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Abstract

The objective of this study is to develop a skeleton model for assessing active marrow dose

from bone-seeking beta-emitting radionuclides. This article explains the modeling methodol-

ogy which accounts for individual variability of the macro- and microstructure of bone tissue.

Bone sites with active hematopoiesis are assessed by dividing them into small segments

described by simple geometric shapes. Spongiosa, which fills the segments, is modeled as

an isotropic three-dimensional grid (framework) of rod-like trabeculae that “run through” the

bone marrow. Randomized multiple framework deformations are simulated by changing the

positions of the grid nodes and the thickness of the rods. Model grid parameters are selected

in accordance with the parameters of spongiosa microstructures taken from the published

papers. Stochastic modeling of radiation transport in heterogeneous media simulating the

distribution of bone tissue and marrow in each of the segments is performed by Monte Carlo

methods. Model output for the human femur at different ages is provided as an example.

The uncertainty of dosimetric characteristics associated with individual variability of bone

structure was evaluated. An advantage of this methodology for the calculation of doses

absorbed in the marrow from bone-seeking radionuclides is that it does not require addi-

tional studies of autopsy material. The biokinetic model results will be used in the future to

calculate individual doses to members of a cohort exposed to 89,90Sr from liquid radioactive

waste discharged to the Techa River by the Mayak Production Association in 1949–1956.

Further study of these unique cohorts provides an opportunity to gain more in-depth knowl-

edge about the effects of chronic radiation on the hematopoietic system. In addition, the pro-

posed model can be used to assess the doses to active marrow under any other scenarios

of 90Sr and 89Sr intake to humans.
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Introduction

Environmental radioactive contamination in the Southern Urals from Mayak plutonium facil-

ity releases in the 1950s led to substantial doses to the residents of nearby communities, and,

subsequently, to health effects [1–6]. In particular, cases of chronic radiation syndrome (con-

sidered to be an early deterministic effect of red bone marrow exposure) were diagnosed in

residents using the Techa River, contaminated by the Mayak discharges [7]. An increase of leu-

kemia associated with radiation dose to bone marrow was noted in the cohort of about 30,000

Techa riverside residents [8, 9] and also in the combined cohort of about 20,000 persons

exposed in utero whose mothers lived by the Techa River or worked at Mayak [10]. Excess rela-

tive risk of leukemia was also observed in a cohort of about 20,000 residents exposed as a result

of an accident that occurred at Mayak in 1957, but it was not statistically significant [2]. Fur-

ther study of these unique cohorts provides an opportunity to gain more in-depth knowledge

about the effects of chronic radiation on the hematopoietic system.

Evaluation of individual dose and associated uncertainty from ingested 90Sr and also the

shorter-lived 89Sr is of utmost importance in the dosimetric support of the epidemiological

studies [4]. Strontium-90 was the most significant radionuclide for the exposed residents in

terms of bone marrow dose. Maximum lifetime intake of this radionuclide was estimated to be

2-3 MBq from Techa River use in the early 1950s [11]. Monitoring of 90Sr-body burden in

Urals residents has continued for over 60 years, and more than 20,000 people have been exam-

ined [12–14].

Calcium-like 89Sr and 90Sr incorporated in the mineralized matrix of bone are a source of

beta radiation for the marrow. An age- and gender-dependent biokinetic model [15] was

developed to estimate temporal changes of concentrations of 89, 90Sr in trabecular and cortical

bones after radionuclide intakes. Until recently, to convert strontium concentration into mar-

row dose rate, we used so called “path length-based” methods of radiation particle transport

described in [16, 17]. Later studies [18, 19] supported the use of voxel-based skeletal models

permitting more accurate estimates of energy deposition in marrow targets.

The current paper presents a general description of the voxel-based Stochastic Parametric

Skeletal Dosimetry (SPSD) model for humans, originally proposed by E. Shishkina and V.

Zalyapin [20, 21]. This SPSD model accounts for the individual variability of the macro- and

microstructure of bone tissues and is currently implemented for males and females of different

ages beginning from birth.

Hematopoietic sites of human skeleton as objects for modeling

Active marrow (AM) is hematopoietically active and gets its red color from the large numbers

of erythrocytes (red blood cells) being produced. AM sites of the skeleton correspond to tra-

becular spongiosa regions covered by a cortical shell (cortex). The spongiosa contains both

source areas (bone trabeculae) and target area (active marrow).

Distribution of AM through the human skeleton

At birth, the whole skeleton is filled with AM. Throughout life there is a conversion of much

AM to inactive (yellow) marrow (IM). As a result of skeletal growth and AM reductions at dif-

ferent age periods, the skeletal hematopoietic sites contain both red and yellow marrow in dif-

ferent proportions. The location of hematopoietic sites in humans of different ages is shown in

Fig 1. The age-related changes in the hematopoietic sites and quantitative distribution of AM
(according to data from [22, 23]) are shown in Table 1.

It can be concluded from Fig 1 and Table 1 that throughout life there is a complete cessation

of hematopoiesis in some individual sites and gradual conversion of AM into IM in most of
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the remaining sites. For example, rapid cessation occurs during the first years of life of hemato-

poiesis in the fingers and toes, as well as in the middle of the diaphysis of long tubular bones. It

should be noted that the timing of the replacement of hematopoietic AM with IM in various

skeleton bones can vary considerably.

To analyze the data on quantitative distribution of AM (Table 1), it is important to note the

methods used to obtain this data. Estimates from [22] were based on a collection of histologic

data on age-specific marrow cellularity for specific bones, together with information on rela-

tive volumes of body regions (e.g., head, trunk, upper and lower legs) at the indicated ages.

The contemporary method of positron-emission tomography with fluorothymidine as a label

(FLT-PET) allows for in vivo visualization of the location and quantification of proliferating

tissues, including AM [23]. The FLT-PET method made it possible to identify in vivo areas

with the most pronounced proliferative activity of the marrow and assess the variability of pro-

liferative activity in individual hematopoietic sites in a large group of adults [23]. Unfortu-

nately, we did not find FLT-PET results for children (presumably, such data may appear in the

coming years).

It can be seen from Table 1 that in newborns the largest fraction of AM is in the skull

(28%), followed by the spine (14%), pelvis (11%), and wrists+hands+ankles+feet (11%). In

Fig 1. Location of hematopoietic bone sites (purple color) in humans of different ages. Other bones (yellow) do not contain active marrow and

are not considered for modeling.

https://doi.org/10.1371/journal.pone.0257605.g001
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adults, the greatest amount of AM is concentrated in the spine (36%), followed by pelvis (23%)

and ribs+scapulae+clavicles (15%). The different sites have trabecular thicknesses and sizes of

marrow cavities that are both site-specific and age-dependent.

Bony structure in hematopoietical sites

Trabecular (cancellous or spongy) bone is a continuous network consisting of curved plates

and rod-like elements intersecting with one another (Fig 2A). Basic parameters for description

of bony structure are the micro-parameters trabecular thickness (Tb.Th), trabecular separation

or distance between trabeculae (Tb.Sp), and bone volume fraction of spongiosa (BV/TV); and

the macro-parameters cortical thickness (Ct.Th) and overall dimensions. The abbreviations of

the parameters are given in accordance with standardized nomenclature for bone histomor-

phometry [24, 25]. Different methods were used to evaluate the parameters, each of which has

its pros and cons [26, 27]. A brief evaluation of the methods is given below.

Fig 2 illustrates an example of classical histomorphometric data obtained on a collection of

histological slides prepared from iliac crest specimens of 67 adult humans of both genders

[28]. In this late 1960s study, the parameters of more than 15 thousand trabeculae were mea-

sured under a microscope, and statistical distributions of trabecular thickness and trabecular

separation were obtained. As can be seen from Fig 2C, both distributions were similar to log-

normal, but mean trabecular thickness was significantly less than trabecular separation.

In the early 1980s, a semi-automated system for assessing bone parameters was proposed in

[29]. The stereological basis of bone histomorphometry with the use of a theory of quantitative

microscopy and reconstruction of the 3rd dimension was developed. The techniques were

based on assumed parallel plate or rod trabecular models and isotropy of bone structures. The

Table 1. Main hematopoietic sites of human skeleton in different ages and distribution of AM for newborns and pre-adults [22] and for adults [23].

Bone site Bone parts AM (% from whole-skeleton AM mass)

Newborn 1 y 5 y 10 y 15 y Adult (mean±SD)

Skull Plate bones, clivus 28.2 28.7 18.1 12.8 10.2 6.2 ± 2.3

Ribs + Scapulae + Clavicles Central part of scapula 10.1 11.8

Other parts 12.8 14.8 18.0 15.3 ± 2.6

Vertebrae Cervical 1.7 2.1 2.3 2.7 3.3 3.5 ± 1.0

Thoracic 7.2 8.3 9.2 11.0 13.8 17.5 ± 2.4

Lumbar 5.5 6.4 7.0 8.5 10.6 15.5 ± 2.5

Sacrum All parts 4.4 5.1 5.7 6.8 8.5 7.4 ± 1.8

Pelvis Ilium, pubis, ischium 11.4 13.1 13.5 15.9 18.6 23.2 ± 3.0

Femora Diaphysis 6.7 8.1 13.5

Distal parts 15.7

Proximal parts 11.3 5.9 ± 2.5

Humeri Diaphysis 4.5 5.2 4.8

Distal part 4.1

Proximal parts 3.8 3.6 ± 1.9

Tibiae and fibulae Diaphysis 7.1 8.7 9.3

Proximal and distal parts 5.6

Radii and ulnae All parts 2.4 2.6 2.1

Wrists and hands, Ankles and feet All parts 10.8

Note: shaded cells indicate active hematopoiesis (presence of AM), white cells indicate the absence or very low hematopoiesis (not considered for modeling).

https://doi.org/10.1371/journal.pone.0257605.t001
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author noted that although his method is oversimplified, it is easy to use and can provide

quick standardized results in different laboratories [30].

Since the 1990s, microcomputed tomography (microCT) has been used along with conven-

tional histomorphometry to assess morphometric parameters of 3D trabecular structures [31–

34]. The method allows for the study of a larger volume of spongiosa samples, and a quick eval-

uation of parameters (regardless of the rod or plate trabecular model); however, the measure-

ment results significantly depend on microCT resolution [35, 36]. It should be noted that

Fig 2. Spongiosa microstructure: (A) General view of spongy bone; (B) View of histological cross-section of spongy bone under a

microscope: trabeculae are dark-colored and intertrabecular cavities are light-colored; (C) Statistical distributions of trabecular thickness

and trabecular separation measured on a collection of histological slides prepared from iliac crest specimens based on data published in

[28].

https://doi.org/10.1371/journal.pone.0257605.g002
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some comparative studies of the histomorphometry and micro-CT measurements have shown

high agreement [33, 34, 37], whereas others have reported only moderate agreement [31, 38,

39]. The difference may be attributable to inadequate resolution of microCT images relative to

real trabecular size, the use of a plate trabecular model in 2D histomorphometry versus direct

3D methods in microCT, or other reasons. Chappard et al. [26] note that the estimates of Tb.

Th depend on the three-dimensional reconstruction method used in histomorphometry. The

highest agreement is observed for BV/TV estimates (the bias between the methods does not

exceed 3%).

In the current study both microCT imaging with adequate resolution (� 40 μm) as well as

histomorphometry data obtained using the rod trabecular model are considered for the assess-

ment of bone parameters. Table 2 shows examples of morphometric parameters estimated by

different authors for the vertebrae of adults, children, and newborns.

As shown in Table 2, there are numerous studies of adults, with sample means having a sig-

nificant difference due to individual variability. Much less data has been published for new-

borns and young children, and the samples can be as small as one cadaver. In all available child

studies, BV/TV was measured, but only two studies measured Tb.Th. Measured data on verte-

bra-cortical thickness for children were not found. However, bone images available in [49]

show that cortical thickness of newborn- and infant-vertebrae is very thin and comparable to

Tb.Th. Based on these images it was considered that the entire vertebral body in the early ages

consists of trabecular bone only. Also, it should be noted that in the case of data paucity, rela-

tive standard uncertainties for the parameter values may be extrapolated from the correspond-

ing data for other ages.

A distinction should be made between individual variability (which characterizes the differ-

ences between individuals) and intra-specimen variability (which characterizes the variation

in the parameters for a particular person). Data on intra-specimen variability for bone sites are

available in [50–52].

Density and elemental composition of bone and marrow

The mineralized bone matrix has two major components: an organic matrix (mainly collagen)

and bone minerals (hydroxyapatite, amorphous calcium phosphate and some other salts).

Notably, the mineralized bone in living organisms contains the bone matrix with blood vessels,

blood, nerves, fluid in lacunae and canals, as well as bound water on the surfaces of the bone

matrix. All these components constitute hydrated (wet) mineralized bone. The density of such

hydrated mineralized bone (i.e., tissue bone density) is considered here.

Estimates of tissue bone density for different ages are shown in Table 3. There are few publi-

cations on direct measurements of tissue bone density in children [53]. The data on indirect

factors influencing the bone density (e.g., bone porosity) indicate significant differences for

children of the first year of life vs other age-groups. The differences between children over 5

years old and adults usually do not exceed 5% (Table 3). The density of AM according to Tis-

sue Properties Database [54] is equal to 1.029±0.002 g cm-3, which is very close to the density

of IM of 0.98 g cm-3 (SD not available). Assuming marrow density does not vary much by age,

the marrow density is about half that of bone density for adults, and about 60% for newborns.

Elemental composition of mineralized bone of newborn and adult, and also composition of

active and inactive marrow (AM and IM) of humans of all ages, is given in Table 4 [60].

As can be seen, the elemental composition of the mineralized bone for newborns is slightly

different than for adults. Nevertheless, for both age groups the greatest contribution is made

by oxygen, calcium and carbon. As for marrow, the largest contributors are carbon, oxygen

and hydrogen both for AM and IM.
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Specification of the dosimetry problem for beta-emitters

Strontium isotopes uniformly distributed in trabecular and cortical bone volumes (TBV and

CBV) are considered to be source regions of ionizing radiation. The marrow-filled cavities sur-

rounding the trabecular bone are considered to be the target region. It is assumed that AM
cells are randomly distributed within the cavities, and absorbed doses are equal for AM and

IM. The cortical bone volume (CBV) is considered as an additional exposure source for AM.

Thus, the dosimetry problem is to evaluate energy deposition in target regions for particles

emitted in TBV and CBV sources. This problem can be solved by stochastic modeling of radia-

tion transport in a porous structure simulating the spatial distribution of bone and marrow

within spongiosa. For practical application, skeletal-averaged dose factors DF(AM TBV) and

DF(AM CBV) should be calculated, which represent dose rate in the marrow per unit con-

centration of 89,90Sr in TBV and CBV taking into account the AM fractions within the hemato-

poietic sites.

Energies of electrons from 89Sr spectrum are in the range of 0–1.5 MeV and the energy

range for combined spectra of 90Sr/90Y is 0–2.4 MeV. Average energy values in the two spectra

are close to 0.6 MeV. Assuming the continuous-slowing-down approximation, the mean free

path of electrons in spongiosa is about 2 mm, and greater than 99% of the energy would be

absorbed within 10 mm. The thickness of trabeculae varies within the range of 0.04–0.4 mm,

and for most emitted electrons such thin structures are penetrable. Thus, the geometric shape

of the trabeculae does not play a significant role in the process of multiple scattering (on bone

media) with respect to angular deflections and energy loss straggling. On the other hand, the

Table 2. Examples of morphometric parameters estimated in different studies for the vertebrae of adults, children, and newborns (means and standard deviations).

Specimen Number of subjects Tb.Th, mm Tb.Sp, mm Ct.Th, mm BV/TV, % Source of data

Lumbar vertebrae of adult 14 0.14±0.01 0.57±0.12 - 21±5 [40]

9 0.12±0.01 0.72±0.08 - 16±2 [41]

30 0.23±0.02 0.54±0.13 - 29±5 [42]

7 0.13±0.03 - - 15±4 [43]

27 0.09±0.03 - 0.52±0.03 - [44]

4 - - 0.49±0.05 - [45]

26 - - 0.29±0.02 - [46]

Vertebrae of newborn 1 0.25±0.01 - - 64±3 [47]

1 0.18±0.04 - - 30±6 [47]

1 - - - 60±9 [48]

1 - - - 46±5 [48]

Vertebrae of children 0.5–9 years 1 0.17±0.02 - - 20±4 [47]

1 0.19±0.03 - - 20±5 [47]

15 0.09±0.01 0.60±0.12 - 13±3 [49]

https://doi.org/10.1371/journal.pone.0257605.t002

Table 3. Estimates of tissue bone density in different ages.

Age range, years Number of subjects Tissue bone density, M ± SD or (range), g cm-3 Source of data

Newborns N/A 1.65 (1.5–1.8) [55]

2–19 14 1.84±0.06 [56]

20–75 25 1.91±0.05 [57]

29–73 7 1.86±0.06 [58]

38–75 10 1.87±0.03 [59]

https://doi.org/10.1371/journal.pone.0257605.t003
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maximum path length in spongiosa is comparable to the linear dimensions of small bones and

some electrons escape to cortical bone. To account for energy losses, the linear dimensions of

bones must be considered in the dosimetry model.

General approach and modeling tasks to be solved

A general approach to bone dosimetric modeling for 89Sr and 90Sr+90Y was described in [61].

The hematopoietic sites are modeled by dividing them into small segments described by sim-

ple geometric shapes [20, 21]. The cortical layer with a thickness of Ct.Th is located on the

outer (not adjacent to each other) walls of the segments. Spongiosa, which fills the segments, is

modeled as an isotropic three-dimensional grid (framework) of rod-like trabeculae that “run

through” the marrow. In the skeletal model, multiple framework deformations are simulated

by changing the positions of the grid nodes and the thickness of the rods [21]. Model grid

parameters are selected in accordance with the parameters of spongiosa microstructures taken

from the published literature (Tb.Th; Tb.Sp; BV/TV). Stochastic modeling of radiation trans-

port in a heterogeneous medium simulating the distribution of bone tissue and marrow in

each of the segments is performed by Monte Carlo methods [20].

The suggested approach to model development is based on completing several important

tasks. A brief description of the essence of the proposed solutions are given below.

Segmentation of hematopoietic sites

The first task includes collection and analysis of published data on macro-and micro-structure

of the bone sites; segmentation of each bone site and segment description by simple geometric

figures (e.g., boxes, regular and deformed cylinders, ellipsoids, etc.). An approach to segmenta-

tion of hematopoietic sites for calculations of dose to AM exposed to bone-seeking radionu-

clides was described in [62]. Stylized models of bone segments were created and their

parameter values evaluated for fifteen hematopoietic sites (femur, humerus, fibula and tibia,

radius and ulna, pelvis, ribs, vertebrae [cervical, lumbar, thoracic], sacrum, skull, clavicle, scap-

ula, sternum, and hand and foot bones). The number of hematopoietic sites in an adult

reduces to twelve with the removal of fibula and tibia, radius and ulna, and hand and foot

bones. Sex-differences in macro-parameters of the sites were considered for people starting in

adolescence. Some segmentation information is readily available in our previous publications.

For example, segmentation of the vertebra and ribs of adult males were described in [20, 62].

Table 4. Elemental composition of mineralized bone of newborns and adults and also active and inactive marrow of humans in all ages (% by mass) according to

[60].

Element Mineralized bone Marrow

Newborn Adult Active Inactive

H 4.2 3.5 10.5 11.5

C 16 16 41.4 64.4

N 4.5 4.2 3.4 0.7

O 50.2 44.5 43.9 23.1

Na 0 0.3 0.1 0.1

Mg 0.3 0.2 0.2 0

P 8.0 9.5 0.2 0.1

S 0.3 0.3 0.2 0.1

Ca 16.5 21.5 0 0

Fe 0 0 0.1 0

https://doi.org/10.1371/journal.pone.0257605.t004
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Femur modeling details are provided here to exemplify the process and details considered.

Fig 3 shows the real forms of the hematopoietic human femur at different ages and their styl-

ized models. As can be seen, from birth to 5 years old, a whole femur was modeled using three

stylized segments. For a ten-year-old child, only the proximal and distal parts were modeled,

because the entire marrow is inactive in the middle part of the bone. For ages over 15 years,

Fig 3. Example of segmentation: Human femur as hematopoietic site at different ages and stylized segments assumed

for its description.

https://doi.org/10.1371/journal.pone.0257605.g003
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hematopoiesis occurs only in the proximal femur, the shape of which is modeled by two styl-

ized segments (Fig 3).

It is important to note that epiphysis (secondary centers of ossification, i.e. femoral head

and trochanteric epiphysis) were not included in the dosimetric model because in newborns

they are mainly expressed as cartilage. When ossification begins in these areas, AM is rapidly

replaced by IM [63–65].

Mean values of macro-parameters of the femur segments evaluated based upon published

data [66–70] are shown in Table 5. Shafts and proximal ends of the femur were described by

round cylinders (RC) of height h and diameter d1; distal ends and trochanter area were

described by deformed cylinders (DC) of height h, a round base of diameter d1 and an elliptical

base of axes d2 and d3; the neck was described by an elliptical cylinder (EC) of height h and of

axes d1 and d2. The cortical layer thickness (Ct.Th) located on the outside walls of the segments

was estimated based upon the data taken from [71, 72].

The changes in the linear dimensions of the segments reflect the processes of growth and

development of the femur. As follows from Table 5 and Fig 3, there is an increase in the length

of the femoral shaft (considered in the model for ages 0–5 years), as well as an increase in the

transverse dimensions, that is, the diameters of various parts of the femur. The Ct.Th values

generally increase with age. It is assumed that the growth of the femur is completed by the age

of 15 years, and then the macro-parameters remain unchanged. Estimates of individual vari-

ability (in terms of CV) are in the ranges from 4% to 23% for the bone segment sizes and from

7% to 25% for the Ct.Th (Table 5).

The mean values of micro-parameters of the femur segments evaluated based upon pub-

lished data [48, 69, 73–75] are shown in Table 6, including bone volume fraction of spongiosa

(BV/TV); trabecula thickness (Tb.Th); and separation distance between trabeculae (Tb.Sp).

Analysis of the published data has shown that the microstructure parameters do not depend

on sex; therefore, data for men and women were combined for modeling.

As follows from Table 6, in childhood, an increase in both Tb.Th and Tb.Sp is observed.

However in adults, the average thickness of trabeculae decreases and Tb.Sp keeps increasing.

This results in a decrease of the proportion of bone in the total volume of spongiosa (BV/TV).

Estimates of individual variability (in terms of CV) can change from 9% to 22% for Tb.Th
and from 13% to 27% for Tb.Sp depending on the data available for the specific bone segment

(Table 6). Ranges of BV/TV tend to decrease with age. In general, we can say that the variability

of adults’ microstructure parameters with the fully formed skeleton is slightly lower compared

with children whose skeleton continues to form.

Stochastic generation of bone segment phantoms

The next task is the elaboration of a generator of 3D microstructures imitating the geometry

and microstructure of bone segments in hematopoietic sites to produce multiple models of

spongiosa. The stages of model generation were described in [20, 76]. In the first stage, the

mathematical model of infinite spongiosa is generated. The mathematical basis for this was

described in [21]. The spongiosa microarchitecture is simulated with interconnected rod-like

structures representing trabeculae. Fig 4A illustrates a model example of four interconnected

trabeculae. The spongiosa model results from deformation of a three-dimensional grid by sto-

chastic node perturbation and random variation of the node thickness. The rod-like trabecu-

lae, now simulated with cone segments resulting from varying end-node thicknesses, are

either truncated along the edges of the deformed grid or connected with other trabeculae

within the deformed grid using spheres [20, 21].
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The mean values of Tb.Th and Tb.Sp and their corresponding standard deviations evaluated

based upon published data are used to simulate intra-specimen variability of spongiosa micro-

structure (Fig 4A). Generated Tb.Spg is calibrated to fit the model to literature-derived BV/TV
[76].

Then, a certain part of the modeled spongiosa is cut out in such a way as to fill the volume

of the stylized bone segment and is voxelized. At this stage some rods can become “discon-

nected”. At the last stage, a cortical layer of a given thickness is formed by replacing the outer

layers of the spongiosa voxels with the voxels of the cortical bone. As a result, some trabecular

rods contact with the cortex and other do not in a region intersecting with the cortical shell.

Fig 4B presents the cross-sections of generated and voxelized models of three segments from

vertebra, femur and iliac crest (on the same scale).

Table 5. Femur segment macro-parameters and their individual variability estimated for different ages.

Age Segment Shape Macro-parameters: mean, cm (CV, %)

h d1 d2 d3 Ct.Th
Newborn Diaphysis RC (1) 3.78 (5) 0.72 (11) - - 0.17 (24)

Proximal end DC (2) 1.89 (5) 0.72 (11) 2.64 (9) 1.16 (12) 0.05 (24)

Distal end DC 1.89 (5) 0.72 (11) 2.64 (9) 1.16 (12) 0.04 (25)

1 year Diaphysis RC 7.15 (4) 1.12 (7) - - 0.23 (17)

Proximal end DC 3.58 (4) 1.12 (7) 3.4 (12) 1.8 (8) 0.07 (17)

Distal end DC 3.58 (4) 1.12 (7) 3.4 (12) 1.8 (8) 0.06 (17)

5 years Diaphysis RC 14.8 (4) 1.66 (6) - - 0.37 (8)

Upper proximal end RC 2.47 (4) 2.3 (23) - - 0.13 (14)

Lower proximal end RC 2.47 (4) 2.3 (23) - - 0.13 (14)

Distal end DC 4.94 (4) 1.66 (6) 6.82 (6) 2.5 (7) 0.11 (7)

10 years Upper proximal end RC 3.46 (5) 2.49 (7) - - 0.18 (17)

Lower proximal end RC 3.46 (5) 2.49 (7) - - 0.22 (12)

Distal end DC 6.92 (5) 7.84 (7) 3.32 (10) 2.1 (9) 0.11 (14)

15 years Male Neck EC (3) 2.96 (5) 3.6 (14) 3.2 (13) - 0.20 (19)

Adult Male Trochanter area DC 4.1 (4) 6.6 (6) 4.4 (6) 3.0 (7) 0.23 (15)

15 years Female Adult Female Neck EC 3.05 (5) 2.94 (10) 2.39 (9) - 0.20 (19)

Trochanter area DC 3.4 (5) 5.8 (7) 3.9 (7) 2.7 (6) 0.23 (15)

1. RC–round cylinder.
2. DC–deformed cylinder.
3. EC–elliptical cylinder.

https://doi.org/10.1371/journal.pone.0257605.t005

Table 6. Femur trabecular micro-structure parameters and their individual variability estimated for different ages.

Age Segment BV/TV (min-max), % Tb.Th, mean, mm (CV, %) Tb.Sp, mean, mm (CV, %)

Newborn All 37 (9.6–53) 0.11 (15) 0.39 (27)

1 year All 22 (15–32) 0.16 (22) 0.54 (20)

5–10 years Diaphysis and distal end 26 (17–32) 0.24 (22) 0.54 (14)

Proximal ends 35 (23–43)

15 years (M+F) Neck 35 (23–43) 0.24 (22) 0.54 (14)

Trochanter area 26 (17–32)

Adult Neck 17 (14–22) 0.19 (11) 0.78 (13)

(M+F) Trochanter area 11 (8–13) 0.14 (9) 1.0 (13)

https://doi.org/10.1371/journal.pone.0257605.t006
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The original software “Trabecula” has been developed to simulate 3D bone segments in

voxel presentation [76]. The software can perform random generation of trabecular bone

structures inscribed into simplified bone shapes (e.g., boxes, regular and deformed cylinders,

ellipsoids) that are covered by a cortical bone layer. The homogeneous cortical layer is gener-

ated in the process of voxelization (in particular, voxel resolution of femoral segment phan-

toms varies from 70 μm up to 160 μm, see S1 File). The voxel belonging to a particular

structure (cortical bone, trabecular bone, marrow, or void) was defined according to the cen-

tral point of the voxel [76]. The synthetic model of spongiosa was calibrated to fit the main

input parameters after voxelization. Thus, the values of Ct.Th, Tb.Th and BV/TV of the voxe-

lized models are equal to the input model parameters (see examples in S1 File). Volumes of the

marrow target and the source-tissues (CBV and TBV) are directly calculated by “Trabecula”

for voxel phantoms.

Fig 4. Model examples of the generated trabecular structures. (A) Scheme of four interconnected trabeculae and randomization of the grid and

simulation of Tb.Thg and Tb.Spg (g indicates the generated output against the original input data). (B) Cross-sections of the voxelized models for three

bone segments with different micro-parameters and cortical thickness (bone is black-colored and marrow is white-colored). (1) Thoracic vertebrae

body in age = 10 y (Ct.Th = 0.2 mm; Tb.Th = 0.12 mm; BV/TV = 0.13); (2) Femur lower proximal end in age = 5 y (Ct.Th = 1.3 mm; Tb.Th = 0.24 mm;

BV/TV = 0.35); (3) Iliac dorsal segment equal for adult male and female (Ct.Th = 1.5 mm; Tb.Th = 0.1 mm; BV/TV = 0.2).

https://doi.org/10.1371/journal.pone.0257605.g004
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The computer program supports dual functionality: generating a model with fixed parame-

ters (phantom imitating the population average) and generating a set of phantoms imitating

individual variability in the population. The random generation of spongiosa and model voxe-

lization does not induce any significant changes (<1%) to the mean values of linear dimen-

sions and tissue volumes of the segment-specific computational phantoms. By simulating the

individual variability with 12 additional realizations of segment-specific phantoms, the vari-

ability of the parameters of the resulting model was estimated. Individual variability of the

parameters of generated phantoms fully corresponds to the input parameters [76].

“Trabecula”, the generator of bone segment geometry, is designed for construction of

computational phantoms for subsequent dosimetric application, viz., for evaluation of energy

deposition in marrow target per emitted particle. A beneficial feature of the “Trabecula” code

is its ability to generate output files that are formatted as Monte Carlo N-Particle (MCNP)

code [77] input as three lattices of voxels, namely, a whole computational phantom and two

separate source tissues (cortical and trabecular bones).

Stochastic modeling of radiation transport

The Monte Carlo calculations of the transport of electrons and secondary photons are done

with the MCNP6 code [77], operated with continuous-energy nuclear and atomic data librar-

ies such as the Evaluated Nuclear Data File (ENDF) system, the Evaluated Nuclear Data

Library (ENDL), and the Activation Library (ACTL) compilations. The MCNP transport phys-

ics accurately account for the diffusion and slowing down of all radiations in the electron-pho-

ton cascade established in the media. The absorbed energy is scored throughout the marrow

media by pulse-height tally providing analog Monte Carlo modeling. The output represents

the energy deposition in the target region per emitted electron in the source region.

At first, the MCNP computations were performed for monoenergetic electrons in the range

from 50 keV to 2 MeV, and the fractions of energy absorbed in the marrow from radiation

sources uniformly distributed in TBV and CBV were calculated for three bone sites of an adult

male (ribs, femur and vertebra). The energy dependencies were compared with published

results [78] based upon direct data of micro-images of bone structures. The comparison

showed a similarity in the energy dependencies which was a good Quality Assurance test for

our model [61]. This confirmed that the generated phantoms are dosimetrically equivalent to

real bone structures in the considered range of electron energies. Then the MCNP computa-

tions were performed for the beta spectra of 90Sr+90Y and 89Sr.

Preliminary modeling results: Femur as an example

Segment- and site-specific DFs calculated for human femur phantoms for the spectra of 90Sr

+90Y are presented in Table 7 (in units 10−14 Gy/s per Bq/kg). Estimates of individual variabil-

ity (in terms of CV, %) are also presented in Table 7. A S1 File presents the data underlying the

computational results described in Table 7 (input parameters and simulation results for aver-

age values and 12 random trials for each of the segments).

Site-average values were calculated from the segment-specific DFs weighted in accordance

to fraction of AM that is contained in a particular segment relative to AM of the entire site. It

should be noted that, for each age, the AM fraction in the total marrow within the hematopoi-

etic site is considered the same for all segments. Use of this approach results in weighting fac-

tors that are proportional to segment-specific marrow volume. Segment-specific bone marrow

volumes are calculated by the code “Trabecula”.

The calculated marrow volumes are consistent with the knowledge that throughout human

life a significant redistribution of AM occurs between different segments inside the femoral
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site (see also Table 1). The AM fraction located in the diaphysis (shaft) of children aged� 5

years does not exceed 10–18%. In the first year of life, the proximal and distal segments each con-

tain about 45% of the available AM. Then the contribution of “distal AM” begins to increase and

by the age of 10 it reaches 75%. After this age, hematopoiesis in the distal segment gradually

decreases, and from the age of 15 years all AM is concentrated in the proximal segments, with

70–75% in the trochanter area. Thus, to analyze age-dependencies of site-average values of DF
(Table 7), the parameters of the segments with the predominant location of the AM must be

taken into account. Comparison of age dependencies of DFs from Table 7 with the parameter

values given in Tables 5 and 6 shows features described in the following paragraphs.

DF(AM TBV) values (Table 7) generally reflect age-related changes in BV/TV (Table 6).

The maximum site-averaged value (6.9) was obtained for newborns, for which BV/TV was

37%. Intermediate values (4.6–6.0) were obtained for the age range of 1 to 15 years, in which

BV/TV changes amounted to 22–35%. This is also superimposed on the fact that from 5 to 15

years, the thickness of the trabeculae has maximum values (Tb.Th = 0.24 mm). By adulthood,

DF(AM TBV) values decrease by half, due to the fact that the bone porosity increases signifi-

cantly: BV/TV reduces to 11% and the distance between the trabeculae reaches the maximum

value (Tb.Sp = 0.8–1.0 mm). Individual variability of site-averaged DF(AM TBV) is in the

range from 11% to 27% and has no pronounced age dependence (Table 7).

The maximum values of site-averaged DF(AM CBV) range from 1.5–1.6 (Table 7) and are

observed around the first years of life, when the size of the bone segments is small (Table 5).

For this age, increased site-average values are observed due to AM cells located in the diaphysis

(shaft), where the dose rate is 5–10 times higher than in the proximal and distal segments with

Table 7. Modeling results for human femur: DF(AM TBV) and DF(AM CBV) for 90Sr+90Y spectrum and their individual variability in terms of CV.

Subject, age Segment Dose Factors, 10−14 Gy/s per Bq/kg (CV, %)

DF(AM TBV) DF(AM CBV)
Segment specific Site-average Segment specific Site-average

Newborn Diaphysis 5.3 (19) 6.9 (17)

Proximal end 6.9 (14) 6.8 (15) 1.2 (12) 1.6 (15)

Distal end 7.0 (15) 1.0 (16)

1 year Diaphysis 3.9 (29) 4.9 (16)

Proximal end 4.6 (29) 4.6 (27) 1.2 (11) 1.6 (13)

Distal end 4.8 (25) 1.1 (11)

5 years Diaphysis 5.0 (21) 3.7 (12)

Upper proximal end 7.1 (17) 1.3 (31)

Lower proximal end 7.1 (18) 5.5 (17) 1.3 (21) 1.5 (15)

Distal end 5.3 (18) 0.94 (12)

10 years Upper proximal end 7.2 (21) 1.4 (13)

Lower proximal end 7.2 (18) 6.0 (16) 1.5 (14) 0.90 (12)

Distal end 5.6 (15) 0.73 (11)

15 years Male Neck 7.3 (14) 6.0 (11) 0.94 (14) 0.82 (10)

Trochanter area 5.5 (10) 0.78 (8)

15 years Female Neck 7.3 (16) 6.0 (17) 1.3 (10) 1.0 (8)

Trochanter area 5.5 (18) 0.90 (7)

Adult Male Neck 4.1 (11) 3.1 (12) 1.1 (4) 0.92 (12)

Trochanter area 2.7 (13) 0.87 (15)

Adult Female Neck 4.1 (11) 3.1 (13) 1.4 (10) 1.1 (11)

Trochanter area 2.7 (14) 0.99 (11)

https://doi.org/10.1371/journal.pone.0257605.t007
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inverse relationship to Ct.Th (Table 7). From the age of 10 years, DF(AM CBV) values stabi-

lize, being in the range of 0.8–1.1 (Table 7). This indicates that further bone growth does not

have a significant effect on exposure from cortical bone to spongiosa of the AM located in the

proximal and distal segments of the femur. Individual variability of DF(AM CBV) is in the

range from 8% to 15% and has some age-dependence, being lower in the 10–15 years range

(Table 7).

The overall uncertainty of DFs is comprised of the uncertainty associated with the biological

variability of the object properties and the uncertainty associated with simplifications made for

modeling purposes [79]. Table 7 demonstrates the examples of the segment-specific (and site-

average) DF uncertainties due to individual variability of bone macro and microarchitecture

in the femur.

Each hematopoietic site has its own specific age dependencies on the DFs. In general, the

following parameters have a significant influence on cortical and trabecular DFs: (1) the size of

the bone that determines the volume of spongiosa, (2) the characteristics of the spongiosa

microstructure, mainly BV/TV, and (3) the thickness of the cortical layer.

Skeletal averaged DF values are calculated from the site-specific DFs weighted in accor-

dance with the age-dependent fractions of AM shown in Table 1. At the same time, additional

uncertainties associated with variability in AM distribution among the hematopoietic sites are

introduced into the estimates.

Uncertainty description

The uncertainty associated with the biological variability is determined by variabilities in

macro and microarchitecture of bones, density and chemical composition of bone, as well as

variability in AM distribution among the hematopoietic sites. The overall uncertainty includes

a contribution associated with simplifications made for modeling purposes (stylization of bone

geometry, voxel resolution and assumption on uniformity of cortical thickness).

Preliminary estimates of uncertainties [79] identified the main contributors to overall

uncertainty of skeletal averaged DF, viz., the individual variability of bone macro and micro-

architecture and individual variability of AM distribution among the bone sites. The benefit of

the SPSD approach is its ability to simulate individual variability. Generation of the set of seg-

ment-specific phantoms with randomly varied dimensions (within the range of literature-

derived uncertainties of the model parameters) allows for the creation of a set of supplemen-

tary phantoms in addition to the population-average (basic) one. The uncertainty due to indi-

vidual variability of bone micro and macro dimensions can be estimated as relative root mean

square deviation (RMSD) between the dose factors calculated for supplementary models and

DFs calculated with the basic one. According to the preliminary estimates [79], the segment-

specific uncertainties for all bone sites may vary from 5% to 60% (about 20% on average). Vari-

ability of site-specific AM fraction for adults (according to Table 1) is in the range of 15–65%

(about 30% on average). The contributions of other sources of uncertainty are of less signifi-

cance, not exceeding 15%. According to the preliminary estimates, the overall uncertainty of

femoral site-average DFs presented in Table 7 varies from 13% to 32%. Thus, overall uncertain-

ties of skeletal averaged DFs are preliminarily estimated to be 32–54% for DF(AM TBV) and

38–62% for DF(AM CBV). Currently, a separate article is being prepared which will describe

in detail the methods for assessing uncertainties and present the results of their assessment.

Discussion and conclusions

To lead off the discussion, the reader is reminded of three important aspects of this study: (1)

the motivation of the study was to improve estimates of radiation risk of leukemia in the Techa
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River cohorts, where 90Sr and 89Sr were the major marrow dose contributors; (2) the proposed

model was developed specifically for beta emitters with a relatively high spectrum-average

electron energy of about 0.6 MeV; and (3) active marrow was considered to be the radiosensi-

tive skeletal tissue (while bone endosteum was not considered here). Thus, it is not reasonable

to compare the “specific” model suggested here with the “universal” image-based (voxel- and

mesh-type) reference computational phantoms developed for ICRP [80, 81]. On the other

hand, an advantage of the proposed approach is that it allows the use of large available datasets

for the assessment of the parameters of bone structures accumulated in studies not related to

radiation (e.g., histology, anthropology, treatment of osteoporosis, bone prosthetics). Thus, the

suggested parametric method does not require data input from additional autopsy material.

The method makes it possible to avoid the main limitation of the image-based method: the fact

that its development and improvement directly links with the necessity of imaging additional

cadavers.

The dose factors DF(AM TBV) and DF(AM CBV), as illustrated with the femur infor-

mation presented, provide direct conversion of 90Sr and 89Sr concentration in the source

regions (TBV and CBV) to the dose rate in the target region (AM). At present, work is being

completed on the analysis of age dependencies for a full set of site-specific DFs and the calcula-

tion of skeletal averaged DFs and their uncertainties. As illustrative examples of the application

of the DFs, the estimates of the dose rate are presented for the femoral AM of Techa riverside

residents who ingested a significant amount of 90Sr from river water contaminated by uranium

fission products in 1949–1956 [3]. The average skeletal estimates are expected to be similar to

these specific values. Maximum lifetime intake of 90Sr was estimated to be 2–3 MBq in the

early 1950s [11]. Monitoring of 90Sr-body burden in Urals residents has been ongoing for over

60 years [12]. The upper panel of Fig 5 demonstrates the results of long-term monitoring of

average cohort 90Sr-body burden in residents of the upper and middle Techa who were adults

during the period of maximal 90Sr intake [12].

Since 1951, 90Sr-body burdens were estimated by post-mortem analysis of bone samples,

and since 1974, in vivo measurements have been performed on a large scale using a specially

designed whole-body counter [12, 13]. As can be seen from Fig 5, the 90Sr-body burdens have

decreased by an order of magnitude over 50 years. The corresponding 90Sr concentrations in

TBV and CBV, (middle panel of Fig 5) were estimated using the biokinetic model described in

[15] based upon the intake scenario described in [11]. As can be seen from Fig 5, there was a

significant redistribution of 90Sr in the skeleton: if in the initial period 90Sr was predominantly

incorporated in TBV, then by the end of the observation period almost all radionuclide was

concentrated in CBV. The lower panel of Fig 5 demonstrates dose rate absorbed in femoral

AM, estimated using the dosimetric model based upon 90Sr concentrations in TBV and CBV.

As can be seen from Fig 5, the dose rate in AM has decreased by almost two orders of magni-

tude over 50 years of observation.

Whole-body counter measurements for different age groups of Techa residents were also

published in [12, 14], which makes it possible to assess the age dependence of the dose rate in

AM in the long-term period after the maximum intake (Fig 6). By the time that collection of

whole-body measurements had been initiated, all people who received the largest intake had

become adults and nearly all of the remaining 90Sr was located in the CBV. As can be seen

from Fig 6, the 90Sr-body burdens and the dose rates are proportional and have a noticeable

maximum for people who were in adolescence during the period of maximum intake (born in

the mid-1930s). Maximum dose rates in this age group in 1980 were about 40 mGy/year then

decreased to 5 mGy/year in 2010 (Fig 6).

It should be noted that the dose rates in the described examples are given only for ingested
90Sr using femoral DFs. Reviewing Table 1 data, total femoral marrow dose is an age-
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dependent fraction of total skeletal marrow dose. In addition, the DF examples do not reflect

the total dose rate in AM, which was also determined by the contributions from ingested 89Sr

and 137Cs, as well as external exposure of the whole body [4]. Thus, for the future analysis of

the excess relative risk of leukemia observed in the Techa River cohorts, together with the 90Sr

doses shown here, the total doses from all exposure pathways will be estimated. Further study

of these unique cohorts provides an opportunity to gain more in-depth knowledge about the

Fig 5. Measured 90Sr body burden and modeled bone burden and dose for the adult residents of the Techa River.

The upper panel shows average 90Sr measurements (vertical bars represent error of mean); the middle panel shows the

corresponding 90Sr concentrations in TBV and CBV, estimated by the biokinetic model; the lower panel demonstrates

dose rates absorbed in femoral AM, estimated by the dosimetric model.

https://doi.org/10.1371/journal.pone.0257605.g005
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effects of chronic radiation on the hematopoietic system. In addition, the proposed model can

be used to assess the doses to AM under any other scenarios of 90Sr and 89Sr intake to humans.

Thus, a methodology of bone dosimetry modeling has been developed which includes

parametric random generation of computational phantoms of bone segments for hematopoi-

etic sites of human skeleton in voxel representation. The methodology for the calculation of

doses absorbed in the marrow from beta-emitting bone-seeking radionuclides does not require

additional studies of autopsy material. In this article, the formulations of the tasks and a brief

description of the proposed approach are presented. Completion of these important tasks and

the modeling results will be the subject of a separate article which is now under preparation.

The modeling results will be incorporated into a special Monte Carlo dosimetry system that

provides multiple realizations of individual dose estimates for each member of an epidemio-

logical cohort [82]. Thus, confidence intervals in cancer risk estimates for the cohort can be

Fig 6. Estimation of dose rate in femoral AM for different age cohorts of the Techa River residents with 90Sr-body burden measured

during 3 different time periods (vertical bars represent error of mean).

https://doi.org/10.1371/journal.pone.0257605.g006
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estimated by the radiation epidemiologists in accordance with the dosimetry uncertainties

[83].

Supporting information

S1 File. The set of data supporting Table 7 describes the segment-specific computational

phantoms of femur for humans of different age and gender (input and output parameters)

as well as corresponding results of DF(AM TBV) and DF(AM CBV). The simulation

results are given for average values and 12 random trials for each of the segments evaluated.

The "terms and explanations" worksheet contains the explanations for the designations used in

the tables with the modeling results.

(XLSX)
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