxidative stress indicators.

Results: The expression of miR-146a was negatively correlated with inflammation
and oxidative stress status. In the brain tissues of cT2DM rats, it was observed
that the expressions of inflammatory mediators (COX-2, TNF-α, IL-1β) and oxidative
stress indicators including MDA and p22phox were elevated, which were negatively
correlated with the expression of miR-146a. While, the antioxidant proteins (Nrf2, HO-
1, SOD) levels decreased in the brain of cT2DM rats, which were positively correlated
with the miR-146a level. The expressions of NF-κB p65 and its specific modulators
(IRAK1&TRAF6) were elevated in the brain of cT2DM rats, which might be inhibited by
miR-146a.

Conclusion: Our results implied that increased inflammation and oxidative stress status
were associated with brain impairment in cT2DM rats, which were negatively correlated
with miR-146a expression. Thus, miR-146a may serve as a negative comprehensive
indicator of inflammation and oxidative stress status in the brain of chronic T2DM rats.

Keywords: microRNA-146a, type 2 diabetes mellitus, brain impairment, thymoquinone, inflammation, oxidative
stress, biomarker
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is one of the most common
endocrine disorders, which has already gained high public
attention in the past few decades. The clinical complications of
T2DM, like cardiovascular diseases, neuropathy, nephropathy,
and retinopathy seriously affected the survival and life quality
of patients with T2DM (Sims-Robinson et al., 2016). Recently,
dysfunction of the brain induced by T2DM has emerged as a
new concern, which mainly refers to a variety of neurological
abnormalities, including decline in cognition, attention, memory,
and psychomotor deficits caused by chronic hyperglycemia in
the brain (Wang et al., 2016). Particularly, mild cognitive decline
caused by diabetes mellitus has been recently highlighted as
an early manifestation, a preclinical transitional state from
normal cognition to dementia (Ma et al., 2015). However,
to date, the precise mechanisms of cerebral dysfunction in
diabetes remain unclear. Increasing evidence demonstrated
that diabetes mellitus associated cerebral impairment was
closely relevant with direct insult of hyperglycemia, oxidative
stress, chronic inflammation, impaired insulin signaling, as
well as the dementia-like pathology like amyloid polypeptide
depositions and tau protein phosphorylation. These pathological
processes may cause irreversible structural damages of brain,
like disruption of white matter integrity and cerebral atrophy,
thus contributing to cerebral dysfunction (Takeda et al., 2010;
Wang et al., 2015; Yin et al., 2015; Kim et al., 2016; Tian
et al., 2016; Zhang et al., 2016). Among these complicated
pathogenesis, oxidative stress and inflammation were most
researched and recognized for cerebral damage in diabetes (Heyer
et al., 2013; Zhao et al., 2013; Moghaddam et al., 2014; Verdile
et al., 2015). Hyperglycemia may activate the Toll-like receptors
(TLRs), a family of pattern recognition receptors responsible
for triggering the downstream inflammatory cascade (Rajamani
and Jialal, 2014), thus causing neuronal lesions in the brain of
chronic T2DM. In addition, high glucose and advanced glycation
end products (AGEs) can initiate activation of the NADPH
oxidase and trigger increased reactive oxygen species (ROS)
generation, which may damage the structure and function of
the brain (Zhao et al., 2013). It was recognized that nuclear
factor-κB (NF-κB) signaling pathway played an important
role in regulating inflammatory response and oxidative stress.
Convincing data has shown that the levels of pro-inflammatory
cytokines and ROS along with NF-κB activity were significantly
elevated in the brain tissues of T2DM rats (Moghaddam
et al., 2014). Additionally, the classical nuclear erythroid
2 related factor2 (Nrf2) signaling pathway also participated
in the regulation of oxidative stress. Previous studies have
reported that Nrf2 signaling pathway could protect diabetic mice
against oxidative stress via mediating expressions of antioxidant
proteins (Uruno et al., 2013). Under oxidative stress, Nrf2 was
released from its inhibitory adaptor, Kelch-like ECH-associated
protein 1 (Keap1) and translocated into the nucleus from the
cytoplasm. Then, Nrf2 activated the expressions of downstream
antioxidant proteins via interaction with antioxidant response
element (ARE), such as heme oxygenase-1 (HO-1), superoxide
dismutase (SOD), and glutathione (GSH) (Zhang et al., 2013a;

FangFang et al., 2017). Thymoquinone (TQ) is a major bioactive
ingredient extracted from the black cumin oil (Gholamnezhad
et al., 2016), which has been widely researched for its anti-
oxidative, anti-apoptotic, anticancer, and anti-inflammatory
effects (Kortum et al., 2015; Thummuri et al., 2015; Guida
et al., 2016; Asaduzzaman Khan et al., 2017). In addition, a
large number of different researches have demonstrated that
TQ could ameliorate cognitive deficits via attenuating the brain
impairment induced by inflammation and oxidative stress (Bargi
et al., 2017; Shao et al., 2017). MicroRNAs (miRNAs) are
a kind of endogenously expressed small non-coding RNAs,
which can regulate gene expression via base-pairing with
the 3′-untranslated regions (3′-UTR) of target mRNA. It has
recently been reported miRNAs play an essential role in various
pathological processes like inflammation, immunity, oxidative
stress, carcinogenesis, and so on (Kantharidis et al., 2011).
Recently, increasing studies suggested that miR-146a played
a vital role in inflammatory process in various disorders
including diabetes (Balasubramanyam et al., 2011; Cheng et al.,
2013; Li et al., 2015). In addition, miR-146a was reported to
exert anti-inflammatory effect in the pathogenesis of various
diabetic complications like diabetic nephropathy, retinopathy,
neuropathy, cardiovascular disorders, even tending to be a
potential biomarker of inflammatory status in these diseases
(Yousefzadeh et al., 2015; Bhatt et al., 2016; Chen et al., 2017b;
Feng et al., 2017). Moreover, it was demonstrated that the
expression of miR-146a was down-regulated in hippocampus
tissues of diabetic rats (Yavari et al., 2016) as well as in the
serum of T2DM patients, which may serve as a biomarker of
the chronic inflammatory condition (Baldeon et al., 2014). In
fact, it has been uncovered that miR-146a could suppress the
expressions of the NF-κB-mediated inflammatory mediators like
COX-2, TNF-α, IL-6 and IL-1β by targeting the 3′-UTR of IRAK1
and TRAF6 mRNA, which are the downstream adaptors of TLRs
(Taganov et al., 2006). Although considerable researches focused
on neurological complications of diabetes, the basic pathogenesis
remains unclear so far. Our study was designed to investigate
the role of miR-146a in the processes of neuro-inflammatory and
oxidative stress in the brain of chronic T2DM rats.

MATERIALS AND METHODS

Reagents
Thymoquinone (TQ) and streptozocin (STZ) were purchased
from Sigma-Aldrich Co. (St. Louis, MO, United States).

Experimental Animals and Grouping
Male Sprague–Dawley (SD) rats weighing 160–180 g were
purchased from the Animal Center of Fudan University
(Shanghai, China). All animal experiments were conducted in
accordance with the Guidelines for Animal Experiments of the
Chinese Academy of Medical Sciences and were approved by the
ethics committee for animal care of Jinshan Hospital of Fudan
University. The rats were housed in a standard animal-grade
room with four animals in each cage. The rats were maintained
in an ambient temperature of 20 ± 2◦C, the relative humidity
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at 60%, and a light cycle at 12 h/day. They were fed a normal
laboratory diet and had free access to tap water for one week
before modeling. Then, the rats were randomly divided into
three groups: control (normal), chronic T2DM (cT2DM), chronic
T2DM+TQ (TQ) (n = 12).

Establishment of a T2DM Rat Model
Establishment of a T2DM model was previously described (Shi
et al., 2013). Firstly, the rats were fed a high-fat, high-sugar
diet (normal diet mixed with 10% lard and 20% sucrose) for
6 weeks. Then the diabetes model was established by a single
intraperitoneal administration of STZ (35 mg/kg; Sigma) in 0.1 M
citrate buffer (pH 4.2) after overnight fasting. Diabetes was
validated by measuring blood glucose levels (>16.7 mmol/L) 72 h
after STZ injection. Once the diabetes was induced, the diabetic
animals were divided into chronic T2DM group and chronic
T2DM+TQ group. The chronic T2DM group were continuously
fed with a high-fat, high-sugar diet for another 6 weeks. But the
TQ group animals were intraperitoneally injected with 5 mg/kg
TQ (274666, Sigma; dissolved in 10% anhydrous ethanol), once
every 2 days, except with a high-fat, high-sugar diet for 6 weeks.
The normal control group rats were given the normal laboratory
diet all the time in the experiment and intraperitoneally injected
with equivalent volume of normal saline.

Quantitative Real-Time PCR Analysis
Total RNA was isolated from the brain tissues by TRIZOL
Reagent (Takara) according to the manufacturer’s protocol. Then,
cDNA of miR-146a was synthesized by Mir-X miRNA First-
Strand Synthesis Kit (Takara, Japan) while the cDNA of mRNA
for target genes including p22phox, IRAK1, TRAF6, and NF-kB
p65, was synthesized by PrimeScript TM RT Master Mix (Takara,
Japan). Subsequently, quantitative real-time PCR (qRT-PCR) of
miR-146a was performed with the Mir-X miRNA qRT-PCR
SYBR Kit (Takara, Japan) in Applied Biosystem 7300 (Applied
Biosystems, Foster city, CA, United States). The expression level
of miR-146a was determined using 2−11Ct and normalized using
U6 snRNA level as an internal quantitative control. For real-time
measurement of mRNAs, a SYBR Premix Ex Taq (Tli RNaseH
Plus; TaKaRa) was used for detecting expression level of β-actin
and respective target genes. The expression level of mRNA was
determined using 2−11Ct and normalized to β-actin.

Western Blot Assay
Total protein was extracted from brain tissues with a SDS
lysis buffer (Beyotime, Shanghai, China), supplemented with
1% phenylmethylsulfonyl fluoride (Beyotime, Shanghai, China).
Equal amount of proteins was analyzed by 10% SDS–PAGE and
transferred to PVDF membranes. After being blocked in 5%
non-fat milk at room temperature for 1 h, the membranes were
incubated with primary antibodies at 4◦C overnight, including
rabbit anti-COX-2 antibody (Cell Signaling, United States),
rabbit anti-TNF-α antibody (Millipore, United States), rabbit
anti-IL-1β antibody (Abcam, United States), rabbit anti-p-
NF-κB (Cell Signaling, United States), rabbit anti-TRAF6
antibody (Proteintech group, United States), mouse anti-
IRAK1 antibody and rabbit anti-Nrf2 antibody (Santa Cruz

Biotechnology, United States), rabbit anti-HO-1 antibody
(Abcam, United States), and rabbit anti-β-actin antibody (Cell
Signaling, United States). The appropriate peroxidase-conjugated
antibodies, anti-mouse, or anti-rabbit were incubated with the
membranes at room temperature for 2 h. Signals were detected
using ECL-Plus (Merck Millipore, Darmstadt, Germany) and
quantified using a Bio-Rad 2000 gel imaging system with
QUANTITY ONE software (Bio-Rad Laboratories, Hercules, CA,
United States).

Assay of Super Oxide Dismutase (SOD)
The level of SOD in the cerebral cortex and hippocampal
tissues was quantified using a SOD kit (Fujian Fuyuan Biological
Technology Co., Ltd., Fujian, China). The 40-mg sample of
brain tissues was weighed and added to 360 µl of physiological
saline. The mixture was homogenized using a vortex mixer and
centrifuged (1,000 × g, 4 ◦C, 10 min) to obtain the supernatant,
which was used to detect the level of SOD according to the
manufacturer’s instruction.

Malondialdehyde (MDA) Assessment
Malondialdehyde (MDA) was assayed using MDA kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China), which is
based on MDA reaction with thiobarbituric acid (TBA) and
producing a pink complex with a peak absorbance at 535 nm.
The protocol of MDA assessment was previously described (Bargi
et al., 2017). The 40-mg sample of brain tissues was weighed and

FIGURE 1 | HE staining of the dentate gyrus in the hippocampus. Normal
group (A,B); cT2DM group (C,D); TQ group (E,F).
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FIGURE 2 | Representative protein bands of COX-2, TNF-α, and IL-1β in the hippocampus (A) and cerebral cortex (B); the relative ratio COX-2, TNF-α, and IL-1β

according to band density in the hippocampus (C) and cerebral cortex (D). ∗p < 0.05 vs. normal; ∗∗p < 0.01 vs. normal; #p < 0.05 vs. cT2DM; ##p < 0.01 vs.
cT2DM.

FIGURE 3 | The expressions of MDA (A), p22phox (B), and SOD (C) in the hippocampus and cerebral cortex. Representative protein bands of Nrf2 and HO-1 in
hippocampus (D) and cerebral cortex (E); the relative ratio of Nrf2 and HO-1according to band density in hippocampus (F) and cerebral cortex (G). ∗p < 0.05 vs.
normal; ∗∗p < 0.01 vs. normal; #p < 0.05 vs. cT2DM; ##p < 0.01 vs. cT2DM.
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added to 360 µl of physiological saline. Then the mixture was
homogenized using a vortex mixer and centrifuged to obtain the
supernatant, which was used to measure the MDA level according
to the manufacturer’s instruction.

Statistical Analysis
Statistical analyses were performed using SPSS 17.0 (SSPS, Inc.,
Chicago, IL, United States) as well as a one-way ANOVA
or Pearson correlation analysis. Values are expressed as the
mean ± SD, and statistical significance was defined as p < 0.05
for all tests.

RESULTS

Aberrant Morphological Changes in the
Brain of Chronic T2DM Rats
It has been widely accepted that the hippocampal synapse
impairment contributes to the cognitive deficits (Zhang et al.,
2013b). In the present study, H&E staining was performed to
observe the morphological changes of the rat hippocampus. The
neurons in the hippocampus of cT2DM group showed loose

and swollen, which were irregular and disorganized compared
with the normal group. Meanwhile, karyopyknosis was obviously
observed in the neurons of dentate gyrus of the cT2DM
group (Figures 1A–D). The morphological dysfunction could be
ameliorated in the TQ group compared to the cT2DM group
(Figures 1E,F).

Increased Inflammatory Mediators in the
Brain of Chronic T2DM Rats
Growing evidence indicated that inflammation and its
accompanied stress responses contributed to cognitive
decline in cT2DM rats (Chen et al., 2017a). To determine
inflammatory status in the brain of cT2DM rats, we
detected the expressions of classical inflammatory mediators
in the hippocampus and cerebral cortex. The levels of
COX-2, TNF-α and IL-1β were significantly augmented
in the hippocampus (Figures 2A,C) and cerebral cortex
(Figures 2B,D) of cT2DM group compared with the normal
group (∗p < 0.05 vs. normal; ∗∗p < 0.01 vs. normal). In
contrast, TQ could downregulate the expressions of these
inflammatory mediators (#p < 0.05 vs. cT2DM; ##p < 0.01 vs.
cT2DM).

FIGURE 4 | Analysis of the correlations between miR-146a and inflammatory mediators. The level of miR-146a in the hippocampus (Aa) and cerebral cortex tissues
(Ba) by qRT-PCR. In the hippocampus, the correlations between miR-146a level and the expressions of COX-2 (Ab), (R2 = 0.861, p < 0.01), TNF-α (Ac),
(R2 = 0.809, p < 0.01), and IL-1β (Ad), (R2 = 0.909, p < 0.01). In the cerebral cortex, the correlations between miR-146a level and the expressions of COX-2 (Bb) ,
(R2 = 0.872, p < 0.01), TNF-α (Bc), (R2 = 0.895, p < 0.01), and IL-1β (Bd), (R2 = 0.848, p < 0.01). ∗∗p < 0.01 vs. Normal; ##p < 0.01 vs. cT2DM.
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Increased Oxidative Stress Status in the
Brain of Chronic T2DM Rats
Recently, a substantial literature has implied that oxidative stress,
which is induced for the imbalance between ROS production
and the anti-oxidative system, could exaggerate the pathological
lesions in the brain of cT2DM rats (Uruno et al., 2013). In the
study, to evaluate the level of oxidative stress, we assayed the
expressions of oxidant indicators including p22phox and MDA in
the hippocampus and cerebral cortex of cT2DM rats. p22phox is
a subunit of NADPH oxidase, which is served as a major source of
ROS. As showed in Figures 3A,B, the levels of MDA and p22phox
increased in the brain of cT2DM group (∗p < 0.05 vs. normal;
∗∗p < 0.01 vs. Normal) while decreased in TQ group (#p < 0.05
vs. cT2DM; ##p < 0.01 vs. cT2DM). In addition, the levels of Nrf2,
HO-1, and SOD were measured to determine the antioxidant
condition in the brain of cT2DM models. Our results showed
that the levels of Nrf2, HO-1, and SOD significantly decreased in
the brain of cT2DM group (∗p < 0.05 vs. normal; ∗∗p < 0.01 vs.
normal) while increased in the TQ group (#p < 0.05 vs. cT2DM;
##p < 0.01 vs. cT2DM) (Figures 3C–G).

Analysis of the Correlations Between
miR-146a and Inflammation Status
Convincing data has shown that miR-146a plays a vital role
in inflammatory process in various disorders including diabetes

mellitus (Balasubramanyam et al., 2011). In this study, the
expression of miRNA-146a significantly decreased in cT2DM
group (∗∗p < 0.01 vs. normal) while increased in TQ
group (##p < 0.01 vs. cT2DM) both in the hippocampus
(Figures 4Aa) and cerebral cortex tissues (Figures 4Ba). Then,
Pearson linear measurement was conducted to investigate the
relationship between miR-146a and inflammatory mediators.
There existed negative correlations between miR-146a and
inflammatory mediators including COX-2, TNF-α, and IL-
1β in the hippocampus of cT2DM group (Figures 4Ab–d
R2 = 0.861, p < 0.01; R2 = 0.809, p < 0.01; R2 = 0.909,
p < 0.01, respectively) and in the cerebral cortex (Figures 4Bb–d
R2 = 0.872, p < 0.01; R2 = 0.895, p < 0.01; R2 = 0.848, p < 0.01;
respectively). Pearson correlation analysis demonstrated that the
change in miR-146a was negatively correlated with the levels of
inflammatory mediators.

Analysis of the Correlation Between
miR-146a and Oxidative Stress Status
Recent studies highlighted that miR-146a was closely involved in
oxidative stress induced by hyperglycemia (Wan and Li, 2018).
In the current study, we assayed the correlations between the
levels of miR-146a and oxidant indicators as well as antioxidant
proteins using Pearson linear measurement. We observed that
change in miR-146a was negatively correlated with the levels
of oxidant indicators including MDA and p22phox in the

FIGURE 5 | Analysis of the correlation between miR-146a and oxidative status. The correlations between miR-146a level and the expressions of MDA (Aa)
(R2 = 0.740, p < 0.01), p22phox (Ab), (R2 = 0.690, p < 0.05), HO-1 (Ac), (R2 = 0.823, p < 0.01), and SOD (Ad), (R2 = 0.842, p < 0.01) in the hippocampus. The
correlations between miR-146a level and the expressions of MDA (Ba), (R2 = 0.935, p < 0.01), p22phox (Bb), (R2 = 0.796, p < 0.05), HO-1 (Bc), (R2 = 0.940,
p < 0.01), and SOD (Bd), (R2 = 0.876, p < 0.01) in the cerebral cortex.
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FIGURE 6 | Representative protein bands of IRAK1, TRAF6, and NF-κB p-p65 in hippocampus (A) and cerebral cortex (C). The relative ratio of IRAK1, TRAF6, and
NF-κB p-p65 according to band density in hippocampus (B) and cerebral cortex (D). The mRNA expression levels of IRAK1, TRAF6 and NF-kB p65 in the
hippocampus (E) and in the cerebral cortex (F). ∗p < 0.05 vs. normal; ∗∗p < 0.01 vs. normal; #p < 0.05 vs. cT2DM; ##p < 0.01 vs. cT2DM.

hippocampus (Figures 5Aa,b R2 = 0.740, p < 0.01; R2 = 0.690,
p < 0.05) and in the cerebral cortex (Figures 5Ba,b R2 = 0.935,
p < 0.01; R2 = 0.796, p < 0.05). While the level of miR-
146a was positively correlated with the antioxidant proteins
including HO-1 and SOD in the hippocampus (Figures 5Ac,d
R2 = 0.823, p < 0.01; R2 = 0. 842, p < 0.01) and in cerebral cortex
(Figures 5Bc,d R2 = 0.94, p < 0.01; R2 = 0.876, p < 0.01).

MiR-146a Might Regulate Inflammation
and Oxidative Stress Status via NF-κB
Signaling Pathway
It has been reported that miR-146a could inhibit NF-κB-mediated
signaling pathway by suppressing its target genes, including
IRAK1 and TRAF6, which was closely involved in inflammatory

and oxidative processes (Liu et al., 2017). Then, our results
showed the expressions of IRAK-1, TRAF6, and phosphorylated
NF-κB p65 markedly increased in cT2DM group (∗∗p < 0.01 vs.
normal) while decreased in TQ group (##p < 0.01 vs. cT2DM)
by western blot in the hippocampus (Figures 6A,C) and in the
cerebral cortex (Figures 6B,D). In addition, the results of EMSA
showed increased activation of NF-κB in the cerebral cortex of
cT2DM rats compared with the normal rats (Supplementary
Figure S1). We also examined the mRNA levels of IRAK-1,
TRAF6, and NF-κB p65 using qRT- PCR and the results showed
the similar changes with the protein expressions (Figures 6E,F),
which were negatively correlated with the miR-146a level. Our
results indicated that miR-146a might regulate the inflammation
and oxidative stress status in the brain of cT2DM models via
NF-κB signaling pathway.
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FIGURE 7 | The potential mechanisms of miRNA-146a in regulating inflammation and oxidative stress in the brain of chronic T2DM models (activation steps are
represented by solid lines and inhibitory effects are represented by dashed lines).

DISCUSSION

Diabetes-related brain impairment, mainly manifested as
cognitive and behavior dysfunction, has recently become a
hot spot of attention in patients with long-term T2DM (Sima,
2010). In fact, accumulating literatures highlighted that diabetic
patients suffered from higher risk of developing Alzheimer’s
disease (AD) and other type of dementia (Moreira, 2012).
Previous investigations indicated that chronic inflammation and
oxidative stress are the two key factors connecting T2DM to AD
via impairing cerebral insulin signaling and disturbing amyloid-β
(Aβ) protein metabolism (Verdile et al., 2015). Hyperglycemia
may activate several signaling adaptor proteins, like protein
kinase C (PKC) and TLRs, thus triggering the downstream NF-
κB-mediated inflammatory cascade (Rajamani and Jialal, 2014).
In addition, high glucose and AGEs could disturb mitochondrial
metabolism and aggravate ROS production via triggering the
activation of NADPH oxidase. A large amount of ROS could
lead to a further activation of the NF-κB signaling pathway,
ultimately exacerbating oxidative stress in diabetic patients
(Morcos et al., 2008; Xiang et al., 2012; Muriach et al., 2014).
Furthermore, the processes of oxidative stress and inflammation
are interdependent, which can be induced and further enhanced
with each other, thus exacerbating the brain insult in T2DM
(Biswas, 2016). In detail, inflammatory cells could respond
to oxidative stress by releasing various NF-κB-mediated pro-
inflammatory mediators, which in turn aggravated the status
of inflammation and oxidative stress, thereby establishing a
vicious cycle. A common hypothesis for the cause of the cerebral

insult in diabetes associated oxidative stress with inflammation
via NF-κB, a key regulator of inflammation as well as a potent
sensor of oxidative stress. NF-κB may play an essential role at the
crossroad between oxidative stress and inflammation (Muriach
et al., 2014). Consistent with previous studies, we also found that
the levels of inflammatory mediators like TNF-α, COX-2, IL-1β

along with phosphorylated NF-κB p65 dramatically increased in
the brain tissues of T2DM rats (Figure 2). Meanwhile, the redox
homeostasis was disturbed because of increased expressions
of pro-oxidant molecules (MDA and p22phox) and decreased
expressions of antioxidant proteins like HO-1 and SOD in
the brain of cT2DM rats (Figure 3). Substantial literature has
confirmed that TQ has anti-oxidative and anti-inflammatory
functions (Woo et al., 2012; Al Wafai, 2013). In our study, we
found that TQ could inhibit the expressions of inflammatory
mediators and alleviate the oxidative stress status as well as
the activation of NF-κB p65. Therefore, our results indicated
that TQ may attenuate the inflammatory and oxidative stress
processes via inhibiting NF-κB signaling pathway. Furthermore,
the emerging study has demonstrated that TQ inhibited NF-
κB-mediated neuro-inflammation dependent on activating
Nrf2-ARE signaling pathway, whereas silencing Nrf2 expression
resulted in the loss of anti-inflammatory effects (Velagapudi et al.,
2017). In contrast, new findings have found that NF-κB could
repress the Nrf2-ARE pathway through interaction with Keap1
(Yu et al., 2011; Sandberg et al., 2014). Therefore, the relationship
between anti-inflammatory effect and anti-oxidative effect of TQ
may be interdependent. Inflammation and oxidative stress are
tightly linked and interdependent pathophysiological processes.

Frontiers in Pharmacology | www.frontiersin.org 8 May 2018 | Volume 9 | Article 478

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00478 May 10, 2018 Time: 16:42 # 9

Xie et al. miR-146a in Brain of cT2DM

Therefore, antioxidant therapy alone was not sufficient to prevent
diseases induced by oxidative stress, which explained why Nrf2-
mediated neuroprotection failed to prevent cognitive decline
in diabetes (McNeilly et al., 2016). Interestingly, TQ relieved
the inflammation and oxidative stress status accompanied with
increased expression of miR-146a. Recently, miR-146a was
recognized as a potent regulator in inflammatory reaction in
various diseases associated with inflammation and oxidative
stress (Su et al., 2016; Wan and Li, 2018). It has been uncovered
that the level of miR-146a was reversely associated with chronic
inflammatory and oxidative processes via a negative feedback
regulation. The expression of miR-146a can be induced by pro-
inflammatory factors and ROS via activating the transcription
factor NF-κB, which located at the upstream of the promoter
of miR-146a. In turn, miR-146a could inhibit the activation
of NF-κB mediated inflammation via suppressing its target
genes expression like IRAK1 and TRAF6 (Li et al., 2015; Lo
et al., 2017). Knock-out of miR-146a in the mice under diabetic
condition resulted in increased pro-inflammatory phenotype
and macrophage infiltration (Bhatt et al., 2016). Furthermore,
it was verified that miR-146a could alleviate hyperglycemia
induced endothelial inflammation by inhibiting NAPDH oxidase
4 expression (Wang et al., 2014a). Consistent with previous
studies, our study also found the level of miR-146a decreased
along with increased level of inflammation in the brain of chronic
T2DM rats, while in the TQ group, miR-146a level increased
along with reduced inflammation and oxidative stress status.
It implied that the level of miR-146a was elevated because of
the decreased status of inflammation and oxidative stress, which
tended to be a credible comprehensive indicator of inflammation
and oxidative stress. However, there is doubt that whether
TQ exerted anti-inflammatory and anti-oxidative effects via
increasing the expression of miR-146a, which could suppress
the NF-κB signaling pathway. Further investigation is needed
to test the hypothesis. In addition, miR-146a expression was
found obviously decreased in the serum of subjects with T2DM
as well as other tissues affected by chronic hyperglycemia like
heart, retina, dorsal root ganglion neurons, and hippocampus,
which was negatively correlated to the inflammatory state (Wang
et al., 2014b). Paradoxically, the level of miR-146a was found
increased in the sciatic nerve and kidney tissues in chronic
T2DM rats. The difference may be explained by the fact that

the expression of miR-146a is dependent on the tissue type,
duration of diabetes, and gene polymorphism apart from severity
of inflammation (Kaidonis et al., 2016). Overall, our results
indicated that increased status of inflammation and oxidative
stress contributed to brain impairment in cT2DM rats, which
may be negatively regulated by miR-146a. In addition, the
level of miR-146a in the brain may indirectly serve as a
negative biomarker of the severity of chronic inflammation
and oxidative stress in the brain of cT2DM rats (Figure 7).
However, there were some disadvantages in our study because
we did not directly intervene miR-146a expression to observe its
impact on inflammation and oxidative stress. Therefore, further
research is needed to detect the role of miR-146a in regulating
inflammation and oxidative stress in brain impairment of T2DM
rats.
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