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ABSTRACT There is growing evidence that genetic diversity in Mycobacterium tu-
berculosis, the causative agent of tuberculosis, contributes to the outcomes of infec-
tion and public health interventions, such as vaccination. Epidemiological studies
suggest that among the phylogeographic lineages of M. tuberculosis, strains belong-
ing to a sublineage of Lineage 2 (mL2) are associated with concerning clinical fea-
tures, including hypervirulence, treatment failure, and vaccine escape. The global
expansion and increasing prevalence of this sublineage has been attributed to the
selective advantage conferred by these characteristics, yet confounding host and
environmental factors make it difficult to identify the bacterial determinants driving
these associations in human studies. Here, we developed a molecular barcoding
strategy to facilitate high-throughput, experimental phenotyping of M. tuberculosis
clinical isolates. This approach allowed us to characterize growth dynamics for a
panel of genetically diverse M. tuberculosis strains during infection and after vaccina-
tion in the mouse model. We found that mL2 strains exhibit distinct growth dynam-
ics in vivo and are resistant to the immune protection conferred by Bacillus
Calmette-Guerin (BCG) vaccination. The latter finding corroborates epidemiological
observations and demonstrates that mycobacterial features contribute to vaccine ef-
ficacy. To investigate the genetic and biological basis of mL2 strains’ distinctive phe-
notypes, we performed variant analysis, transcriptional studies, and genome-wide
transposon sequencing. We identified functional genetic changes across multiple
stress and host response pathways in a representative mL2 strain that are associated
with variants in regulatory genes. These adaptive changes may underlie the distinct
clinical characteristics and epidemiological success of this lineage.

IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a
remarkably heterogeneous disease, a feature that complicates clinical care and pub-
lic health interventions. The contributions of pathogen genetic diversity to this het-
erogeneity are uncertain, in part due to the challenges of experimentally manipulat-
ing M. tuberculosis, a slow-growing, biosafety level 3 organism. To overcome these
challenges, we applied a molecular barcoding strategy to a panel of M. tuberculosis
clinical isolates. This novel application of barcoding permitted the high-throughput
characterization of M. tuberculosis strain growth dynamics and vaccine resistance in
the mouse model of infection. Integrating these results with genomic analyses, we
uncover bacterial pathways that contribute to infection outcomes, suggesting targets
for improved therapeutics and vaccines.
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Pathogen population diversity can affect a range of clinically relevant phenotypes,
including virulence, response to treatment, emergence of antibiotic resistance, and

vaccine efficacy. In order to translate a basic understanding of pathogen biology into clin-
ical advances and begin to move toward the goal of personalized medicine in infectious
diseases, it is critical to assess the generalizability of a given observation to clinical patho-
gen populations. With the revolution in genome sequencing, we can envision a future in
which the features of the pathogen are incorporated into medical decision making.
Rapid, inexpensive sequencing technologies have transformed our ability to enumerate
the genetic diversity within and between pathogen populations. Uncovering the conse-
quences of these genetic variants for pathogen physiology and associating them with
specific phenotypes has been most successful in the arena of antimicrobial resistance.
This has been possible because drug resistance can be readily and reproducibly measured
in vitro, and there are now widely used diagnostic assays that leverage the resulting geno-
type-phenotype associations to rapidly tailor antimicrobial regimens (1). However, many
clinically relevant phenotypes, such as virulence, transmissibility, or likelihood of causing
different disease manifestations, are less easily measured and may be confounded by var-
iation in host features. In addition, we lack efficient experimental approaches to assess
the functional consequences of pathogen genetic variation at scale and thus are limited
in our capacity to create robust genotype-phenotype maps.

These challenges are particularly acute in the study of Mycobacterium tuberculosis,
the etiologic agent of tuberculosis, which is a leading cause of infectious disease
deaths worldwide (2). M. tuberculosis causes approximately 10 million active infections
per year and is estimated to latently infect 1/4 of the world’s population (2). Whole-ge-
nome sequencing-based phylogenetic studies have demonstrated that M. tuberculosis
strains segregate into seven distinct genetic lineages (Lineages 1 to 7) that have geo-
graphic origins reflecting evolution concurrent with early human migration (3, 4).
Epidemiological studies have found associations between strain lineage and a range of
clinical phenotypes, including disease progression, transmissibility, likelihood of antibi-
otic resistance, and the efficacy of vaccination (5–13). However, these associations are
not always consistent from study to study (14) and are confounded by the strong geo-
graphic structure of the M. tuberculosis phylogeny, making the impact of pathogen var-
iation difficult to distinguish from host and health system variation. Moreover, because
manipulating M. tuberculosis is so cumbersome, the experimental characterization of
strain differences has focused on a tiny number of reference strains; thus, it is often
unclear whether the identified phenotypic characteristics are reflective of lineage-, sub-
lineage-, or strain-level differences.

Several epidemiologic studies suggest that strains belonging to a sublineage of
Lineage 2, the so-called “modern Beijing” lineage, here referred to as mL2, are associated
with hypervirulence, increased transmissibility, treatment failure, and escape from the
protection conferred by vaccination (5–13). Comparative phenotyping of an L4 reference
strain, H37Rv, with an mL2 strain (HN878) demonstrated that mL2 strains synthesize phe-
nolic glycolipid, a cell envelope lipid with immunomodulatory properties (15, 16), and
that the associated polyketide synthase gene, pks15-pks1, is disrupted by a small deletion
in L4 strains. Directed genetic studies of HN878 and H37Rv demonstrate that production
of phenolic glycolipid increases virulence in mice, suggesting a model in which the
increased virulence and transmission of mL2 strains compared to L4 strains can be at least
partially attributed to this genetic difference. However, the presence of an intact pks15-
pks1 open reading frame does not strictly correlate with virulence across clinical isolates.
Ancestral L2 strains and strains from Lineages 1 and 3, which are not associated with
enhanced virulence, also possess an intact pks15-pks1 gene (17–19).

The basis of other lineage-associated traits is even less well understood. mL2
strains are associated with the more frequent acquisition of multidrug resistance
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and treatment failure, and some mL2 strains have an increased basal mutation rate,
leading to the hypothesis that there has been selection for the evolution of hyper-
mutability to increase fitness in the setting of widespread antibiotic treatment (20,
21). These differences in mutability have been ascribed to sublineage-specific mis-
sense mutations in the DNA damage repair genes mutT2, mutT4, and ogt (22, 23).
However, these variants have not been conclusively linked to hypermutability in experi-
mental or observational studies (24–27). mL2 strains also possess genetic variants that
result in the constitutive overexpression of the DosR regulon, a hypoxic response regu-
lon hypothesized to confer a fitness advantage in vivo (28). However, DosR overexpres-
sion did not enhance M. tuberculosis fitness in an animal model of infection (28). Taken
together, these data suggest that it is too simplistic to imagine that the complex clinical
traits ascribed to different M. tuberculosis lineages are the result of any single mutation.
Rather, the evolution of M. tuberculosis over time may have produced a network of inter-
acting genetic variants resulting in the rewiring of key features of pathogen biology in a
way that has modulated clinical characteristics. Consistent with this idea, a population
genetic analysis of M. tuberculosis isolates found that nonsynonymous single nucleotide
polymorphisms (SNPs) were overrepresented in transcriptional regulators in mL2 strains,
a signature of selection and a potential mechanism for widespread functional genetic
changes (29).

Ultimately, to incorporate bacterial features into the design and deployment of new
diagnostics and treatments for M. tuberculosis, and in infectious diseases more gener-
ally, we need facile tools to rapidly phenotype clinical pathogen populations and to
define the major molecular axes of biologic variation for traits beyond antimicrobial re-
sistance. To address these limitations for M. tuberculosis, we demonstrate the feasibility
of utilizing molecular barcoding to define strain and lineage growth dynamics in the
mouse model of infection. Working from the hypothesis that infection phenotypes are
likely multigenic, we employ a coordinated set of systems genomic tools to map the
molecular basis of lineage-specific growth traits. We show that a representative mL2
strain exhibits broad rewiring of stress and host response pathways associated with
variants in key regulatory genes. These adaptations may underlie this lineage’s unique
clinical characteristics and global epidemiological success and reveals vulnerabilities
that could be exploited to develop improved therapeutics and more effective vaccines.

RESULTS
Molecular barcoding of M. tuberculosis clinical isolates permits multiplexed

phenotyping in vitro and in vivo. We sought to develop methodology to facilitate
quantitatively robust, facile phenotyping of M. tuberculosis clinical strains. We previ-
ously demonstrated the utility of genetic barcoding to tag individual bacteria and iso-
genic strains in a population, which can then be assayed in experiments where com-
petitive fitness is tracked through deep sequencing (30). We therefore prototyped a
similar strategy to rapidly define the in vivo characteristics of a panel of M. tuberculosis
clinical isolates. We assembled a panel of 16 clinical isolates, representing three epide-
miologically prevalent lineages (L2, L3, and L4), and the widely used reference strains
H37Rv and Erdman, which belong to L4 (Fig. 1A) (31, 32). Of the eight L2 strains in our
panel, six belong to the “modern” Beijing sublineage, one belongs to the “ancestral”
Beijing sublineage (N0052), and one belongs to the “proto” Beijing sublineage (N0031).
We tagged each strain with a unique, 8-bp barcode that can be read out by next-gen-
eration amplicon sequencing (Fig. 1B). To provide an internal assessment of experi-
mental reproducibility, each strain was barcoded in duplicate.

We then evaluated the viability of this approach to enumerate strain fitness in vitro
and in an infection model. To measure in vitro growth dynamics, barcoded strains were
pooled at equal ratios based on the optical density at 600 nm (OD600) and inoculated
into standard medium. Bacteria were plated for CFU enumeration and genomic DNA
extraction on days zero, three, and seven postinoculation. Barcode abundance was
determined by amplicon sequencing (see Materials and Methods), and an inferred CFU
value for each strain was calculated from the total number of CFU and relative barcode
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abundance at each time point (Fig. 1B). Inferred CFU values were normalized to input
values. We found that growth rates of barcode replicates for each strain were highly
correlated within experiments and across independent experiments (see Fig. S1A and
B and Table S1 in the supplemental material).

Having demonstrated the capacity of this approach to robustly track bacterial strain
growth dynamics in vitro, the barcoded pool was then used to infect C57BL/6 mice.
One, 14, and 28 days postinfection, mice were sacrificed and spleen and lung tissue
harvested for CFU enumeration and barcode abundance as described above. Each
strain’s inferred CFU values were normalized to day one values. We found that growth
rates of strain barcode replicates were highly correlated in both lung and spleen tissue
(Fig. S1C and D, Table S1). We performed a second infection and found that strain
growth rates in two independent experiments were also highly correlated (Fig. S1E).
These results demonstrate that our barcoding approach permits highly reproducible,
multiplexed tracking of M. tuberculosis growth dynamics over the course of infection.

FIG 1 Barcoded pool of M. tuberculosis clinical isolates for multiplexed phenotyping. (A) Phylogenetic tree of M. tuberculosis isolates used in this study; an
approximate maximum likelihood tree was generated with FastTree. (B) Strategy for barcoding and pooling isolates, performing mouse infections, calculating
CFU, and determining cumulative bacterial growth. (C) Growth dynamics of M. tuberculosis isolates in the lung over the course of infection. Each strain’s CFU
values were normalized to day 1 postinfection and log10 transformed. Data represent means with standard deviations (SD) (n = 4). Barcode replicates are shown
as solid/dashed lines. (D) Hierarchical cluster analysis of strain growth rates over the first 2 weeks of infection and the second 2 weeks of infection. (E)
Cumulative growth of each strain in the lung over the 4-week infection. Data represent mean replicate barcodes for each strain and standard errors of the
means (SEM). (F) Growth in the lung of mL2 strains compared to all other strains, with significance determined by Mann-Whitney U test. (G) Correlation
between cumulative bacterial growth in vitro and in vivo in the lung (Pearson correlation coefficient of log10 transformed data).
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Barcoding reveals lineage-specific growth dynamics during infection. Bacterial
growth in vivo is an essential component of pathogenicity, and different growth rates
may be advantageous during different disease stages and states. M. tuberculosis
growth dynamics are characterized by an initial phase of relatively unchecked growth
before an effective immune response can be mounted (33). This is followed by an
extended, sometimes lifelong, period of reduced bacterial burden that represents the
outcome of a dynamic interplay between pathogen growth and host-mediated killing
(33). Some, but not all, animal studies have observed an increased bacterial burden
among mL2 strains during acute infection, a trait that is suggested to provide a selec-
tive advantage (34–36).

Therefore, we sought to define strain and lineage growth dynamics during infection
with our barcoding approach. We focused on mL2, L3, and L4, where we had several
representative isolates, enabling us to draw more general conclusions about lineage
traits. Because the lung is the physiological niche to which M. tuberculosis is adapted,
we focused on bacterial growth phenotypes in this tissue, where we observed variable
growth dynamics that appeared similar among strains of the same lineage (Fig. 1C).
Hierarchical cluster analysis of growth rates confirmed that strains belonging to mL2
grouped together, while strains belonging to L4 grouped together (Fig. 1D). The
growth dynamics of L4 were characterized by rapid growth over the first 2 weeks of
infection, followed by a plateau over the second 2 weeks of infection. mL2 growth dy-
namics were characterized by slower growth over the first 2 weeks of infection and
continued, steady growth over the following 2 weeks (Fig. 1C and D). Strains from L3
exhibited mixed growth dynamics.

We next assessed cumulative bacterial growth over the course of the infection by
calculating the area under the curve (AUC) of the log-transformed, normalized CFU val-
ues (Fig. 1B). Unexpectedly, we found that bacterial growth in the lungs over the 4-
week infection period was significantly less in the mL2 strains than in other strains
(P = 0.0027) (Fig. 1E and F). Analysis of the spleen CFU data did not reveal a statistically
significant growth difference between mL2 and other strains (P = 0.3450) (Fig. S1F and
G) and mL2 strains are not universally slow growing, as they did not exhibit reduced
growth in vitro in 7H9, a standard culture medium (P = 0.8518) (Fig. S1H). There was no
correlation between cumulative bacterial growth under this in vitro condition and in
vivo growth (Fig. 1G and Fig. S1I), suggesting that strain growth dynamics are sculpted
by the host environment. To further test this hypothesis, we infected RAG1 knockout
(KO) mice, which do not have mature B or T cells, with the barcoded pool. In this
immunocompromised host background, we found that mL2 strains’ growth was not
significantly less than that of other strains (P = 0.1419) (Fig. S2A). Taken together, these
observations suggest that the slow growth of mL2 strains is in response to an intact
immune response in the lung environment and not a global feature.

BCG confers less protection against infection by mL2 strains. The mL2 growth
characteristics were surprising given our assumption that increased epidemiologic fit-
ness would correlate with increased bacterial burden in vivo. However, more nuanced
models for the increasing prevalence of mL2 suggest that this lineage has become epi-
demiologically dominant in the setting of widespread vaccination with Bacillus
Calmette-Guerin (BCG) (37). BCG is a live, attenuated strain of Mycobacterium bovis
whose protective efficacy is both incomplete and variable (38). One contribution to the
variable efficacy of BCG is thought to be M. tuberculosis strain diversity, and some, but
not all, studies have found that BCG has reduced efficacy against infection by mL2
strains (8, 36, 39–42). However, this has been difficult to assess in human population
studies due to host and environmental confounders. Therefore, we next aimed to use
our molecular barcoding approach to determine whether BCG confers equal protec-
tion against mL2 strains compared to strains from other lineages.

Mice were vaccinated subcutaneously with BCG, rested for 12 weeks to allow an
adaptive immune response to develop, and then challenged with the barcoded M. tu-
berculosis pool (Fig. 2A). One day, 2 weeks, and 4 weeks postchallenge, lung and spleen

M. tuberculosis Strain Diversity mSystems

May/June 2022 Volume 7 Issue 3 10.1128/msystems.00110-22 5

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00110-22


tissue were harvested and CFU values inferred as described above. To quantify protec-
tion, we calculated the difference in cumulative bacterial growth over time between
naive and BCG-vaccinated animals (Dlog10AUC). We found that the protection con-
ferred by BCG vaccination varied by strain (Fig. 2B). Consistent with epidemiologic pre-
dictions, BCG conferred significantly less protection against mL2 strains than other
strains in the pool in lung tissue (P = 0.0007) (Fig. 2C). The protection conferred by BCG
was tissue specific, and there was no difference in protection between mL2 strains and
other strains in the spleen (Fig. S2B and C).

Strain-specific differences in gene expression under stress conditions. Together,
these data indicate that mL2 strains have in vivo traits that are not neatly classified as
hypervirulence. To better understand the relevance of these features to the more com-
plex context of human infection, we sought to identify bacterial pathways shaping the
in vivo biology of mL2 strains. Comparative genomic and population genetic analyses
have identified a number of sequence variants specific to mL2 strains and found that
variants in regulatory genes are overrepresented (22, 29). These genetic changes
include nonsynonymous SNPs in the dosR-dosS-dosT and kdpD-kdpE two-component
systems, the serine/threonine protein kinase pknA, the LuxR family regulators Rv0890c
and Rv2488c, and the tetR family regulators Rv0452 and Rv0302, among others. The
impact of most of these variants for pathogenesis has not been determined; however,
this sequence-level analysis suggests differential engagement of key regulatory nodes
at the host-pathogen interface in mL2 strains, with potential consequences for infec-
tion phenotypes.

10

10

FIG 2 Defining strain and lineage contributions to BCG vaccine escape. (A) Strategy for vaccinating and challenging mice and
quantifying protection. (B) Difference in bacterial burden in the lung conferred by BCG vaccination over the course of the 4-week
infection. Data represent mean replicate barcodes and SEM. (C) Protection conferred by BCG vaccination against mL2 strains
compared to all other strains, with significance determined by Mann-Whitney U test.
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To test this model, we selected representative mL2 (621) and L4 (630) strains from
the barcoded panel in addition to the widely used reference strain, H37Rv, which
belongs to L4, for further characterization. We included a clinical isolate from L4 as a
comparator because it is likely that H37Rv has adaptations due to continuous labora-
tory culture (43). First, we identified genetic variants specific to the mL2 strain 621
compared to H37Rv and the L4 clinical isolate (Table S2). Consistent with published
studies, we identified variants in regulatory genes, including a 1-bp deletion in the
gene encoding the DosT sensor kinase, which has been linked to overexpression of the
DosR hypoxia-responsive regulon under exponential growth conditions (44) as well as
synonymous and nonsynonymous SNPs in the genes encoding the MprA/B two-com-
ponent system, which regulates numerous stress and host response pathways, includ-
ing alternative sigma factors and the ESX-1 virulence system (Fig. 3A) (45, 46).

Given the large number of genetic changes we identified through this sequence anal-
ysis, we reasoned that rather than reductionist, single-variant studies, we would employ
systems biology approaches to gain insight into the molecular basis of mL2 strain infec-
tion phenotypes. Because we identified a number of genetic differences in critical regula-
tors of bacterial adaptation to host-imposed stresses, we decided to assess the transcrip-
tional responses of these strains under in vitro conditions that mimic the phagolysosomal
environment inhabited by M. tuberculosis, specifically, oxidative stress at low pH and nu-
trient starvation (Fig. 3B). To do so, we designed a custom NanoString probe set to mea-
sure expression of 54 curated bacterial stress regulators and downstream response genes
(Table S3). These targets were selected because they have been shown to be induced
during infection or under in vitro conditions that approximate the infectious milieu (47–
50). RNA was extracted 2, 6, and 24 h after stress induction, and reads were normalized to
internal controls and time point 0 (T0; see Materials and Methods). Hierarchical cluster
analysis revealed concerted changes in gene expression under each condition, consistent
with prior reports (Fig. S3) (47). Because we measured gene expression at multiple time
points, we integrated normalized NanoString counts over time for a more robust assess-
ment of each strain’s transcriptional response. To identify lineage-specific differences in
expression, we filtered for genes that were both quantitatively and qualitatively differen-
tially expressed in the mL2 strain compared to both H37Rv and the L4 clinical isolate
(Fig. 3C and D and Table S3).

Among this set of differentially expressed genes, we observed higher expression of
the alternative sigma factors sigB, sigE, and sigH as well as the two-component sensor
mprA under the low-pH, oxidative stress condition (Fig. 3C) and higher expression of
sigE under starvation (Fig. 3D). sigE is considered a master regulator of mycobacterial
gene expression under stress conditions (51), while sigB appears to be an end regulator
in the sigma factor cascade (52). sigE, sigB, and sigH are part of a transcriptional circuit
with the MprA/B two-component system, a central sensor of environmental stresses
and key determinant of mycobacterial persistence during infection (46, 53–55).

Previous studies have found that dosR expression is constitutively higher in mL2
strains (28, 44), which we also observed in the T0 data (Table S3); however, we found
that dosR expression was significantly lower in the mL2 strain under both stress condi-
tions (Fig. 3C and D). This suggests that the mL2-specific dosR genetic variants alter the
transcriptional response of this regulator under stress conditions as well as under basal
conditions, potentially in diverging ways. A subset of the dosR regulon genes was
included in our expression panel: narK2 (nitrate transport) and tgs1 (triacylglycerol syn-
thase). Both genes were differentially expressed in the mL2 strain under the tested
stress conditions, displaying condition-specific expression profiles, with higher expres-
sion of narK2 and tgs1 under the low-pH, oxidative stress condition and decreased
expression of tgs1 under starvation. This likely reflects the integration of signals from
multiple regulators to generate a response appropriate for both gene function and
environmental conditions. Taken together, these targeted expression data indicate
that mL2 strains have a distinct transcriptional response to the stresses experienced
during infection that may impact virulence traits.
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FIG 3 Transcriptional signatures under stress conditions differ between M. tuberculosis strains. (A) STRING plot of regulatory genes
with coding region variants specifically in the mL2 strain 621 compared to the L4 strain 630 and the reference strain H37Rv. Edge
thickness represents strength of evidence for direct interaction. (B) Experimental strategy for the in vitro stress gene expression
experiment. (C and D) Genes with quantitative and qualitative differences in expression in the mL2 strain under oxidative stress, low-

(Continued on next page)
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Functional genomic analysis ofM. tuberculosis strains during infection. An alter-
native to using whole-genome sequencing and expression analyses to develop models
of the biological pathways driving pathogen phenotypes is instead to leverage a func-
tional genomic method: transposon sequencing (TnSeq). TnSeq entails genome-wide
transposon mutagenesis coupled with next-generation sequencing and is a high-
throughput, unbiased approach to defining bacterial genetic requirements for survival
and growth under a condition of interest (56). In contrast to sequence analyses, where
the biological consequences of individual variants may be difficult to predict, or tran-
scriptomics, which can discount the role of constitutively expressed genes and post-
transcriptional regulation, TnSeq provides a functional readout of the fitness cost of
gene disruption. Importantly, strain-to-strain differences in genetic requirements iden-
tified by TnSeq have been shown to reflect meaningful differences in bacterial physiol-
ogy (32, 57, 58). Therefore, we sought to use this approach to comprehensively define
functional genetic differences in mL2 strains during infection.

To do so, C57BL/6 mice were infected with saturated transposon libraries of the
three strains subjected to sequence and expression analyses: mL2 strain 621, L4 strain
630, and reference strain H37Rv. Because we observed the greatest distinctions in bac-
terial growth dynamics between mL2 and other strains 2 weeks postinfection (Fig. 1D),
we chose 1- and 2-week time points for TnSeq analysis. We initially sought to compare
genetic requirements during infection among strains by performing comparisons of
each strain’s in vitro and in vivo libraries using a permutation test-based method to
identify genes with statistical differences in read count (Table S4). Using this approach,
we identified 137 genes that were essential for infection in all three of the M. tuberculo-
sis isolates at either time point and as many as 132 genes required specifically in one
strain. Among the core essentials are genes involved in critical metabolic processes
(bioA), cell wall processes (pbpA), and nutrient acquisition (mbtA). However, a limitation
of a binary classification system is that quantitative differences in genetic requirements
are not uncovered. For example, a gene might be classified as nonessential for infec-
tion in all strains, yet the relative fitness cost of disrupting the gene may differ and can
reflect important physiological differences among strains (32, 59).

Capturing such quantitative differences from a conditional TnSeq data set requires
accounting for differences in the input libraries that exist due to both the stochastic
nature of transposon mutagenesis and biological differences among strains. To accom-
plish this, we applied a Bayesian method that performs a four-way comparison of
transposon-junction read counts across input and output libraries and compares the
relative change in transposon mutant abundance (Fig. 4A) (60). This interaction analy-
sis identifies genes that are conditionally essential in vivo in a strain-dependent man-
ner. This pipeline was originally developed to identify epistatic genetic interactions
between deletion strain and wild-type backgrounds; however, we reasoned that it
could be used to identify differences in genetic requirements between strains of dis-
tinct genetic backgrounds.

We therefore performed pairwise interaction analysis between the reference strain
H37Rv and each of the clinical isolates at each time point (Table S4). To define differen-
ces in genetic requirements specific to the 621 clinical isolate during infection, we con-
sidered only genes that were statistically significant (P value of ,0.05) in the H37Rv-
621 comparison but not significant in the H37Rv-630 comparison. By these criteria, 32
genes were differentially required in the mL2 strain 1 week postinfection, and 118
genes were differentially required 2 weeks postinfection. These gene sets were highly
overlapping, as 21 of the 32 genes significant at week one were significant 2 weeks
postinfection. To gain insight into the biological processes that differ among strains
during infection, we performed gene set enrichment analysis (GSEA) on the output of

FIG 3 Legend (Continued)
pH conditions (C), and starvation conditions (D) over the course of the experiment. Asterisks indicate significant differences in
integrated gene expression over time, determined by calculating the area under the curve for T0 normalized, log2 transformed data
and performing one-way ANOVA with Tukey’s posttest for significance.
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the interaction analysis, using the Dlog2(fold change) values as input for the preranked
method and Gene Ontology (GO) terms for functional annotation (Fig. 4A) (61). GSEA
found that compared to the reference strain H37Rv, the mL2 isolate had 73 signifi-
cantly enriched GO terms (P , 0.05). To identify pathways that were enriched specifi-
cally in the mL2 strain, 25 GO terms that were significant in the comparison between
H37Rv and 630 were excluded. The remaining 48 GO terms indicated a decreased
requirement in the mL2 strain for genes involved in host interactions, including the ca-
nonical virulence system, ESX-1; cholesterol catabolism; protein secretion; and heme
metabolism (Fig. 4B and Table S5). There was an increased requirement in the mL2
strain for genes involved in DNA damage repair, phosphate uptake, fatty acid oxida-
tion, and cyclic nucleotide signaling, among others (Fig. 4C). We found similar differen-
ces in GO term enrichment when comparing the mL2 and L4 clinical isolates head to
head (Table S5), indicating that the observed differences do not simply reflect labora-
tory adaptation of H37Rv. Most of these processes were also enriched at the 2-week
time point (Fig. S4), suggesting sustained, strain-specific differences in host-pathogen
interactions during infection.

To place the variability in genetic requirements we observed between bacterial iso-
lates from different phylogenetic lineages into broader biological context, we consid-
ered a recently published TnSeq study that investigated M. tuberculosis requirements
for infection across genetically and immunologically diverse mouse backgrounds (62).
In this study, an H37Rv transposon library was used to infect a panel of 60 mouse

FIG 4 Functional genomics to identify genetic determinants of mL2 infection phenotypes. (A) Experimental strategy and analytic approach to defining
differences in relative genetic requirements between strains during infection using transposon sequencing and genetic interactions analysis. (B and C)
Network plots generated in Cytoscape depicting genes that have a decreased requirement (B) in the mL2 strain compared to the reference strain, H37Rv, 1
week postinfection or an increased requirement (C) by GSEA. Nodes represent enriched Gene Ontology (GO) terms with a cutoff of P , 0.05. GO terms
that were also significant in the comparison between H37Rv and the L4 clinical isolate 630 were excluded. Node color represents normalized enrichment
score. Node size is inversely proportional to significance value. Edge thickness represents the number of overlapping genes, determined by the similarity
coefficient. Heatmaps display leading edge genes for each cluster, with color corresponding to the Dlog2(fold change) values of the genetic interactions
TnSeq analysis.
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genotypes encompassing strains from the Collaborative Cross Collection and mice
with specific immunological deficits, such as gamma interferon (IFN-g) knockout. This
approach facilitated a comprehensive assessment of variation in bacterial genetic
requirements under distinct infection conditions. Consistent with our work and previ-
ous studies, the authors identified 234 genes required for H37Rv to grow or survive in
C57BL/6 mice, yet there were as many as 212 additional in vivo-essential genes per
mouse genotype. This is comparable to the 155 genes we identified as differentially
required to infect C57BL/6 mice in the mL2 isolate compared to H37Rv, suggesting
that the functional genetic differences between M. tuberculosis strains can be as sub-
stantial as those that are imposed by distinct host backgrounds. Through network
analysis, the authors found that differentially required genes could be clustered into 20
modules with correlated changes in fitness. We performed a statistical analysis of the
overlap between these modules and the genes that were differentially required in the
mL2 strain during infection and identified three modules with significant overlap (P-
adj. , 0.05, Fisher’s exact test). These modules are categorized as ESX-1, phosphate
uptake, and an uncategorized set that includes a number of DNA damage repair genes.
This intersection of host and pathogen variability suggests that certain lineages of M.
tuberculosis may be adapted to specific host environments, consistent with population
genomic analyses (4).

Regulatory variants are associated with differential genetic requirements during
infection. Our TnSeq data indicate widespread functional genetic differences between
M. tuberculosis strains over the course of infection. We noticed that many of the GO
terms found to be enriched by GSEA in the mL2 strain represent biological processes
regulated by genes with 621-specific genetic variants. For example, cholesterol metab-
olism genes are differentially required in 621, and this strain possesses a SNP upstream
of kstR, which controls the cholesterol catabolism regulon. This suggests that rewiring
of the bacterial response to the host environment is driven by selection on regulatory
genes, consistent with sequence analyses of mL2 genomes (22, 29).

To test this hypothesis, we mined a published data set from a comprehensiveM. tuber-
culosis transcription factor overexpression (TFOE) study (63). In this work, 206 of the 214
known and predicted M. tuberculosis transcription factors were inducibly overexpressed
and transcriptional signatures assessed by high-density microarray, reflecting both direct
and indirect regulatory effects. We integrated these data with our TnSeq results to deter-
mine which differentially required genes (as determined by genetic interactions analysis)
were regulated by transcription factors with sequence variants. In cases such as the DosR
regulon, where variants are located in the sensor of a two-component system, we consid-
ered genes regulated by the transcription factor. We found that 42 of the 129 genes that
were differentially required specifically in mL2 strain 621 were regulated by a transcription
factor possessing a 621-specific genetic variant (Fig. 5A). To assess the statistical signifi-
cance of this finding, we performed a simulation with a null distribution of 10,000 trials of
129 genes chosen at random and found the overlap to be highly significant (P = 0.0048).
This result is consistent with a model in which variants in response regulators drive func-
tional genetic differences among strains.

This analysis likely underestimates the relationship between genetic variants in
transcriptional regulators and the differential genetic requirements identified by TnSeq
in this representative mL2 strain. In the TFOE study, transcriptional responses were
assessed under a single, in vitro growth condition at a single time point, and stringent
statistical thresholds were used to determine regulatory relationships. This may mask
subtle but biologically important regulatory roles. For example, the transcriptional acti-
vator mprA, part of the MprA/B two-component system, was not found to regulate any
genes by the rigorous thresholds of the TFOE study. However, directed genetic studies
have found that espR is regulated by mprA (45, 64), and the sensor kinase of this sys-
tem, mprB, has a nonsynonymous SNP in strain 621 (Fig. 3A and Table S2). espR regu-
lates the ESX-1 virulence system, which was differentially required by the mL2 strain
during infection (Fig. 4B and Table S4). MprA/B is also part of a regulatory loop with
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the alternative sigma factors sigB, sigE, and sigH (Fig. 5B); therefore, genetic variants at
the top of this cascade may have pleotropic transcriptional effects.

These regulatory gene variants and associated functional genetic changes could
confer resistance to the killing mechanisms imposed by the host or could reflect com-
pensatory changes due to differences in the cellular microenvironment experienced by

FIG 5 Differentially required genes are regulated by transcription factors with strain-specific variants. (A) Network plot
generated in Cytoscape showing genes with mL2 strain-specific TnSeq differences that are transcriptionally regulated by
systems with strain-specific genetic variants. (B) Schematic depicting the complex regulatory circuit of the two-component
system MprA/B, which has an nsSNP in the sensor gene mprB in strain 621.
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different strains. To distinguish between these possibilities, we performed a time-kill
assay with the barcode library under low pH and nitrosative stress, conditions encoun-
tered by the bacterium during infection. We found that survival under acid stress was
significantly higher for the mL2 strains than the other strains in the panel (Fig. S5A).
There was no significant difference in survival under nitrosative stress; however, there
was not substantial killing of either group at the dose used in this experiment
(Fig. S5A). Taken together, these findings suggest that the functional genetic changes
in mL2 strains are protective rather than compensatory.

DISCUSSION

Tuberculosis is a notoriously heterogeneous disease, with outcomes ranging from
lifelong, asymptomatic latency to primary progressive disease. Dissecting the contribu-
tion of bacterial genetic variation to this heterogeneity has been limited by confound-
ing host and environmental factors in population studies and by the experimental
intractability of M. tuberculosis in laboratory studies. Here, we developed a robust mo-
lecular barcoding approach that allowed us to characterize in vivo growth dynamics in
a high-throughput fashion for a genetically diverse panel of M. tuberculosis isolates.
Among these isolates are strains from the so-called “modern Beijing” sublineage (mL2),
a sublineage that has been expanding in population size over the past 2 centuries, pos-
sibly due to traits that confer a selective advantage (65). One of the features attributed
to mL2 strains in some epidemiological and small-animal studies is increased virulence
(6, 8, 9, 13, 15). Therefore, it was unexpected that our in vivo fitness phenotyping
revealed reduced cumulative bacterial growth of mL2 strains over the course of infec-
tion compared to other strains in our panel. An explanation for this discrepancy may
be that many previous animal studies used a single strain or small number of strains
isolated from outbreaks, such as HN878, that might inadvertently bias toward hypervir-
ulence. In this study, we included mL2 strains from a reference set that was curated to
be representative of each lineage (31). Thus, slower bacterial growth during acute
infection may be more typical of the growth dynamics of mL2 than prior studies sug-
gested. Indeed, M. tuberculosis is a pathogen that can infect an individual for a lifetime
without a measurable increase in bacterial burden, and slow growth may be a survival
strategy that circumvents immune-mediated killing (66). Therefore, perhaps it is not
surprising that an epidemiologically successful lineage of M. tuberculosis exhibits
reduced growth compared to other strains, at least during the early stages of infection.

Our barcoding approach also permitted a systematic examination of M. tuberculosis
strain and lineage contributions to the efficacy of BCG vaccination, an unresolved
question in the field. The importance of M. tuberculosis strain variation for vaccine effi-
cacy has been difficult to assess in population studies, where host and environmental
factors also vary. Our findings in the mouse, a relevant preclinical model for M. tubercu-
losis vaccination studies, experimentally confirm observations made in some epidemio-
logical studies of reduced BCG efficacy against mL2 strains. This suggests that as new
tuberculosis vaccines are designed, they should be evaluated for efficacy against ge-
netically diverse and epidemiologically prevalent strains, and our barcoding approach
provides a scalable means to do so.

Barcoding also makes assessing vaccine efficacy and pathogenesis traits in other
infection models more efficient and experimentally tractable. Two mouse backgrounds
were used in this work, including C57BL/6, which is widely used and recapitulates
many features of human M. tuberculosis infection (67). However, there are important
aspects of human disease, such as latency and transmission, that are not captured by
this model yet may contribute to the epidemiologic success of the mL2 sublineage.
Other mouse genotypes and other animal species more accurately reflect some
aspects of human tuberculosis, and a key aim of future work is to define bacterial strain
fitness and vaccine efficacy across diverse host backgrounds.

Together, these studies demonstrate the power of molecular barcoding for high-
throughput phenotyping of bacterial strains, an approach that is applicable to
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numerous pathogens. While robust measurements of bacterial growth can be per-
formed, bacterial burden is not the only feature driving virulence, and the multiplexed
nature of this approach incurs limitations. These include the nonphysiologic intrave-
nous route of infection required to prevent bottlenecking of the pool; the possibility
that the immune response to some strains in the pool may impact the growth of other
strains; and the inability to investigate immunopathology. While phenotypes that
transcomplement will not be uncovered, this is a feature of other pooled phenotyping
techniques, such as TnSeq and CRISPRi, which have nevertheless revealed important
biological principles about numerous pathogens. For these reasons, single-strain infec-
tions will be an important next step in validating the findings made here. Despite these
limitations, the lineage-level consistency in strain growth and vaccination phenotypes
we observe reveal important features about M. tuberculosis biology that would be pro-
hibitively onerous to uncover with a traditional, single-strain approach.

M. tuberculosis is an obligate human pathogen that is exquisitely adapted to the hos-
tile environment of the lung and has evolved a suite of mechanisms to survive the stres-
sors it encounters during infection (68). Therefore, we reasoned that it was unlikely that a
single genetic change would be responsible for the clinical features attributed to mL2
strains or the phenotypes we observed in the mouse model. Thus, we elected to employ
systems approaches that could interrogate coordinated, pathway-level changes in repre-
sentative isolates. Our subsequent transcriptional and functional genomic studies indicate
that the mL2 strain is functionally rewired across numerous stress and host response
pathways. The genes we identified by TnSeq with mL2-specific differential requirements
during infection represent key adaptive processes, including the ESX-1 virulence system,
lipid metabolism, and DNA damage repair. A limitation of M. tuberculosis TnSeq studies is
that due to the large number of mutants, selection must occur in the spleen to prevent
bottlenecking of the transposon library. Therefore, an important goal of future work is to
validate the genetic requirements identified by TnSeq in the aerosol infection model and
to investigate how genetic requirements change over time, given the relatively short
length (2 weeks) of our TnSeq experiments.

Our analysis indicates that the differentially required genes identified by TnSeq are
more likely to be regulated by transcription factors with strain-specific variants than
chance, a potential mechanism of evolutionary adaptation. Population genomic analy-
ses are consistent with this observation, having found that transcriptional regulators
are enriched for variants in mL2 (22, 29). Indeed, studies across other prokaryotic spe-
cies suggest that evolution of transcription factor network structure is an important
means of phylogenetic diversification and can lead to the emergence of organisms
with distinct responses to environmental stimuli (69). What is the role of these variants
for strain fitness during infection? The reduced cumulative growth of mL2 strains
observed during infection could reflect increased bacterial killing by the host or could
reflect growth regulation by the bacterium. Our in vitro kill curves suggest that mL2
strains are not more susceptible to killing by antibacterial mechanisms employed by
the host, and our RAG1 KO data suggest that mL2 strains are capable of robust growth
in the absence of an adaptive immune response. Therefore, our working model is that
the reduced in vivo growth of mL2 strains in immunocompetent mice reflects regu-
lated, protective growth slowing triggered by cues in the host environment (see
Fig. S5B in the supplemental material). An important goal for future studies is to vali-
date this model by testing the role of the mL2 genetic variants for transcriptional
response networks and infection phenotypes.

A limitation of our transcriptional and functional genomic studies is that only one
clinical isolate each from mL2 and L4 was characterized. The selected strains were rep-
resentative of their lineage in growth characteristics and genetic features. However, in
addition to lineage-level genetic diversity, strain-level genetic diversity has the poten-
tial to affect pathogenic traits. Variants present in some, but not all, strains within a lin-
eage represent an evolutionary sandbox for selection, and dissecting the consequen-
ces of both levels of genetic variation for bacterial fitness can help define the selective
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landscape shaping M. tuberculosis’s ongoing adaptation. Such studies are now feasible
with barcoding, which can facilitate phenotyping of numerous strains at scale under a
range of in vitro and in vivo conditions. Coupled with computational techniques such
as bacterial genome-wide association, the pathogen genes and variants that drive
infection outcomes and response to clinical interventions such as vaccination can be
uncovered, leading to the development of molecular diagnostics to guide more effec-
tive clinical care.

MATERIALS ANDMETHODS
Bacterial strains. Clinical strains were identified as previously described and cultured from single colo-

nies (4, 31). Strains were grown at 37°C and cultured in Middlebrook 7H9 salts supplemented with 10% oleic
acid-albumin-dextrose-catalase (OADC), 0.5% glycerol, and 0.05% Tween 80 or plated on 7H10 agar supple-
mented with 10% OADC, 0.5% glycerol, and 0.05% Tween 80 unless otherwise noted. Clinical strains were
handled to minimize in vitro passaging. Strains were previously whole genome sequenced as described pre-
viously (31, 32). To compare genomic variants between H37Rv, mL2 strain 621, and L4 strain 630, a custom
assembly and variant-calling pipeline were used as previously described (32).

Animals. Female C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME.). Mice were
6 to 8 weeks old at the start of all experiments, and infected mice were housed in biosafety level 3 (BSL3)
facilities under specific-pathogen-free conditions at HSPH. The protocols, personnel, and animal use were
approved and monitored by the Harvard University Institutional Animal Care and Use Committee.

Male and female RAG1 KO mice were 8 to 12 weeks old at the start of experiments, and infected
mice were housed in BSL3 facilities under specific-pathogen-free conditions at UMMS. The protocols,
personnel, and animal use were approved and monitored by the UMMS Institutional Animal Care and
Use Committee.

BCG vaccination. Bacillus Calmette-Guerin, originally obtained from Statens Serum Institute, was
prepared as previously described (70). Mice were immunized with 100 mL of frozen bacterial culture
(OD600, 1.0; 2e7 CFU) subcutaneously in the left flank. Mice were rested for 12 weeks postvaccination
prior to challenge.

Barcoded clinical isolate growth in vitro. M. tuberculosis strains were tagged with a random 8-bp
barcode essentially as described previously (30). Single colonies of each strain were picked and Sanger
sequenced to identify the barcode; colonies with two unique barcodes for each strain were selected.
Barcoded strains were grown to log phase, pooled based on OD600 at approximately equal ratios, and
frozen into aliquots. An aliquot was subsequently inoculated into 7H9 medium, grown to mid-log phase,
and then back diluted to an OD600 of 0.01 in 7H9 in triplicate and incubated with shaking at 37°C. At the
indicated time points, an aliquot was removed from each replicate for CFU enumeration, and an aliquot
was removed for plating to recover ;5e3 CFU as estimated by OD600 of the culture. Recovered CFU
were scraped for genomic DNA extraction, amplicon Illumina sequencing, and barcode abundance
quantification by custom Python scripts, essentially as described previously (30).

Barcoded clinical isolate growth under in vitro stress conditions. An aliquot of the frozen bar-
coded strain pool was inoculated into 7H9 medium, grown to mid-log phase, and then back diluted to
an OD600 of 0.01 in freshly made stress medium or control medium in triplicate. Control medium con-
sisted of 7H9 supplemented with 10% OADC, 0.5% glycerol, and 0.05% tyloxapol. For nitrosative stress,
DETA-NO (Sigma-Aldrich) was added to the control medium at a final concentration of 1 mM. For acid
stress, control medium was buffered to pH 4.5 with hydrochloric acid. An aliquot from each replicate
was plated 5 days postinoculation for CFU enumeration and to recover ;5e3 CFU for processing as
described above.

Barcoded clinical isolate mouse infections and analysis. An aliquot of the barcoded strain pool
was used for tail vein infection at 1e6 CFU/mouse. At indicated time points postinfection, spleens and
lungs were harvested, homogenized, and plated on 7H10 supplemented with glycerol, Tween, OADC,
and 20 mg/mL kanamycin. After 3 weeks of incubation, CFU were enumerated and 1e4 CFU were
scraped for genomic DNA extraction, amplicon Illumina sequencing, and barcode abundance quantifica-
tion by custom Python scripts, essentially as described previously (30).

Gene expression. For oxidative and starvation stress conditions, triplicate cultures of the indicated
strains were grown to mid-log phase in 7H9, pelleted, washed once in an equal volume of Tris-buffered
saline (TBS) supplemented with 0.05% tyloxapol, and then resuspended in freshly made stress medium
as detailed below or 7H9 with 0.05% tyloxapol. For oxidative stress, bacteria were resuspended in 7H9
with 0.05% tyloxapol buffered to pH 4.5 with 10 mg/mL menadione. For starvation, bacteria were resus-
pended in TBS with 0.05% tyloxapol. Cultures were incubated at 37°C with shaking and aliquots
removed for RNA extraction at the indicated time points. RNA was isolated essentially as described previ-
ously and quantified by Qubit RNA assay (Thermo Fisher) (32). A total of 125 ng of RNA was used as
input in a NanoString assay with a custom-designed probe set (NanoString Technologies). Target
sequences are listed in Table S3. Data were analyzed with nSolver version 4 (NanoString Technologies);
raw NanoString counts were normalized to internal positive controls to correct for technical variation
between assays and normalized to housekeeping genes (ansA, aceAa, and secA2) to correct for variation
in RNA input (Table S3). Normalized counts were expressed as log2 (fold change) relative to T0, and data
clustering was performed in R v4.0.3 using complete linkage and Euclidean distance. For statistical com-
parisons between strains, AUC of the log2(fold change) expression data over time were calculated and
one-way analysis of variance (ANOVA) with Tukey’s posttest performed in R v4.0.3 (Table S3).
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Transposon library mouse infections and analysis. Mice were infected via tail vein injection with
2e6 CFU of frozen aliquots of previously generated H37Rv or clinical strain Himar1 transposon libraries
(32). At the indicated time points postinfection, spleens were harvested, homogenized, and plated on
7H10 supplemented with glycerol, Tween, OADC, 0.2% Casamino acids (Difco), and 20 mg/mL kanamy-
cin. For each mouse, 1e6 surviving colonies were scraped after 3 weeks for genomic DNA extraction and
transposon-junction sequencing essentially as previously described (32). Reads were mapped to the
H37Rv genome, and statistical comparisons of read counts between conditions and strains were per-
formed using Transit v3.2.0 (71). To compare input (in vitro) and output (in vivo) libraries from each
strain, the Transit resampling method was used, with insertions in the central 90% of each open reading
frame considered and a locally estimated scatterplot smoothing (LOESS) correction for genome posi-
tional bias. To identify differences in genetic requirements during infection between strains, the Transit
genetic interactions (GI) method was used (60). Gene set enrichment analysis and leading edge analysis
were performed on the Transit GI-generated Dlog2(fold change) values using the GSEA v4.1.0 preranked
tool (61). Genes classified as essential for in vitro growth in at least two of the three isolates were excluded
from GSEA (Table S4). To identify in vitro genetic requirements for each strain, the Transit hidden Markov
model (HMM) method was used, with insertions in the central 90% of each open reading frame considered
and a LOESS correction for genome positional bias (72). Repetitive regions, deleted genes, and genes in a
large duplicated region in the mL2 strain 621 were excluded as previously described (Table S4) (32).

Data availability. All relevant data to support the findings of this study are located within the paper
and supplemental material. Software used in this study, as detailed above, included R v4.0.3 (https://
www.r-project.org), Transit v3.2.0 (https://orca1.tamu.edu/essentiality/transit/), Cytoscape v3.8.2 (https://
cytoscape.org), and GSEA v4.2.1 (https://www.gsea-msigdb.org/gsea/index.jsp).
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FIG S1, TIF file, 2.5 MB.
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FIG S4, TIF file, 2.2 MB.
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TABLE S2, XLSX file, 0.1 MB.
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