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Abstract

Disrupting the formation of the oncogenic YAP/TAZ-TEAD transcriptional complex holds
substantial therapeutic potential. However, the three protein interaction interfaces of this
complex cannot be easily disrupted using small molecules. Here, we report that the pharma-
cologically active small molecule aurintricarboxylic acid (ATA) acts as a disruptor of the
TAZ-TEAD complex. ATA was identified in a high-throughput screen using a TAZ-TEAD
AlphaLISA assay that was tailored to identify disruptors of this transcriptional complex. We
further used fluorescence polarization assays both to confirm disruption of the TAZ-TEAD
complex and to demonstrate that ATA binds to interface 3. We have previously shown that
cell-based models that express the oncogenic TAZ-CAMTA1 (TC) fusion protein display
enhanced TEAD transcriptional activity because TC functions as an activated form of TAZ.
Utilizing cell-based studies and our TC model system, we performed TC/TEAD reporter,
RNA-Seq, and gPCR assays and found that ATA inhibits TC/TEAD transcriptional activity.
Further, disruption of TC/TEAD and TAZ/TEAD interaction by ATA abrogated anchorage-
independent growth, the phenotype most closely linked to dysregulated TAZ/TEAD activity.
Therefore, this study demonstrates that ATA is a novel small molecule that has the ability to
disrupt the undruggable TAZ-TEAD interface.

Introduction

The transcriptional coactivators, YAP (Yes-associated protein) and TAZ (transcriptional coac-
tivator with PDZ-binding motif) play key roles in cancer initiation, progression, and drug
resistance [1-3]. The transcriptional activities of YAP and TAZ are physiologically kept under
the tight control by the Hippo signaling pathway. In cancers, the Hippo signaling components
are either inactivated by loss-of-function mutations or epigenetically silenced, leading to
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enhanced YAP/TAZ activities [4]. Alternatively, cancer cells have also been shown to over-
whelm Hippo signaling through YAP and TAZ copy number increases, gain-of-function
mutations, or through the activity of YAP/TAZ fusion genes, all of which enhance YAP/TAZ
transcriptional activity. Additionally, tissue architectural changes and cues from a stiff extra-
cellular matrix present a hospitable tumor microenvironment that also allows for enhanced
YAP/TAZ activities [5].

Regardless of these activating mechanisms, YAP and TAZ need to pair with transcription
factors to access DNA [6, 7]. TEADs (TEA/ATTS domain), a family of four highly conserved
transcription factors, have emerged as the major player that orchestrates several oncogenic
transcriptional programs through interacting with YAP and TAZ. TEADs interact with YAP/
TAZ through a C-terminal YAP/TAZ-binding domain that adopts a B-sandwich fold [8-11].
Genetic and cell-based studies have shown that disruption of a functional YAP/TAZ-TEAD
interaction greatly reduces oncogenicity. For instance, a transgenic mouse model that
expresses a dominant negative TEAD, TEAD without its DNA-binding domain, potently
inhibits liver tumorigenesis [12]. A splicing switch that activates a similar dominant negative
TEAD isoform also acts as an inhibitor of tumorigenesis [13]. Further, YAP is no longer onco-
genic if it carries a point mutation that compromises its ability to interact with TEADs [14].
Therefore, disruption of the YAP/TAZ interaction with TEAD is being actively investigated as
a strategy for cancer therapy [15].

Unlike YAP/TAZ, TEAD:s are targetable as they have pockets that accommodate small mol-
ecule and peptide-based targeting strategies [16, 17]. TEADs have three distinct pockets that
can be leveraged to disrupt the YAP/TAZ-TEAD interaction-a pocket at the center of the
YAP/TAZ-binding domain (central pocket) and two surface pockets where YAP/TAZ interact
(interfaces 2 and 3) [16]. The central pocket is more druggable, so identifying small molecule
inhibitors that act at the central pocket is much easier than identifying canonical disruptors
that act at the YAP/TAZ-TEAD interaction interfaces on the surface [18]. However, central
pocket cysteines are acylated with palmitate or myristate, and these covalent ligands block
small molecule access [19-21]. On the other hand, small molecules occupying the surface
pockets have the potential to disrupt the YAP/TAZ-TEAD interaction [15, 16]. Because the
surface pockets are shallow, identifying a small molecule that is potent enough to disrupt this
protein-protein interaction remains a challenge.

Designing novel and highly active YAP/TAZ-TEAD disruptors is an emerging field, several
chemotypes must be identified and evaluated, so a clinically-relevant drug candidate can be
developed. To this end, we have designed a TAZ-TEAD AlphaLISA assay, a biochemical assay
that monitors the formation of the TAZ-TEAD complex. We screened compound libraries
totaling 56,115 compounds and identified aurintricarboxylic acid (ATA) as a small molecule
drug that binds to the TEAD surface and disrupts the formation of the TAZ-TEAD complex.
Our specific clinical focus is on epithelioid hemangioendothelioma (EHE), a rare cancer that is
addicted to the TAZ-CAMTAL (TC) fusion protein that functions as an activated form of TAZ
[22, 23]. Importantly, EHE provides a model for dysregulation of YAP/TAZ activity in cancer,
and conclusions generated from investigations on EHE are applicable to other cancers in
which YAP/TAZ is dysregulated. We have previously demonstrated that TC-mediated cell
transformation is TEAD-dependent, as the TEAD binding motif is maintained in the fusion
protein, and abrogation of the TC/TEAD interaction completely inhibits cell transformation
[23]. Here, we show that ATA can abolish TC/TEAD-mediated transcription and TC/TEAD-
dependent transformation in our cell-based models. These results demonstrate that ATA oper-
ates as a TC/TEAD disruptor in both biochemical and cell-based models.
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Materials and methods
Reagents

Reagents purchased were ATA (Sigma-Aldrich, catalog # A1895), anti-His (Abcam, catalog #
Ab18184), anti-FLAG (Sigma-Aldrich, catalog # F1804), Protein Thermal Shift dye (Applied
Biosystems, catalog # 4461141), Ni-NTA agarose beads (Qiagen, catalog # 30210), strep-tactin
superflow resin (Qiagen, catalog # 30004), verteporfin (Sigma-Aldrich, catalog # SML0534),
and Peptide 17 (Selleckchem, catalog # S8164).

Protein expression and purification

The cDNAs of human TEAD4 (1-434) (UniProt—Q15561) and TAZ (UniProt—Q9GZV5)
were codon-optimized according to a proprietary algorithm developed by DAPCEL, Inc [24],
synthesized, and inserted into the pET-3a vector between restriction sites Ndel and BamHI
(GenScript). The final construct contained a N-terminal strep-TEV-FLAG tag for TEAD4, a
6x His tag at the N-terminus and a strep tag at the C-terminus of TAZ (GenScript).

For protein expression, the strep-TEV-FLAG-TEAD4 plasmid and His-TAZ-strep plasmid
were expressed in Escherichia coli strain BL21(DE3)pLysS competent cells (Invitrogen). The
strep-tagged TEAD4 was batch purified using strep-tactin superflow resin. TEV protease was
added to remove the strep tag. The His-TAZ-strep protein was first passed through Ni-NTA
beads, and then was further purified using strep-tactin superflow resin. Protein purity was ana-
lyzed by SDS-PAGE and western blots (S1A Fig). The YAP/TAZ-binding domain of human
TEAD4 (217-434) was purified using immobilized metal affinity chromatography followed by
size exclusion chromatography.

TAZ-TEAD AlphaLISA assay development and high-throughput screening

Full-length TAZ and TEAD proteins were used in this assay. The codon-optimized cDNAs
yielded sufficient protein amounts to carry out the high-throughput screen (S1A Fig).

Purified full-length His-TAZ and FLAG-TEAD4 proteins were mixed with nickel chelate
AlphaLISA Acceptor Beads and anti-FLAG Alpha Donor Beads (PerkinElmer) in alpha assay
buffer (10mM Tris pH 8.0, 150mM NaCl, 0.1% BSA, 0.01% Tween 20, 10 mM DTT). To deter-
mine the optimum protein concentration that produced the highest total signal intensity, His-
TAZ was used at a concentration range of 0 nM to 20 nM and FLAG-TEAD4 at 0.1 nM to
1000 nM. The maximal signal occurred at 10 nM TAZ and 15 nM TEAD4 (S1B Fig). Then,
compounds from the library plates were added at a final concentration of 10 uM. The mixtures
were incubated in the dark for 2h at room temperature and emission at 615 nm was measured
using the alpha-compatible EnSpire (PerkinElmer) and Synergy Neo2 (BioTek) multimode
plate readers.

In the high-throughput screen (HTS), a library of 53,000 compounds with drug-like physi-
cochemical properties (DIVERset-CL, ChemBridge) was used. Stock solutions were prepared
in dimethyl sulfoxide (DMSO) at 10 mM. All DIVERset-CL collection compounds were
screened at 10 uM. Additionally, we used two bioactive libraries with a total of 3115 small mol-
ecules compiled from the Sigma LOPAC1280 (1280 molecules) library and the Selleck Bioac-
tives L1700 library (1835 molecules). For both bioactive libraries, stock solutions were
prepared in DMSO at 3 mM. All bioactives collections compounds were screened at 3 uM.
HTS is performed in a singlicate.

Selected hits were re-tested with a counterscreen. The peptide used for the counterscreen
was 24 amino acids long and contained a 6X His tag at the N-terminus and a FLAG-tag at the
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C-terminus with a linker region separating the tags (Genscript). This peptide brings the donor
and acceptor beads close enough to facilitate singlet oxygen transfer.

ThermoFluor assay

To assess changes in protein stability, a dye-based thermal melting assay (ThermoFluor) was
used. Purified protein (TAZ or TEAD4), ATA, and Protein Thermal Shift dye (ThermoFisher)
were mixed in 96-well plates. The final concentration of the protein was 5 uM. The melting
temperature was measured using LightCycler 480 (Roche). Each experiment was repeated at
least twice.

Surface plasmon resonance

The YAP/TAZ-binding domain of human TEAD4 (217-434) was deacylated [25] and resus-
pended in 10 mM acetate buffer pH 5.0. TEAD was immobilized on a CM5 sensor chip
(Cytiva, product, BR100530) using the amine coupling kit (Cytiva, product, BR10050) as per
manufacturer’s guidelines. Various concentrations of ATA were dissolved in buffer containing
20 mM Tris pH 8.0, 150 mM NaCl, 1.5% DMSO and passed over the reference cell and the cell
containing immobilized TEAD, and the resonance responses were recorded.

Fluorescence polarization assays

Human YAP (61-100), human TAZ (23-57) and mouse Vgll1 (26-51) peptide probes were
used; all the probes had carboxyfluorescein labels. Human TEAD4 (217-434) was used in the
assay at a concentration of 350 nM and the peptide probe concentration was 25 nM. Disrup-
tors were titrated at concentrations ranging from 0-150 uM to the probe-TEAD complex, and
the mixtures were incubated at 25°C for 20 min. Then, polarization measurements were taken
using a Victor3 (PerkinElmer) plate reader.

Cellular assays

NIH3T3 and HEK293 cells were obtained from the American Type Tissue Collection (ATCC,
Manassas, VA) and cultured in DMEM containing 10% fetal bovine serum and penicillin/
streptomycin. A TEAD dual luciferase reporter assay was performed as previously described
[23]. Cells were treated with vehicle control or ATA (10 uM) for 48 h before measuring the
luciferase activity or processing the samples for RNA extraction. Each experiment was
repeated at least 2-3 times.

Bulk RNA-Seq and qPCR experiments

NIH3TS3 cells were used. The extracted RNA (RNeasy Mini, Qiagen) from treated cells was
either used for JPCR measurements or sent for bulk RNA-Seq. Sequencing runs were per-
formed on an Illumina HiSeq 4000 sequencer (Genewiz). Subsequent bioinformatics analysis
was performed in the Galaxy Project platform [26]. Paired end reads were aligned to the
murine genome (GRCm38.p6 mm10) with HISAT2 [27]. Raw count files were generated with
featureCounts using a corresponding GTF reference [28]. Differential gene expression analysis
was performed with DESeq2 [29]. Transcripts were considered to be differentially expressed if
the false discovery rate < 0.05 and Log,FC > 2. When performing differential gene expression
for GSEA analysis, the Limma package was used (<5 CPM filtering) with t-scores used for
rank statistics [30]. GSEA plots and statistics were generated with FGSEA with custom gene
sets. Raw sequencing reads and processed files have been deposited in the GEO repository
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(data will be uploaded upon manuscript acceptance). The Universal Probe Library probes
(Roche) and the associated primer sequences for the qPCR targets are listed below:

CCH]/Ctng: TGACCTGGAGGAAAACATTAAGA, CCI’ZI/Ctng: AGCCCTGTATGTCTTCAC
ACTG,

Ccnl1/Ctgf UPL Probe: 71;

Ccn2/Cyr61 F: GGATCTGTGAAGTGCGTCCT, Cen2/ Cyr61 R: CTGCATTTCTTGCCCTTT
TT,

Ccn2/Cyr61 UPL Probe: 66;

Ankrdl F: GCTGGAGC CCAGATTGAA, Ankrdl R: CTCCACGACATGCCCAGT,

Ankrdl UPL Probe: 76;

Amotl2 F: TGACTGTACCTAAGCCGAACC; Amotl2 R: GCACACACCTGCCTAGACAAT,

Amotl2 UPL Probe: 40;

Gapdh F: CCCACTTGAAGGGTGGAG, Gapdh R: TGGTTCACACCCATCACAAA,

Gapdh UPL Probe: 29.

Soft agar colony growth assay

Soft agar colony growth assay was performed as previously described [23]. The colonies were
counted using Image-Pro Plus 7.0 software (Media Cybernetics). ATA cytotoxicity was
assessed using the CyQUANT LDH Cytotoxicity Assay Kit (ThermoFisher) and was per-
formed as per the manufacturer’s protocol.

Results
TAZ-TEAD AlphaLISA assay and high-throughput screening

We designed the TAZ-TEAD AlphaLISA assay to identify small molecules that possess the
ability to disrupt the formation of the TAZ-TEAD complex (Fig 1A). It is also suitable for
screening compounds in a high-throughput format. His-TAZ interaction with FLAG-TEAD4
was optimized such that donor and acceptor beads were close enough to enable the singlet oxy-
gen generated from donor beads to react with the acceptor AlphaLISA beads causing a chemi-
luminescent emission at 615 nm (Fig 1A). This optimized AlphalISA assay had a signal-to-
background ratio range of 35 to 40. Small molecule disruptors that abrogate the TAZ-TEAD
interaction should cause a reduction in the AlphaLISA signal.

Utilizing our optimized assay, we screened small molecule libraries, totaling 56,115 com-
pounds. The overall Z’ for the assay is 0.7, suggesting that the assay is of good quality. We iden-
tified 287 hits that reduced by 70% the AlphaLISA signal increase caused by TAZ-TEAD
interaction (S1C Fig). We subsequently performed a counterscreen to identify non-specific
assay inhibitors. The counterscreen showed that the majority of hits were assay-interfering
compounds (Fig 1B). No interference in the counterscreen was observed in 5 hits, indicating
that these hits specifically reduced the TAZ-TEAD AlphaLISA signal. These 5 hits also showed
a dose-dependent reduction in the TAZ-TEAD AlphaLISA assay signal, but not in the coun-
terscreen. The structure of one of the hits, aurintricarboxylic acid (ATA), and its dose-
response curves are shown in Fig 1C and 1D, respectively. Next, we used a dye-based thermal
shift (ThermoFluor) assay that measures the melting temperature (T,,,) of the protein to deter-
mine whether the shortlisted hits bind to TAZ or TEAD. Only ATA increased the T,,,, and sta-
bilized TEAD more than TAZ in the ThermoFluor assay, suggesting that it binds to TEAD, as
opposed to TAZ (Fig 1E and 1F). We focused on ATA because the other 4 hits displayed no
shift in T,.
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Fig 1. TAZ-TEAD AlphaLISA assay. A, A schematic showing the TAZ-TEAD AlphaLISA assay design. The
interaction between the tagged, full-length, TAZ and TEAD proteins brings the donor and acceptor beads close
enough to allow singlet oxygen transfer, which generates an emission signal at 615 nm. B, Flowchart of the screening
strategy, 56,115 compounds were screened using the TAZ-TEAD AlphaLISA screen. Filtering the hits via a
counterscreen followed by ICs, determination and assessment using a ThermoFluor assay identified aurintricarboxylic
acid (ATA) as a disruptor of the TAZ-TEAD complex. C, The molecular structure of ATA. D, Dose-response curves
obtained after titration of ATA either in the TAZ-TEAD AlphaLISA assay or in the counterscreen; a FLAG-His fusion
peptide was used in the counterscreen. E and F, ThermoFluor assays measuring the melting temperatures (T,,) of full-
length TAZ or TEAD in the presence of ATA. Data are representative of three independent experiments performed
using technical duplicates.

https://doi.org/10.1371/journal.pone.0266143.9001

Synthesis of ATA analogs

A minimum pharmacophore study was conducted to identify key functionalities of ATA that
disrupt the TAZ-TEAD interaction. In total, 16 ATA analogs were tested. Compounds 1 and
2, which retained three phenyl substituents like ATA but lacked the salicylate group, were not
appreciably potent (S1 Table). Therefore, the salicylate group is important for disrupting the
TAZ-TEAD interaction. To further probe the requirement of the salicylate group, we assayed
five analogs (compounds 3, 4, 5, 6, and 7) that had two aryl substituents. Compound 4, which
teatured two salicylate moieties, was the most potent, with an ICs, of 8 uM in the TAZ-TEAD
AlphaLISA assay (S1 Table). Although compound 4 displayed activity, it was not as effective as
ATA, which had a third aryl substituent in addition to the two salicylate moieties. Therefore,
three aryl substitutions, including two salicylate moieties may be important for effective
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disruption of TAZ-TEAD interaction. Additionally, no analogs with one or zero aryl substitu-
ents displayed inhibition. Next, we evaluated five derivatives of compound 4 by introducing
mono-, di- or gem-dimethyl groups at the methylene linker, or capped hydroxyls with methyl
groups, and assessed their potencies (compounds 12-16, S1 Table). Compound 14 was esti-
mated to be most potent of the 16 ATA analogs with an ICs, of 4 uM. This compound had a
mono-methyl group at the methylene linker. We also observed that capping the hydroxyls
with methyl groups as in compound 16 abolished the activity. Nevertheless, all the tested ana-
logs were substantially less potent than ATA, which had an ICs, of 35 nM (S1D Fig). Asa
result, we further characterized ATA and not its analogs in subsequent studies.

ATA binds to TEAD and disrupts the TAZ-TEAD interaction

We performed surface plasmon resonance experiments to verify whether ATA binds to
TEAD. The YAP/TAZ-binding domain of TEAD4 was immobilized on the sensor chip and
resonance responses were recorded after passing various concentrations of ATA through the
flow cell (Fig 2A). The affinity of the interaction was measured after fitting a one-site binding
model to a plot of steady-state response versus concentration data (Fig 2B). Our results show
that ATA binds to TEAD in the low micromolar range (Fig 2B).

To verify whether ATA is a disruptor of TAZ-TEAD interaction using another independent
method, we developed a TAZ-TEAD fluorescence polarization (FP) assay. TAZ interacts with
TEAD by forming interfaces 2 and 3 (Fig 2C) and interface 3 residues are key mediators of the
TAZ-TEAD interaction [11]. The degree of polarization increased as TEAD formed a complex
with a labeled TAZ peptide probe. Upon ATA titration, the fluorescence polarization (mP) of
the TAZ-TEAD complex decreased in a dose-dependent manner and reached a value similar
to that of the free TAZ probe, indicating that ATA acts as a disruptor of the TAZ-TEAD com-
plex (Fig 2D). We also investigated whether ATA acts as a canonical disruptor (i.e., a disruptor
that binds at the interface where YAP/TAZ interacts with TEAD), or an allosteric disruptor
(by binding to the central pocket). Small molecules have also been shown to occupy the central
pocket and allosterically disrupt the formation of the YAP/TAZ-TEAD complex [16]. Alloste-
ric disruptors do not function when TEAD is acylated because the covalently attached lipid
blocks small molecules access to the central pocket. Therefore, we used acylated and deacylated
forms of TEAD in the TAZ-TEAD FP assay, and ATA displayed similar ICsq values in both
circumstances (Fig 2D). This result suggests that ATA binds to the TEAD surface pockets
either at interface 2 or interface 3 and functions as a canonical disruptor of the TAZ-TEAD
interaction. The YAP-TEAD interaction was similarly investigated using a YAP-TEAD FP
assay where a YAP peptide probe was used instead of a TAZ probe. The TEAD-interacting
motifs of YAP and TAZ are highly similar, barring the linker region that connects the interface
2 and 3 residues. Interestingly, ATA more potently disrupts the TAZ-TEAD complex, as com-
pared to the YAP-TEAD complex (ICsq: 72uM vs. 160uM) (Fig 2D and 2E).

We optimized another fluorescence polarization assay, a VGLL1-TEAD FP assay, to delin-
eate whether ATA binds at interface 2 or interface 3. VGLLI interacts with TEAD by forming
interfaces 1 and 2 [31], and not interface 3 (Fig 2C). ATA was ineffective at disrupting the
VGLL1-TEAD interaction whereas peptide 7 [32] a known disruptor that acts by binding at
interface 2, was highly effective. Therefore, we predict that ATA binds at interface 3. In support
of this prediction, we find that the cyclic YAP peptide, peptide 17 [33], a known interface 3
binding ligand, displayed a profile similar to that of ATA in the VGLL1-TEAD FP assay (Fig
2F). Using the TAZ-TEAD FP assay, we also show a comparison of the activity profile of ATA
with those of verteporfin and peptide 17, which are reported to act as disruptors (S2 Fig).

PLOS ONE | https://doi.org/10.1371/journal.pone.0266143  April 13, 2022 7/16


https://doi.org/10.1371/journal.pone.0266143

PLOS ONE ATA is a TAZ-TEAD disruptor

Kgq-3uM
100+
_ = 8] Sty
@, x ] .
o 15 uM g 607 .
S 10 uM & ]
=3 5uM g 407
Q .
K 4 uM 14 ]
1uM 207
0.5 uM Jo
+-—r——rrrr—rrrrrrrrr——
500 0 5 10 15 20
Time (s) Concentration (UM)
C D TAZ-TEAD FP assay
Interface 2 150 -e- deacylated TEAD - ICq,- 72 uM
¢ o -e- acylated TEAD - ICq, - 68 uM
‘ ]
; E 1004
el 4 [ ]
(5]
N
g 4
ntral pocket &
(.‘E‘H al ‘DO(, G | g 50_:
( ) Interface 3
VGLL1 24> Ra
4 ey 0-
itetfaceil [ \S 0.1 1 10 100 1000
ATA concentration (uM)
TEAD
T 180+ YAP-TEAD FP assay E VGLL1-TEAD FP assay
= ] A ]
= 1 IC5, - 160 uM = 360
2 1604 @ 2 ] "85l Cee g,y
N 1 [ ] N p 0 ¢ ® o
5] § 3207
O 140 °
o a ] ;
3 1 § 2804 Peptide 7
| = 1 r & 1
§ 120 § 1 ® Peptide 17
o 1 © 240+ ° ATA
S 1 <] ]
0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
ATA Concentration (uM) Concentration (uM)

Fig 2. ATA binds to TEAD and disrupts the TAZ-TEAD interaction. A, Sensorgrams showing resonance responses
that were recorded after passing the indicated concentrations of ATA over the YAP/TAZ-binding domain of TEAD. B,
Affinity between TEAD and ATA was calculated by fitting a one-site binding curve to the steady-state response versus
concentration. C, Cartoon showing the superposition of VGLL1-TEAD (PDB ID: 522Q) and TAZ-TEAD structures
(PDB ID: 5GN0). TAZ forms interfaces 2 and 3, whereas VGLL1 forms interfaces 1 and 2. The central pocket that
houses the lipid is shown as a red mesh. D, Acylated and deacylated forms of TEAD were used in a TAZ-TEAD FP
assay to characterize whether ATA binds to the surface or the central pocket of TEAD, the ICs, values were obtained
through a four-parameter curve fit. E, YAP-TEAD FP assay using a YAP peptide probe to evaluate whether ATA
disrupts the formation of the YAP-TEAD complex. F, Vgll1-TEAD FP assay using a mouse Vgll1 peptide probe to
monitor whether ATA binds at interfaces 1 and 2. Peptide 7 was used as a positive control and peptide 17 was used as a
negative control. All FP experiments were repeated three times using technical duplicates with similar outcome. The
data is shown as mean (n = 2) and error bars represent standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0266143.9002

ATA inhibits TC/TEAD transcriptional activity

To modulate gene transcription, TEADs need to pair with transcriptional co-activators like
YAP and TAZ. Therefore, we tested whether disruption of TAZ-TEAD interaction by ATA
reduces TAZ/TEAD-dependent transcriptional activity. Here, we exploited the activity of the
oncogenic TC fusion protein. TC is a fusion protein present in >90% of cases of a rare vascular
sarcoma, epithelioid hemangioendothelioma [34, 35]. Previously, we have shown that TC acts
as an activated TAZ-like protein that similarly requires the TEAD-binding motif of TAZ to
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Fig 3. ATA inhibits TC/TEAD transcriptional activity. A, TC/TEAD reporter assay to measure TC/TEAD activity in
cells transfected with empty vector (EV), cells stably expressing TC treated with vehicle control (TC), and TC-
expressing cells treated with ATA (TC + ATA). The experiment was repeated three times and similar results were
obtained. Data are presented as mean + SD. B, Volcano plot showing the distribution of differentially expressed genes
in TC-transfected compared to EV-transfected cells, blue points: FDR < 0.05 and either Log,FC > 2 or Log,FC<-2,
red points: FDR>0.05 or 2 < Log,FC > -2, FDR: False discovery rate. C, Gene set enrichment analysis of ATA-treated
cells stably expressing TC versus TC-expressing, vehicle control treated cells utilizing the TC up Genes from Fig 3B,
NES: Normalized enrichment score D, qPCR to probe the levels of indicated target genes in empty EV, TC and TC
+ATA NIH3T3 cells. Error bars represent the standard deviation of the mean (n = 3) normalized to EV, P values were
obtained through two-tailed f tests (***P < 0.0008, **P < 0.008, *P < 0.03).

https://doi.org/10.1371/journal.pone.0266143.9003

interact with TEADs [23]. Therefore, exogenous expression of TC in NIH3T3 or HEK293 cells
increases TC/TEAD-dependent transcription [23].

Using a TEAD luciferase reporter assay, we determined whether disruption of the TC/
TEAD interaction in cells changed the protein complex’s ability to alter gene transcription. As
expected, when compared to empty vector (EV), exogenous expression of TC in HEK293 cells
robustly increased luciferase reporter activity driven by TEAD DNA elements (Fig 3A). Addi-
tion of ATA significantly reduced the TC-dependent increase of the reporter activity (Fig 3A).
Disruption of the TEAD interaction with TC is expected to reduce the TC/TEAD reporter
activity.

We performed bulk RNA-Seq analysis in NIH3T?3 cells to identify the global transcriptional
alterations that are induced by TC and to probe the effect that ATA treatment has on the TC/
TEAD transcriptional profile. First, differential gene expression analysis was performed
between EV-transfected and TC-transfected cells to identify the TC-dependent transcriptional
profile (Fig 3B). We identified 248 genes that were significantly upregulated (Log,FC > 2,
FDR < 0.05) and 133 genes that were significantly downregulated (Log,FC < -2, FDR < 0.05)
in TC-transfected cells, compared with EV- transfected cells (Fig 3B and S2 Table). To probe
whether ATA was able to reverse the TC/TEAD transcriptional profile, we identified the differ-
entially expressed genes in TC-expressing NIH3T3 cells after ATA treatment compared to
vehicle control and performed Gene Set Enrichment Analysis (GSEA) to probe for the enrich-
ment of TC upregulated genes (Fig 3C). ATA-treated cells displayed a negative enrichment
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score for the 248 TC-upregulated genes (P = 0.0036 NES = -2.027) (Fig 3C), thereby further
demonstrating that ATA inhibits TC/TEAD-dependent transcription.

We further validated these results with canonical TAZ target genes (CYR61, CTGF,
AMOTL2 and ANKRDI) by qPCR and demonstrate a similar significant induction of these
transcripts with TC and suppression of these transcripts upon ATA treatment (Fig 3D). In
summary, we show that ATA can suppress the TC/TEAD-dependent gene signature in cells,
thereby demonstrating that AT A-mediated disruption of the TC/TEAD interaction translates
to inhibition of transcriptional activity.

ATA specifically reduces soft agar colony growth that is dependent on TC/
TAZ-TEAD activity

We previously reported that in comparison to non-transformed NIH3T?3 cells that do not
grow in soft agar, expression of TC transforms these cells such that they can sustain anchor-
age-independent growth and form colonies in soft agar. This phenotype depends on TC/
TEAD because expression of a mutant TC that does not interact with TEAD proteins (TC
$°14) and abrogates this interaction also abolishes colony formation [23]. Here, adding of ATA
caused a dose-dependent reduction in TC-driven soft agar colony growth (Fig 4A). Likewise,
ATA inhibited soft agar growth that is driven by TAZ 5***, an activated TAZ mutant that is
refractory to Hippo pathway-mediated inhibition (Fig 4B). Importantly, the observed pheno-
type was not due to a cytotoxic effect as AT A-treated cells did not show cytotoxicity at the con-
centrations used, as measured by a lactate dehydrogenase assay that measures the levels of
intracellular lactate released in the media (S3 Fig). Further, as NRAS “'*V-induced soft agar
growth is unaffected by ATA treatment (Fig 4C), we infer that ATA specifically inhibits TAZ/
TEAD activity. Mutant RAS family proteins transforms cells through YAP/TAZ-independent
mechanisms [36].

Discussion

We identified ATA as a canonical protein-protein interaction disruptor of the TAZ-TEAD
complex based on two independent assays, an Alphal.ISA assay, and a fluorescence polariza-
tion assay. Using surface plasmon resonance and a ThermoFlour assay, we also showed that
ATA directly binds to the YAP/TAZ-binding domain of TEAD. This domain has three distinct
pockets: a central pocket, and two surface pockets termed interface 2 and interface 3. All are
targetable using small molecules [16]. The central pocket is predominantly occupied by palmi-
tate and myristate lipids that are covalently linked to TEADs via acylation to the cysteine in the
central pocket. When acylated, the central pocket is inaccessible to small molecules. However,
ATA functioned as a disruptor even when we used acylated TEAD. Therefore, we predict that
ATA binds on the TEAD surface. We further delineated the ATA binding site and showed,
using a VGLL1-TEAD FP assay, that ATA does not bind to interface 2, but likely binds to the
interface 3 pocket on the TEAD surface. As the interface 3 residues are identical in all TEADs,
we predict that ATA will effectively interact with all four TEAD family members.

We leveraged the activity of the oncogenic gain-of-function TC fusion protein to determine
whether ATA can suppress TC induced cellular transformation in cells. Similar to wild-type
TAZ, TC is a transcriptional coactivator and maintains the TEAD binding motif present in the
TAZ protein. Further, we previously reported that the TC >'* mutation that abrogates the
TC-TEAD interaction, completely inhibited cellular transformation [23, 34]. Consistent with
its function as a TAZ-TEAD disruptor, ATA reduced TC-mediated enhancement of TEAD
reporter activity and expression of TC-TEAD regulated genes, as assessed by RNA-Seq and
qPCR. ATA also inhibited TC-induced soft agar colony growth of NIH3T3 cells, which we
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Fig 4. ATA inhibits soft agar colony growth that is dependent on TC/TAZ-TEAD activity. Bright-field images and
the corresponding quantification of soft agar colonies determined as percent normalized to vehicle controls (VC). Cells
were treated with the indicated doses of ATA in (A) NIH3T3 cells expressing TAZ-CAMTALI (B) NIH3T3 expressing
TAZ %4 and (C) NIH3T3 cells expressing NRAS '2V. Data represent results of two independent experiments. Data
are presented as mean (n = 3) and error bars represent the standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0266143.9004

have previously shown to be a remarkable readout of the TC-TEAD interaction and the com-
plex’s transcriptional activity [23]. The soft agar colony growth induced by TAZ %*°* is simi-
larly inhibited by ATA in a dose-dependent fashion. The reduction in the number of colonies
in soft agar by ATA is not due to cytotoxicity because NRAS-transformed NIH3T3 colonies
were insensitive to ATA addition.

ATA can inhibit a diverse group of proteins. For instance, ATA was identified as an inhibi-
tor of cell-free protein synthesis through its ability to disrupt protein-RNA interactions [37].
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The utility of ATA as an antithrombotic drug has also been investigated as it acts as a disruptor
of von Willebrand factor (vWF)—platelet glycoprotein 1b (GP1b) interaction [38]. ATA has
also been shown to act as an inhibitor of the interaction between tumor necrosis factor-like
weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible 14 (Fn14) [39].
As ATA can disrupt other bimolecular complexes, it requires modification to allow it to act as
a specific inhibitor of the TAZ-TEAD complex. Toward this end, we synthesized a small
library of ATA analogs that contained specific alterations in the ATA scaffold. These analogs
were not as potent as ATA and therefore were not used in further studies. However, we were
not comprehensive with our analog synthesis, so we are continuing work to modify ATA to
improve its selectivity for TEAD.

The majority of the identified small molecule YAP/TAZ-TEAD disruptors bind to the cen-
tral pocket of TEAD and therefore have an allosteric mode of action [16, 40]. Some of the mol-
ecules, such as MGH-CP1 and others, bind non-covalently, whereas others like TEAD-347
and MYF-01-037 are covalent ligands [41-44]. Central pocket-binding ligands identified by
Vivace Therapeutics and Ikena Oncology have already entered clinical trials (NCT04665206,
NCT05228015), and we will know their efficacy in humans soon. The other small molecule
YAP-TEAD disruptor that had entered clinical trial is the TAG933 from Novartis
(NCT04857372), but its mechanism of action has not been disclosed.

In contrast to allosteric disruptors, canonical disruptors bind to the interfaces on the TEAD
surface and interfere with YAP/TAZ or TC binding to TEAD. Thus, they have a simple and
straightforward mechanism of action, and they do not need to outcompete a ligand, unlike
compounds that would bind the central pocket. As the surface pockets on TEADs are shallow,
identifying an effective small molecule disruptor of the YAP/TAZ-TEAD interaction has been
difficult. Peptides nevertheless can bind the surface pockets and effectively act as disruptors of
the YAP-TEAD interaction. Cysteine-dense peptide TB2Gl is a disruptor that acts at interface
2 [45], whereas peptide 17, a cyclic YAP peptide [33], and peptides 9,10, two linear YAP pep-
tides [46], act as disruptors by binding to TEAD at interface 3. However, these peptides have
poor cell-penetrating abilities. Small molecules, on the other hand, can be more effectively
designed to penetrate cells.

Tri-substituted pyrazoles are small molecule ligands that bind TEAD interface 2 and can be
improved to act as effective YAP-TEAD disruptors [47]. At the interface 3 site, a small mole-
cule ligand with a dioxo-benzoisothiazole scaffold has been reported to act as a canonical dis-
ruptor of YAP-TEAD interaction [48]. We have previously shown that flufenamic acid has a
secondary binding site at interface 3 [18]. At this site, flufenamic acid only weakly interacts
with TEAD, so it is not an effective disruptor. Therefore, ATA is another small molecule that
can act as an effective disruptor by binding at interface 3. Identification of the small molecule
ATA as a canonical disruptor of the TAZ-TEAD interaction is an important development and
it opens up new opportunities for targeting the undruggable YAP/TAZ-TEAD interaction.

Supporting information

S1 Fig. TAZ-TEAD AlphaLISA assay development. (A) Coomassie stain (CS) and western
blots of full-length purified TAZ and TEAD that were used in the TAZ-TEAD AlphaLISA
assay. (B) Various ratios of full-length TAZ and TEAD were used to identify the concentra-
tions that produce the maximal alpha signal, seen at the “hook” point. (C) Distribution plot of
the bioactive screen, compounds that showed greater than 70% inhibition were shortlisted as
hits. (D) Dose-response curves of ATA and other ATA analogs that show inhibition in the
TAZ-TEAD AlphaLISA screen.

(TIF)
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S2 Fig. TAZ-TEAD fluorescence polarization (FP) assay. The effectiveness of ATA was com-
pared with that of verteporfin and peptide 17. Both verteporfin and peptide 17 were identified
as disruptors of the TEAD complex. Verteporfin did not display an effect in this assay.

(TIF)

S3 Fig. Lactate dehydrogenase (LDH) cytotoxicity assay. NIH3T3 and HEK293 cells were
treated with the indicated concentrations of ATA and the cytotoxicity was evaluated by calcu-
lating the amount of intracellular LDH released into the media. LDH absorbance after com-
plete cell lysis is considered as 100% cytotoxicity and the absorbance after ATA treatment was
normalized accordingly.

(TIF)

S1 Table. Structures of ATA analogs and their ICs, values as determined from the
TAZ-TEAD AlphaLISA assay.
(Z1P)

$2 Table. Differentially expressed genes.
(XLSX)

S1 Raw images.
(TIF)
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