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Simple Summary: Gene expression monotonicity is an important feature in the evolution and pro-
gression of cancer, yet has not been investigated in bladder cancer (BLCA). Most of the transcriptomic
stage investigations of BLCA are limited either to a subset of stages, or to a small number of sam-
ples. Here, we leverage publicly available data to create a meta-dataset of 1135 primary BLCA
transcriptomes, to identify genes and processes with a monotonal change related to higher clinical or
pathologic stages. Our analysis aims to deepen the current understanding of the disease’s molecular
pathogenesis, as well as to propose a prognostic gene signature based on the trait of monotonicity.
Results demonstrate tumor dependencies on specific cell-cycle and metabolic microprocesses, and
highlight an eight-gene signature capable of prognosing 5-year outcomes in both the discovery and
validation sets.

Abstract: Despite advancements in molecular classification, tumor stage and grade still remain the
most relevant prognosticators used by clinicians to decide on patient management. Here, we leverage
publicly available data to characterize bladder cancer (BLCA)’s stage biology based on increased
sample sizes, identify potential therapeutic targets, and extract putative biomarkers. A total of
1135 primary BLCA transcriptomes from 12 microarray studies were compiled in a meta-cohort
and analyzed for monotonal alterations in pathway activities, gene expression, and co-expression
patterns with increasing stage (Ta–T1–T2–T3–T4), starting from the non-malignant tumor-adjacent
urothelium. The TCGA-2017 and IMvigor-210 RNA-Seq data were used to validate our findings.
Wnt, MTORC1 signaling, and MYC activity were monotonically increased with increasing stage,
while an opposite trend was detected for the catabolism of fatty acids, circadian clock genes, and the
metabolism of heme. Co-expression network analysis highlighted stage- and cell-type-specific genes
of potentially synergistic therapeutic value. An eight-gene signature, consisting of the genes AKAP7,
ANLN, CBX7, CDC14B, ENO1, GTPBP4, MED19, and ZFP2, had independent prognostic value in
both the discovery and validation sets. This novel eight-gene signature may increase the granularity
of current risk-to-progression estimators.
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1. Introduction

Bladder cancer (BLCA) accounts for approximately 200,000 annual deaths worldwide,
and had an estimated number of 570,000 new cases in 2020 [1]. It comprises a spectrum
of diseases including variably recurrent low- and high-risk non-muscle-invasive (NMI)
tumors, along with muscle-invasive (MI) cases characterized by poor prognosis. The
disease is diagnosed pathologically according to a well-established protocol—including
cystoscopy, microscopic examination of the transurethral resection of the bladder tumor
material (TURBT), and urine cytology—to determine the grade of malignancy [2]. Based on
the spread of the tumor within the organ, BLCA is staged as Ta when the tumor is confined
within the urothelium, T1 when it spreads to the lamina propria, T2 when it invades the
detrusor muscle, T3 when it grows to the peri-vesical tissue, and T4 when it spreads to
the surrounding or distant tissues and organs [3]. Advances in diagnostic tools (mostly
imaging technologies) and drug discovery over the years have improved patient survival
and quality of life [1]. However, disease monitoring and treatment selection still rely on
clinical and histological features, which is not optimal. This is well reflected in the highly
heterogeneous 5-year recurrence rates (35–76%) in NMI tumors, and in the poor 5-year
survival of MI and metastatic cases [4]. The suboptimal predictability of tumor recurrence
leads to frequent surveillance revisits, making BLCA the most expensive malignancy to
treat over the lifetime of patients [5]. An estimated 1/4 patients diagnosed with BLCA
experiences financial toxicity—a term describing the mental and emotional stress related to
the burden of unaffordable cancer care, which negatively affects quality of life [5,6].

In an effort to replace or enhance cytological findings, several studies have reported
molecular biomarkers capable of diagnosing primary or recurrent disease in the urine
samples of patients [7]. However, reliably detecting those BLCA patients who are at true
risk of recurrence or progression remains an unmet challenge. Additional studies have
investigated tumor tissue, which is thought to be better suited for prognosis. In a large
multicenter cohort of NMI patients—particularly among those patients who had been
classified as high-risk based on the traditional EORTC score table—patients with a high
12-gene expression score experienced significantly shorter progression-free survival time
than those with low scores [8]. A number of studies investigating MIBC prognosis in the
TCGA data on BLCA tissue have recently been published, all demonstrating the significant
predictive value of molecular (omics) information from tissue [9–14].

Bladder cancer is strongly linked to environmental factors such as smoking or oc-
cupational exposure to DNA-modifying compounds [15]. At the genomic level, normal
cells adjacent to dysplastic regions manifest a number of alterations on genes implicated
in carcinogenesis. These are the forerunner genes (FR genes), and are often mutated or
epigenetically silenced in wide areas beyond the tumor initiation site [16]. According to
the combined action of field effects and clonal expansion, due to the variability in the
affected FR genes among neighboring cells, some cells can acquire small advantages in
growth and survival. If obtained by the progenitor cells, these properties are propagated to
descendant cells, and any additional cumulative genomic abnormalities in the descendants
can potentially lead to tumor initiation [17].

In BLCA, tumor initiation is believed to take place in the basal layer of the urothe-
lium, where stem cells reside [18]. Increasing evidence suggests that there are at least
two sets of altered FR genes, giving rise to dominant clones with distinct biology: the
luminal and the basal types. Luminal tumors correlate with hyperactivation of the FGFR3
and AKT/PI3K/mTOR pathways, while basal tumors present with losses or inactiva-
tion of tumor-suppressor genes, such as RB1, TP53, and PTEN [4]. However, common
genomic abnormalities also exist between these two entities, including mutations on
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chromatin-modifying genes as well as the loss of the 9q locus—events linked to the pro-
tumorigenic effect of the environmental chemicals ending up in the bladder [18]. A growing
body of transcriptomic investigations of the biology of luminal and basal tumors has uncov-
ered further molecular phenotypes [19], adding to our understanding of the disease. However,
due to intratumor heterogeneity, different areas within the same tumor may present with
different molecular phenotypes [20], which may complicate their clinical utility.

For the study reported here, we compiled a discovery meta-cohort of 1135 BLCA
microarray transcriptomes along with two RNA-Seq validation sets, and addressed the
disease as a molecular continuum of alterations. Using the stage as a checkpoint variable
that reflects the cumulative processes of tumor progression, we investigated how molecular
processes and gene expression levels change, starting from the non-malignant adjacent
urothelium (NAU), and continuing through the disease stages Ta, T1, T2, T3, and T4. Our
analysis aims to enrich the current understanding of the molecular pathogenesis of BLCA,
uncovering pathways whose activation progressively increases or diminishes with cancer
growth, while also reporting for the first time on the gene co-expression profiles of the
disease stages. Based on the hypothesis that the expression levels of the most optimal
prognostic biomarkers should follow a monotonal trend with higher disease stage, we
propose an eight-gene signature with the potential of prognosing 5-year survival outcomes.

2. Materials and Methods

A comprehensive data mining strategy was employed to retrieve studies applying
-omics technologies in BLCA. The overall workflow is summarized in Figure 1, and de-
scribed in detail in Appendix A. This analysis focused on primary, treatment-naïve tumor
transcriptomes. The selection of datasets and samples eligible for the analysis, as well as
the processing and integration of raw microarray data, is detailed in Appendix A. Briefly,
we compiled a microarray discovery cohort from 12 well-characterized GEO datasets
(GSE121711, GSE93527, E-MTAB-1940, GSE31684, GSE104922, GSE128959, GSE83586,
GSE48276, GSE52219, GSE69795, GSE13507, and GSE48075). These data (summarized
in Figure 1), comprised 1054 primary bladder cancer tumor transcriptomes of treatment-
naïve patients without any prior cancer history, along with profiles from 81 non-malignant
urothelium tissues adjacent to the tumor site (NAU), corresponding to a total of 1135 gene
expression profiles. Stage distribution among the utilized datasets is shown in Table A1.
Two RNA-Seq datasets were used for validation (TCGA2017 and IMvigor210), as per avail-
ability. Table 1 shows sample allocation to the clinical variables for both the discovery and
validation sets. Figure 1 illustrates the overall study design and workflow. In the discovery
set, the ratio of men:women was 3.5:1, with equal distribution between NMI and MI disease
(p = 0.99), and similar mean age at baseline diagnosis (68 years, p = 0.81). Percentages of
NAU, NMI, and MI in the dataset were 7.1%, 43.5%, and 49.4%, respectively, with the grade
distribution being as follows: 16.5% low-grade and 48.8% high-grade disease, with the
remaining samples lacking available grade information. Detailed histological records were
missing for 71.5% of the cohort, with the most frequently reported histology among the
available records being urothelial/papillary (23.3%), and squamous differentiation being
the most frequent variant (1.3%).

Gene expression across the 12 GEO datasets was harmonized using the empirical
Bayes approach of the ComBat algorithm. Batch effect removal was assessed with the
algorithm BatchQC (Figures S1 and S2) [21], with relative log expression and principal
component analysis plots (Figure S3), with comparative analysis of expression levels
between housekeeping and non-housekeeping genes (Figure S4), or using a set of 11 positive
BLCA markers with known regulation across non-malignant–NMI–MI or non-malignant–
low-grade–high-grade disease (Figure S5). ComBat successfully eliminated batch effects
(Figures S1–S3), while maintaining the biological variability (Figures S3 and S4), BatchQC
reports indicated that the variability in the corrected data was explained by stage rather
than by the batch variable (Figure S2), allowing for an in-depth downstream analysis. The
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ComBat corrected expression matrix along with the sample clinical data are available as
File S1 and File S2, respectively.
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Table 1. Clinical data of the cohorts used.

Kerrypnx Discovery Set TCGA-BLCA-2017 IMvigor210

No. of patients 1135 188 132

Median age (range) 67 (24–95) 69 (34–90)

Sex
Female 135 (11.9%) 45 (23.9%) 29 (22.0%)
Male 459 (40.5%) 143 (76.1%) 103 (78.0%)

No info 541 (47.6%) 0 (0.0%) 0 (0.0%)

Stage
NAU 81 (7.1%) 0 (0.0%)

Ta 229 (20.2%) 0 (0.0%)
T1 262 (23.1%) 0 (0.0%)
T2 371 (32.7%) 70 (37.3%)
T3 146 (12.9%) 90 (47.9%)
T4 46 (4.0%) 28 (14.8%)

Grade
G1 13 (1.1%) 0 (0.0%)
G2 164 (14.5%) 0 (0.0%)
G3 372 (32.8%) 188 (100%)
Gx 13 (1.1%) 0 (0.0%)

No info 573 (50.5%) 0 (0.0%)

Response to atezolizumab
Complete 11 (8.3%)

Partial 20 (15.2%)
Stable disease 25 (18.9%)

Progressed disease 76 (57.6%)

To identify genes that form a continuum of changes across BLCA stages, each of the
5 disease stages was initially compared against non-malignant adjacent urothelium (NAU).
A total of 3018 genes differed significantly (Mann–Whitney p < 0.05), while having the
same orientation of change in all comparisons. We refer to this set of genes (n = 3108)
as concordantly differentially expressed genes (CDEGs). CDEGs were utilized to infer
pathway activation scores, and to create stage co-expression networks. Pathway activation
scores per sample were calculated with the ssGSEA–GSVA method [22], using the molecular
signature database libraries of Hallmark, Canonical Pathways (Reactome subset), C3 (GO
biological processes subset), and C5 (GTRD subset of transcription factor targets). Dorothea
(https://github.com/saezlab/dorothea, accessed on 16 March 2021) [23] was utilized to
assess regulon activity. To further identify the subset of pathways whose activation had
monotonal traits across non-malignant adjacent urothelium (NAU) and disease stages, each
pathway’s activation scores across stages were compared to NAU with Mann–Whitney
tests, and the direction of change was defined based on fold change (= mean of stage −
mean of NAU). Monotonicity for a pathway was defined as being significantly different in
all stage comparisons to NAU, and also having a continuously larger/smaller fold change
with increasing stage. Stromal infiltration scores were imputed using the ESTIMATE
algorithm [24].

Gene-pair co-expression weights among the 3108 CEDEGs were approximated with en-
semble learning, using GENIE3 [25], while the direction of co-expression (positive/negative)
was determined using Spearman’s coefficient. Out of the 3108 × 3108 = 9,659,664 gene-pair
weights calculated individually per condition (i.e., NAU and 5 BLCA stages), gene-pairs
with the highest GENIE3 weights, which were also positively correlated based on the
Spearman’s coefficient, were used to construct networks. The cutoff for this selection was
determined based on the gene size of the resulting networks; to avoid network saturation,
we opted to keep their gene sizes close to half the number of CDEGS (= 1554 genes), which
resulted in setting the cutoff to the top 5600 gene-pairs. Networks were constructed with

https://github.com/saezlab/dorothea
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igraph and were analyzed with Louvain clustering [26] to identify local modules of co-
expression relationships (communities) per condition. The top five in size (= number of
genes) of the communities of co-expressed genes per condition were analyzed for Gene
Ontology Biological Processes with clusterProfiler [27]. Potential drug targets in the co-
expression networks were defined based on the betweenness centrality metric [28], using
default cutoffs (computed with igraph).

We utilized CDEGs to extract genes whose expression levels was monotonically
increasing or decreasing with higher stage. Monotonicity for a gene was defined as being a
CDEG and additionally having a continuously larger/smaller fold change with increasing
stage (fold change, as defined in each disease stage versus NAU). Functional annotation
and enrichment were performed using PubMed and the online tool GeneCards (https:
//ga.genecards.org/, accessed on 22 March 2021), respectively. Out of the monotonal
subset, 43 genes were found to be of prognostic value (Cox univariate association with
5-year outcome). Eight of these genes, validated in the TCGA-BLCA dataset, were further
utilized to construct a sample-wise scoring system—the 8-gene prognostic signature—by
summing the expression values of the upregulated genes (n = 4) while subtracting the
downregulated genes (n = 4). Before calculations, each of the gene expression values per
sample was divided by the gene’s variation across the dataset, in order to minimize the
effect of individual gene variability on the final signature score:

Si = Ai/VarA + Bi/VarB + Ci/VarC + Di/VarD − Ei/VarE − Fi/VarF − Gi/VarG − Hi/VarH (1)

where Si denotes the sample-wise derived signature score, Ai Bi, Ci, Di, and Ei, Fi, Gi, Hi,
denote the sample-wise gene expression of the 4 upregulated and 4 downregulated genes,
respectively, and Var denotes the gene expression variance across the entire set of samples.

The 8-gene signature and the disease stage were further used as inputs in a multivariate
Cox regression model, to identify whether they had independent prognostic value. This
procedure was applied on both the discovery meta-cohort and the TCGA validation data.

Since our procedure for the detection of monotonal traits in genes and pathway ac-
tivities involved multiple filtering criteria, to avoid over-elimination due to Type-II error,
significance was defined at an unadjusted Mann–Whitney p < 0.05. In contrast, significance
for pathway over-representation (clusterProfiler output) was determined by FDR correc-
tion at p < 0.05. Categorical variables were investigated for significance with Pearson’s
chi-squared test, and were adjusted for multiple hypotheses (with the package RVAide-
Memoire). All reported correlation scores corresponded to Spearman’s rank coefficient. Cox
proportional hazards regression was performed with the packages survminer and survival,
and statistical significance was determined via the log-rank method. CIBERSORT analysis
was conducted on the web platform https://cibersort.stanford.edu/, (accessed on 9 April
2021) and only samples with successful deconvolution (p < 0.05, n = 350 samples) were
further used for the statistical comparisons of relative immune populations between stages.
Read counts from the IMvigor data were acquired from the IMvigor210CoreBiologies,
and were normalized with the variance stabilization transformation [29]. Unless stated
otherwise, all processing, analyses, and visualizations were conducted in the R statistical
environment (version 4.0.2).

3. Results
3.1. Pathway Activation and Gene Co-Expression Link the Cell Cycle to ECM and
Metabolic Alterations

For initial assessment of the gene expression relationships between the non-malignant
adjacent urothelium (referred to as NAU) and cancerous samples, we performed differential
expression analysis of NAU versus NMI and NAU versus MI samples. When compared to
NAU, a strong positive correlation (r = 0.83, p < 2.1 × 10−16) was observed between the
two sets of log fold change values, suggesting concordance in abundance changes and di-
rectionality between NMI and MI tumors. To investigate transcriptional changes associated
with increasing malignancy, we compiled genes being differentially expressed in all stages

https://ga.genecards.org/
https://ga.genecards.org/
https://cibersort.stanford.edu/
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compared to NAU, also showing a persistent change—either up or down—and we further
denoted them as concordantly differentially expressed genes (defined in the Materials
and Methods Section; CDEGs, n = 3108). Due to their consistent regulation compared
to NAU, CDEGs likely reflect fundamental alterations occurring during carcinogenesis;
thus, we focused our analysis on this particular set of genes. We initially performed a
ssGSEA–GSVA analysis using CDEGs, aiming to identify pathways and biological pro-
cesses whose activation is continually enhanced or diminished throughout the disease
stages. With increasing disease stage, our results indicated gradually stronger activation
of several mitotic processes, positive regulation of the canonical Wnt pathway, mTORC1
signaling, expression of MYC targets, degradation of anaphase inhibitors, metabolism of
nucleotides, mobility of formins, and the TNFR2/non-canonical NF-κB pathway (Figure 2,
Table S1). Conversely, diminished activity was recorded for the lipid and fatty acid catabolic
processes, for the metabolism of heme and, interestingly, for the circadian clock process
(Figure 2). Regulon activity per sample was additionally estimated, and respective scores
between disease stages and normal tissue were compared. This analysis highlighted the
GATA3 and GLI2 regulons, whose activity was significantly diminished with increasing
malignancy (Figure 2).
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Figure 2. Excerpt of the pathways showing a monotonal increase or decline in their activation scores
with higher stage. Pathway activation scores were z-scaled across samples for visualization. Pathways
are colored based on their database of origin. The top side of the heatmap presents dataset and
clinical information. Samples (columns) are ordered based on the stage variable; from left to right:
non-malignant adjacent urothelium (NAU), Ta, T1, T2, T3, and T4. Red lines indicate boundaries
between adjacent stages.

To further investigate co-expression alterations occurring in the disease stages, an
integrated network–pathway analysis was performed. Stage-specific networks were con-
structed and clustered to identify communities (subnetworks) of co-expressed genes (de-
scribed in methods). We analyzed the five largest communities (based on the number
of genes) per disease stage and NAU, and used the Gene Ontology—Biological Process
(GO–BP) library to identify affected molecular processes (Figure 3, Tables S2–S7). The anal-
ysis revealed large differences in gene co-expression between NAU and disease stages, with
four out of the five largest communities clearly associated with specific biological processes.
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Figure 3. Biological process analysis of the largest (in size) co-expressed communities identified
in each BLCA stage network: (A) Coherent communities identified and characterized across the
non-malignant adjacent urothelium (NAU) and disease stages. The presence of a community is
indicated by the + symbol. Numbers in parentheses show the fraction of genes with GO Biological
Process annotation relevant to the community, with respect to the total number of genes found to be
co-expressed in the community. (B) Bar plots of the most significantly enriched biological processes
per community, depicting the number of co-expressed genes for each. (C) Hub genes identified across
the studied conditions based on the betweenness centrality scores (y-axis).

Three out of the top five communities were consistently detected in all BLCA stage
networks. Based on examination of their enriched processes, these were labeled as (1) the
cell-cycle community, (2) the ECM and developmental community, and (3) the metabolic
and translational community (Figure 3A,B).

The cell-cycle communities of the different tumor stages involved a total of 288 genes,
178 of which had a proliferation related GO–BP annotation. Hypergeometric tests for
each of the stage networks indicated highly similar cell-cycle BPs being over-represented
across stages. An excerpt of the statistically most significant BPs, along with the number
of implicated genes, is presented in Figure 4B. Out of the 178 cell-cycle genes, 80 were
co-expressed consistently in all stage networks. These were also upregulated in tumors
compared to NAU, possibly forming the backbone of cell proliferation in BLCA (Table S8).
The gene size of this community increased with increasing disease stage (Ta n = 118, T1
n = 148, and MIBC n = 168–170 genes). The communities also included genes lacking cell-
cycle GO annotation (11.9% for Ta, 17.6% for T1, 21.9% for T2, 24.9% for T3, and 29.8% for
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T4). An over-representation test of the 110 genes lacking GO–BP annotation across the stages
revealed that 20 of them participate in the metabolism of nucleotides (unadjusted p = 0.03),
likely suggesting a rewiring component controlling both the regulation of proliferation and
the processing of nucleotides. To detect the most relevant potential drug targets within
the cell-cycle communities, we determined their betweenness centrality scores. The most
prominent genes included CDC5, KIF2C, FOXM1, AURKB, CDT1, SMC4, CCNB1, RRM2,
and KIF14 (Figure 4C).

The community of ECM and developmental processes encompassed a total of 291
genes, and was enriched in cell–cell communication and cell–matrix interaction processes,
in responses to microenvironmental stress, and in differentiation programs of epithelial,
mesenchymal, and stem cells (Figure 5B). This GO–BP composition suggests that these
co-expression signals originate either from tumoral or non-tumoral cells, or might be the
product of their interaction. For example, the process of extracellular matrix organization in-
cluded co-expression of 15–36 genes (depending on the stage network), of which COL13A1,
FGFR4, FOXF2, and SCUBE1 were co-expressed only in the NAU samples compared to
the disease stages. Conversely, 26 genes, including mediators of epithelial–mesenchymal
transition (i.e., COL6A1/A2, COL16A1, MFAP5, MMP11), were co-expressed in tumor tissue
but not in NAU. In line with recent observations [30], we noticed that NAU presented with
an active ECM remodeling profile. Sixteen of the ECM-associated genes were co-expressed
both in NAU and in the NMIBC stages, including genes promoting basolateral tumor cell
migration (i.e., MMP2, CTSK, PDPN), fibrotic collagens (i.e., COL1A2, COL6A3, COL14A1,
COL15A1), and pro-angiogenic factors (i.e., PDGFRA, RECK), suggesting a pro-tumorigenic
potential in the NAU. However, expression in the NAU was predicted to be driven by
ALDH1A2 and MFAP4 (Figure 4C)—genes that are both notoriously downregulated in
other genitourinary malignancies compared to normal samples [31,32], likely suggesting
tumor-suppressive roles. In contrast, co-expression in the Ta stage (confined to the internal
lining of the bladder) was predicted to be regulated by the hub genes COL16A1 and CLIP3.
CLIP3 interacts with both AKT1 and AKT2 [33], and may therefore play an important role
in the early AKT/PI3K/mTOR axis of hyperplastic carcinogenesis. A list containing the
community’s betweenness centrality scores for each stage can be found in Table S9.

The community of metabolism and translation encompassed mitochondrial, transla-
tional, and multiple metabolic processes being activated during carcinogenesis, and was
more profound in the T1 and more advanced tumors. Cellular respiration, translational
initiation, mRNA catabolic processes, nonsense-mediated decay, and protein targeting to
the ER were consistently enriched in most BLCA stages. The results highlighted a set of 12
genes commonly co-expressed across stages for these processes, including COX7B, DLD,
NDUFS4, UQCRFS1, PAIP2, RPL15, RPL30, RPL7, RPS23, RPS27, RPS27A, and RPS4X
(Table S10).
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Figure 4. Differential expression analysis between non-malignant adjacent urothelium (NAU) and
BLCA stages: (A) Volcano plots of the five stages’ comparisons to NAU, with the color red indicating
the 157 genes showing a monotonal trend of expression across stages. (B) Heatmap of the absolute
fold changes of the 157 monotonal genes, which were continuously either up- (yellow) or down-
regulated (blue), in the comparisons between disease stages and NAU. (C) Top 15 pathways of the
157 monotonal genes, sorted by their GeneCards enrichment score.
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Figure 5. Validation of key findings in the TCGA-2017 and the IMvigor210 cohorts: (A) Forest
plots showing hazard ratios (HRs) for the 8 monotonal genes with univariate prognostic value
in both the discovery and TCGA validation datasets. (B) Multivariate analysis of stage and the
8-gene signature scores in the discovery and TCGA validation sets. (C) 5-year survival analysis
between patients with high and low 8-gene signature scores, in the discovery and the TCGA data.
(D) Data from the IMvigor210 trial illustrating AIF1 expression across responses to atezolizumab in
immunotherapy groups.

In addition to the abovementioned consistently detected communities in BLCA, a
community enriched in processes of immune cell differentiation, cytokine secretion, and
GPCR activity was identified in the NAU and the MIBC stages, and involved both innate
and adaptive responses, as well as processes of immune cell adhesion and migration. This
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immune-associated community presented low variation in the composition of genes par-
ticipating in the co-expression networks between NAU and the MIBC stages. Out of the
17 genes involved in the process of T-cell activation that were commonly co-expressed at
the MIBC stages, 15 were also co-expressed in the NAU samples. To further investigate
these observations, the transcriptome data per sample were deconvoluted into relative
abundances of immune cell populations using CIBERSORT, and cell fractions between
disease stages were compared. Significant results were obtained for the following popula-
tions: CD8+, activated CD4+, activated NK, monocytes, M2 macrophages, and activated
dendritic cells (Figure S6). Our results indicated differential commitment of immune cells
to NAU and the BLCA stages. NAU samples (n = 37) were significantly more infiltrated
with CD8+ (p = 0.046) and monocytes (p = 4.6 × 10−4) than tumor samples (n = 313),
consistent with an overrepresentation of the excluded over the inflamed phenotype, as
previously seen in the IMvigor210 trial data [34]. However, compared to tumor samples,
NAU samples had significantly less abundance of activated CD4+ cells (p = 5.28 × 10−3),
macrophages (p = 16.8 × 10−5), activated dendritic cells (p = 0.0002), and activated NK cells
(p = 0.015). Generally, NMIBC had lower infiltration burden than MIBC. Activated dendritic
cells were significantly increased in Ta tumors (n = 34) compared to other BLCA stages
(p = 0.024). The abundance of CD8+, activated NK cells, and M2 macrophages increased
linearly with higher malignancy. Interestingly, AIF1—a gene that promotes macrophage
survival and M2 polarization [35]—was predicted to be a driver of immune co-expression
in the T4 tumors. Along with the CIBERSORT results, which indicate a greater abundance
of M2 macrophages in the T4 samples, we hypothesize that AIF1 is actively involved in the
immune suppression and, thus, its expression levels might indicate putative candidates for
immune checkpoint inhibition. A list containing the community’s betweenness centrality
scores for each stage can be found in Table S11.

3.2. Monotonicity in Individual Genes, Prognostic Signatures, and Validation

Using the 3108 CDEGs, we extracted genes with a monotonal (i.e., continuously in-
creasing or decreasing) change in expression in the spectrum NAU–Ta–T1–T2–T3–T4. A
total of 157 genes was identified with the trait of monotonicity, of which 118 were up- and
39 were downregulated with increasing stage (Figure 4, Table S12). Functional analysis re-
vealed that for 46 of these genes, experimental evidence on mediating cell-cycle progression
exists (Table S12). Upregulated cell-cycle-associated genes (n = 44) were not phase-specific,
and included cyclins, DNA polymerases, regulators of the cohesin complex, and kineto-
chore components. The list also included 23 genes involved in signal transduction (Table
S12), 6 of which (ARHGAP11A, AURKA, CDKN3, PBK, PLK1, and RRM2) promote cell-cycle
progression, and were all upregulated with increased stage. The data also indicated an over-
activation of the Wnt pathway with increasing disease stage, with its upstream inhibitor
APCDD1 being downregulated and its activating ligand WNT2 upregulated (Table S12).
In total, 14 of the 157 genes were transcriptional or translational regulators (Table S12),
including genes with known upregulation in bladder cancer (e.g., the transcription factors
E2F1 and DEPDC1 [36,37]). Based on the monotonal changes with higher stage, increased
androgen receptor activity may be predicted, as both its translational enhancer BUD31 [38]
and its downstream transcription factor ELK1 [39] were upregulated. In total, 4 of the
157 genes (HTR2C, LRP8, NENF, and NMU) are involved in neurotransmission or neu-
ronal development, all of which were upregulated (Table S12). Among the 157 genes,
21 were of poorly described or unknown function (Table S12), including the oncogenic
factor TRIM65 [40], which was found to be upregulated with increasing bladder cancer
stage. Further functional enrichment using GeneCards for the 157 genes verified their
involvement in cell-cycle pathways, with the top hits being related to the regulation of the
anaphase-promoting (APC) complex (score = 31.53), to PLK1 (score = 24.47) and Aurora
B (score = 20.95) signaling, and to TP53 (score = 19.06) and RB1 (score = 17.85) cell-cycle
checkpoint control (Figure 4C, Table S13). Univariate Cox regression analysis indicated
48 genes with potentially prognostic impact at p < 0.01 (Table S14).
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Due to the lack of an RNA-Seq dataset comprising the entire disease stage spectrum
of BLCA incidents, the observed stage alterations in the discovery set were investigated
for their reproducibility in the TCGA-BLCA RNA-Seq data [41]. To align the valida-
tion samples to the discovery set, patients with unknown history of prior treatment for
non-muscle-invasive bladder cancer, as well as patients with a history of other malignan-
cies, were excluded. Differential expression analysis between the available stage compar-
isons (T3 vs. T2 and T4 vs. T3) in the TCGA data validated 43 of the 157 monotonal genes
(Table S15). Cox regression analysis in the TCGA data validated 8 out of the 48 monotonal
genes that were found to be of prognostic value in the discovery set (Table S14), including
MED19, ENO1, ANLN, and GTPBP4, higher levels of which were associated with worse
survival, and CBX7, ZFP2, AKAP7, and CDC14B higher levels of which were associated
with better survival probability (Figure 5A). We utilized these eight genes to construct a
combined score characterizing each individual sample (see the Materials and Methods
Section). Along with the disease stage, the eight-gene signature had independent prog-
nostic value, both in the discovery and in the validation set (Figure 5B). Specifically, we
constructed a survival model to compare 5-year survival rates between those with high
and low eight-gene signature scores (defined by a median cutoff). Patients with a high
eight-gene signature score had a worse 5-year survival probability in the discovery set,
and this finding was validated in the TCGA data (Figure 5C). The eight-gene signature did
not differ significantly between males and females (p = 0.36), and was weakly associated
with age and stage (Figure S7), suggesting its independent value with respect to other
clinical variables. In an attempt to verify the co-expression analysis findings, stage-specific
co-expression networks were also created using the TCGA data, and were clustered us-
ing the Louvain algorithm. GO–Biological Process analysis of the communities validated
the differential segregation of the cell cycle, extracellular matrix, and immune activation
processes to distinct communities (Figure S8). In order to validate the value of AIF1 as
a candidate biomarker of response to immunotherapy, we analyzed RNA-Seq data from
the IMvigor210 study—a trial investigating responses to atezolizumab immunotherapy in
patients with metastatic BLCA. High AIF1 expression in the IMvigor data was associated
with a complete response to atezolizumab (Figure 5D).

4. Discussion

Integration of BLCA molecular data has been previously performed in the con-
text of characterizing molecular subtypes [42] or validating results of either (single-cell)
scRNA-Seq [43] or RNA-Seq re-analysis [44]. In this study, we performed an integrated
meta-analysis of datasets from non-tumor-bearing adjacent urothelium and BLCA stages,
aiming to identify continuous as well as concerted gene expression alterations with increas-
ing malignancy. To our knowledge, this is the first attempt to associate molecular alterations
with clinical classification based on the analysis of more than 1000 well-characterized pri-
mary tumor datasets. Instead of focusing on molecular subtypes, we increased the power
and addressed the disease as a continuum under the assumption that individual samples
reflect different snapshots of the whole process. Our novel design, based on the hypothesis
of continuous evolution through the stages, was successfully applied here, and resulted in
novel findings on gene regulation associated with cancer progression.

Starting from a normalized expression dataset comprising 12 microarray cohorts,
we identified genes that were differentially expressed between disease stages and NAU
(CDEGs), and further analyzed them for pathways/processes that were progressively
altered with higher stage, for changes in the co-expression profiles of stages, and for genes
showing a monotonal change in expression with higher stage. Our analysis highlighted ex-
pected landmark pathways, such as the mTORC1 pathway [45] and MYC targets [46], which
were upregulated, but also novel downregulated pathways, such as the circadian clock and
the metabolism of heme. These results, for the first time, associate BLCA progression with
the disruption of the circadian homeostasis, and with iron metabolism deficiencies—events
that are thought to be tumorigenic [47,48], but their exact mechanism of action is not well
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understood. In addition to the GATA3 regulon—a known driver of luminal biology—we
found a novel progressive downregulation of the GLI2 regulon. GLI proteins are transcrip-
tion factors of the Sonic hedgehog (Shh) pathway, and although GLI2 expression levels
are positively correlated with more invasive BLCA cell lines, Shh genes do not behave
accordingly [49]. Our results validate these observations, as the entire regulon of the GLI2
TF was inactivated with increasing BLCA malignancy, suggesting no potential therapeutic
effect of its inhibition.

Tumor initiation in the bladder is thought to occur within the basal layers of the
urothelium, when the accumulated burden of mutations dysregulates cells’ homeostatic
mechanisms, favoring uncontrolled proliferation over apoptosis [18]. The process of initi-
ation is lengthy in time, and affects the entire neighborhood of the adjacent cells, which
are continuously exposed to a pro-tumorigenic environment. Here, we found that most of
the alterations in the non-tumor-bearing adjacent cells involve genes operating during em-
bryogenesis or during ECM remodeling (Community 3, Table S2). These are likely among
the first to acquire an organized pattern of co-expression. Interestingly, co-expression in
NAU tissue was driven mostly by ALDH1A2 (and partly by MFAP4), which catalyzes the
formation of retinoic acid (RA). In the progenitor cells, during embryonic development,
receptors of RA form complexes with chromatin modifiers, leading to the activation of
self-renewal and differentiation programs [50]. These data give rise to the hypothesis that
the cells in the NAU may express and maintain parts of a stem-cell-like RA-related pro-
gram. Indeed, the biological process of response to RA appears to be enriched in the ECM
communities of NAU (p = 4.57 × 10−5) and the T2 (p = 1.12 × 10−2) stage. T2 tumors are
far more de-differentiated in comparison to both NAU and NMBIC, and can host multiple
genetic differentiation components [41].

The immune activation community was present in both the NAU and MIBC samples.
The results of the CIBERSORT analysis showed that within the bladder tumors, and
with increasing stage, most monocytes preferentially differentiate into macrophages with
M2 polarization. This is consistent with the findings of Chen et al. [43], who analyzed
scRNA-Seq data of BLCA patients, and observed a similar pattern of differentiation for
monocytes. In our data, T4 samples had the highest proportion of M2 macrophages,
which could partially explain their immunosuppressive state. A novel finding here is the
observation that AIF1 appears to drive co-expression in the immune cells of T4 tumors.
Interestingly, high AIF1 expression was associated with complete response to atezolizumab
(Figure 5D)—a finding that may have implications for patient selection for immunotherapy.
Together with the observation that AIF1 is highly expressed in macrophages responding
to M2 stimulation [51], the data suggest that AIF1 expression in the M2 macrophages
could potentially trigger a PD-L1 signature in the tumor and the surrounding immune
cells, leading to immune suppression [52], but further work is required to validate these
preliminary observations.

We specifically searched for genes showing a monotonal trend in their expression level
with increasing disease stage, as this property may mark those genes whose quantification
could offer additive prognostic value. Out of the 157 identified monotonal genes, almost
half of them were components of the cell-cycle machinery, kinases signaling positively for
it, or transcription factors responsible for the expression of cell-cycle genes. In total, 8 out
of the 48 monotonal genes with prognostic value in the discovery cohort were validated in
independent RNA-Seq data, and were utilized to develop a sample-wise gene signature.
Of these, only ENO1 (higher levels of which had been previously linked with worse
BLCA outcomes [53]) and CBX7 (downregulation of which was associated with worse
survival [54]) were described previously; the remaining six genes associated with survival
are novel. MED19, a component of the mediator complex that regulates the transcription
of RNA polymerases, was found via IHC to be overexpressed in human BLCA compared
to normal tissues, and its knockdown in the T24 and 5637 bladder cell lines resulted
in cell-cycle arrest at the G0/G1 checkpoint, along with attenuation of cell growth [55].
The involvement of GTPBP4 in BLCA’s development has not been characterized, but
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oncogenic properties have been attributed to this gene in hepatocellular carcinoma [56].
ANLN, AKAP7, and CDC14B are thought to regulate bladder cell growth and apoptosis in
a TP53-independent manner [57]. ICA1L is naturally expressed in sperm cells. Its role in
BLCA has not yet been described. The CDC14B gene is located on the 9q chromosome—a
region that is often deleted in BLCA. This might also explain its overall downregulation in
malignancy in comparison to NAU, with additional mechanisms (such as the increasing
number of tumor cells) resulting in the observed further downregulation with increasing
stage, as observed in the discovery set. CDC14B is believed to dephosphorylate TP53 [58],
but the functional consequences on the mitotic or DNA damage repair pathways are not
yet well clarified [59]. CBX7 is a component of the chromatin-modifier PRC1 complex,
and is required for the propagation of the transcriptionally repressive state of multiple
genes through cell division during embryonic development [60], including Hox genes [61].
Expectedly, while CBX7 levels monotonically decreased, we noted that HOXC6 and HOXC9
were both monotonically upregulated with increasing malignancy (Table S1). ZFP2 is a
probable transcription factor, and evidence suggests that it plays an epigenetic role as
well [62]. High loads of mutations in ZFP36—another member of the ZFP family—were
associated with upper tract urothelial carcinoma [63].

Our study has its limitations, including the retrospective nature of the analysis, and
restrictions in the validation set imposed by a lack of samples from all disease stages,
which prevented validation of some of our observations—particularly for NMIBC. Clinical
stage assignment is known to have varying rates of error. However, the high number of
samples used in each of the stage categories is expected to balance out the error to some
extent, while increasing the power of the received results. It should also be noted that
our scope was to identify, if present, any common “core” molecular themes with high
statistical power during the evolution of BLCA. This does not rule out the existence of
intra-tumoral heterogeneity, which still has to be considered (together with the observed
molecular changes, as defined in our study) when predicting therapeutic response.

5. Conclusions

The progression of BLCA is associated with monotonal alterations both in individual
genes and in molecular pathways, and these alterations can be leveraged as prognosticators,
as well as for the development of novel combinatorial drug therapies. The suggested
eight-gene signature may help in decision making with regards to therapeutic options and
surveillance schedules. However, further validation of the signature in clinical trials is
required before clinical implementation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14102542/s1, Figure S1: Batch effect in the non-corrected
data. (A) Variation explained by clinical stage and dataset ID. (B) Fraction of genes affected, by
batch. (C) Heatmap of Pearson’s correlation coefficients between sample pairs. (D) First two principal
components showing sample relationships; Figure S2: Batch effect in the corrected data. (A) Variation
explained by clinical stage and dataset ID. (B) Fraction of genes affected by batch. (C) Heatmap of
Pearson’s correlation coefficients between sample pairs. (D) First two principal components showing
sample relationships; Figure S3: Gene expression and sample distribution in the corrected data.
(A) Gene expression distribution (y-axis) among the 1135 samples (x-axis) in the discovery cohort,
after ComBat normalization. (B) A 3D representation of the principal component analysis results,
showing sample allocation in the discovery cohort after ComBat normalization; Figure S4: Mean
expression and median absolute deviation of the ComBat data. Plots demonstrating preservation of
the housekeeping properties in the adjusted data, i.e., higher mean expression and lower dispersion
when compared to non-housekeeping genes. Left: housekeeping genes defined based on microarray
analysis of several cancers. Right: housekeeping genes defined based on RNA-Seq analysis of several
cancers; Figure S5: Gene expression of 11 known BLCA markers among clinical conditions in the
ComBat data; Figure S6: CIBERSORT analysis of the ComBat data, showing statistically significant
results on the relative proportions of immune cells between BLCA stages; Figure S7: Correlation
analysis between the 8-gene signature score and the age (left) and stage of the patients (right);
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Figure S8: Functional annotation of the top 5 largest molecular communities of co-expressed genes
detected in the T2, T3, and T4 stages of the TCGA cohort, demonstrating a significant overlap with the
cell-cycle, extracellular matrix, and immunity communities of the discovery data; Table S1: Processes,
pathways and regulons that follow a monotonically increasing/decreasing activation with increasing
Bladder Cancer stage (NAU = Non-malignant Adjacent Urothelium); Table S2: Gene Ontology
Biological Processes for the Non-malignant Adjacent Urothelium (NAU) communities of coexpressed
genes; Table S3: Gene Ontology Biological Processes for the Ta stage communities of coexpressed
genes; Table S4: Gene Ontology Biological Processes for the T1 stage communities of coexpressed
genes; Table S5: Gene Ontology Biological Processes for the T2 stage communities of coexpressed
genes; Table S6: Gene Ontology Biological Processes for the T3 stage communities of coexpressed
genes; Table S7: Gene Ontology Biological Processes for the T4 stage communities of coexpressed
genes; Table S8: Genes of the cell-cycle community and their betweeness centrality scores; Table S9:
Genes of the ECM and developmental community and their betweeness centrality scores; Table S10:
Genes of the metabolism and translation community and their betweeness centrality scores; Table
S11: Genes of the immune community and their betweeness centrality scores; Table S12: Functionanl
analysis of the 157 monotonically changing genes based on searches in Pubmed and GeneCards;
Table S13: Functional analysis results for implicated pathways of the 157 monotonically changing
genes using the GeneCards tool and database; Table S14: Univariate cox regression analysis of the
157 monotonal genes for the discovery and the TCGA validation cohorts. In green are highlighted
genes who were validated with cox in the TCGA data; Table S15: Results of differential expression
analysis (Mann-Whitney) between bladder cancer stages using only primary samples (70 T2, 90 T3,
and 28 T4) from the TCGA Bladder Cancer 2017 cohort. Blue and red color indicate downregulation
and upregulation, respectively; File S1: ComBat_expression_data; File S2: Clinical_data.
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Appendix A

Appendix A.1 Database Search Strategy, Cohorts, and Processing

To perform a comprehensive investigation of available molecular data, we searched
for bladder cancer (BLCA) omics studies in public repositories. All genomic urothelial
cancer data from cBioPortal (including The Cancer Genome Atlas) were downloaded. Gene
Expression Omnibus (GEO) was queried for transcriptomics, additional genomics, or pro-
tein array datasets using the search terms “bladder cancer” and “urothelial carcinoma”. We
also queried ArrayExpress using the special filter “Array express data only” to obtain any
additional datasets missing from GEO. All cohort data published or updated between 2010
and 2020, annotated as Homo sapiens, coming from tissue samples with sample size > 10,
were retrieved. All used datasets were published and downloaded anonymized. This
resulted in the collection of 105 datasets, comprising more than 8000 individuals (Figure 1,
main text), encompassing genomics, methylomics, transcriptomics, and proteomics data,
derived from a variety of technologies used in the field.

Appendix A.2 Inclusion and Exclusion Criteria

We analyzed tumor transcriptomes and selected studies with at least clinical or patho-
logical stage information per subject. As chemotherapy is known to significantly alter the
molecular phenotype of the tumor cells, samples or datasets collected after the adminis-
tration of (neo)adjuvant chemotherapy, as well as secondary or recurrent bladder cancers,
were excluded. To compile a microarray discovery set while preserving as high integrity
as possible, we chose microarray data quantified by the most frequently used single-color
channel vendors (Affymetrix and Illumina). This resulted in a final dataset of 1135 patients
sourced from 12 different studies (Table A1). We used the TCGA-BLCA-2017 and the
IMvigor210 studies for validation purposes, and particularly analyzed primary BLCA
samples collected prior to the administration of (neo)adjuvant chemotherapy (n samples:
TCGA = 188, IMvigor = 132).

Appendix A.3 Cohorts

Discovery (Microarray, Datasets = 12, Samples = 1135)

• GSE121711 [64]: Loras A, et al., 2019. Cancers (Basel): Study of the metabolome
and transcriptome of bladder cancer patients, aiming to identify tissue and urinary
metabolic signatures as biomarkers of BC. Contains 8 tumoral and 10 normal urothe-
lium samples taken from regions adjacent to the tumor (NAU).

• GSE93527 [65]: Hurst CD, et al., 2017. Cancer Cell: Subtyping of Ta-staged non-muscle-
invasive bladder cancer patients based on copy number alterations, and subsequent
expression profiling of 79 samples.

• E-MTAB-1940 [66]: Biton A, et al., 2014. Cell Reports: Characterization of the lumi-
nal and basal muscle-invasive bladder cancer subtypes based on an independent
component analysis of 86 transcriptomes.

• GSE31684 [67]: Riester M, et al., 2012. Clinical Cancer Research: A study for the
identification and validation of high-risk bladder cancer. It included 93 samples, taken
from patients undergoing radical cystectomy (RC) at the Memorial Sloan-Kettering
Cancer Center (MSKCC), of which 3 were collected post-treatment and were excluded
from the analysis.

• GSE104922 [68]: Therkildsen C, et al., 2018. Molecular Oncology: Identification of
molecular profiles in 41 bladder cancer patients with Lynch syndrome.

• GSE128959 [69]: Sjödahl G, et al., 2020. International Journal of Cancer: An analysis of
multiple samples taken from 73 patients upon recurrence/progression, investigating
transcriptional alterations and subtype shifts during disease development. Expression
profiles are available for 55 bladder tumors, of which 2 were excluded due to missing
stage information.
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• GSE83586 [70]: Sjödahl G, et al., 2017. The Journal of Pathology: This study utilizes tumor
samples from 307 advanced bladder cancer patients in order to compare molecular
classification to tumor cell phenotype (the latter assessed via immunohistochemistry).
We excluded six samples due to the absence of stage information.

• GSE48276 [71]: Choi W, et al., 2014. Cancer Cell: The MDA molecular classification
of muscle-invasive bladder cancer. The GEO dataset contains 116 expression pro-
files, 16 of which were collected post-treatment and, thus, excluded. An additional
set of 20 profiles had no information on the timing of sample collection, and were
also excluded.

• GSE52219 [71]: Choi W, et al., 2014. Cancer Cell: The MDA molecular classification
of muscle-invasive bladder cancer. The GEO dataset contains 23 FFPE pretreatment
tumors from a phase III clinical trial, which were used to validate the MDA classification.

• GSE69795 [72]: McConkey, et al., 2016. European Urology: Investigation of gene ex-
pression signatures predicting response to methotrexate, vinblastine, doxorubicin,
and cisplatin with bevacizumab. The GEO dataset contains 61 profiles, of which
23 and 1 were excluded due to post-treatment collection and the absence of stage
information, respectively.

• GSE13507 [73]: Kim WJ, et al., 2010. Journal of Clinical Oncology: Analysis of primary
bladder cancer for the identification of a prognostic gene expression classifier. The
GEO dataset contains 256 profiles, of which 9 are normal bladders, 58 are NAU,
1 profile is taken from a C57BL/6 mouse sub-strain, 165 are primary tumor samples,
and 23 correspond to recurrences. Due to the low number of normal bladder samples
represented in the compiled discovery cohort, we grouped them together with the
NAU samples. Samples collected after recurrence (n = 23), as well as the expression
profile of the murine strain, were excluded from analysis.

• GSE48075 [71]: Choi W, et al., 2014. Cancer Cell: The MDA molecular classifica-
tion of muscle-invasive bladder cancer. It includes 142 primary tumors of both
non-muscle-invasive and muscle-invasive bladder cancer.

Validation (RNA-Seq, Datasets 2, Samples = 318)

• TCGA-BLCA-2017 [42]: Robertson AG, et al., 2017. Cell: The TCGA molecular sub-
typing of muscle-invasive bladder cancer. Molecular and clinical data were down-
loaded from cBioPortal, containing 412 tumor samples. Of these, 109 had history
of other malignancies, and were excluded as potentially being secondary bladder
cancers. Additionally, 105 samples had unknown history of prior treatment for
non-muscle-invasive bladder cancer, 2 samples were collected post-NAC, and 8 more
samples had no stage information, so they were all excluded from further analysis
(n analyzed = 186 samples).

• IMvigor210 [34]: Mariathasan S, et al., 2018. Nature: A study investigating molecular
determinants of tumor response to atezolizumab immunotherapy, administered to
metastatic bladder cancer patients. Transcriptomic profiles are available on GitHub
(R package “IMvigor210CoreBiologies”) for 298 patients, from which we analyzed
only samples collected pre-NAC (n = 132 samples).

Table A1. Stage distribution across the 12 microarray datasets used for the discovery set.

Technology Platform Dataset ID NAU Ta T1 T2 T3 T4 Study Size

Affymetrix GPL17586 GSE121711 10 3 2 3 18

Affymetrix GPL17586 GSE93527 79 79

Affymetrix GPL570 E-MTAB-1940 4 41 41 86

Affymetrix GPL570 GSE31684 5 10 16 41 18 90
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Table A1. Cont.

Technology Platform Dataset ID NAU Ta T1 T2 T3 T4 Study Size

Affymetrix GPL6244 GSE104922 19 7 10 5 0 41

Affymetrix GPL6244 GSE128959 13 39 53

Affymetrix GPL6244 GSE83586 13 44 241 1 1 301

Illumina GPL14951 GSE48276 2 6 23 6 37

Illumina GPL14951 GSE52219 15 7 1 23

Illumina GPL14951 GSE69795 3 7 27 37

Illumina GPL6102 GSE13507 67 23 80 31 19 12 232

Illumina GPL6947 GSE48075 33 34 42 23 8 142

Stage size 81 229 262 371 146 46 1135

Appendix A.4 Integration and Processing of the Transcriptomes

Pretreatment, raw microarray profiles from the 12 GEO datasets were summarized to
the gene level with the package oligo [74]. Affymetrix arrays were normalized via the RMA
method, while Illumina arrays were filtered based on detection p values < 0.05, followed by
quantile normalization, the addition of 1, and transformation to the natural logarithmic
scale. Data were annotated using biomaRt (v2.42.1) [75], and microarray probes matching
to multiple genes were excluded from downstream analysis. The probe with the highest
mean across arrays was selected as representative in cases where multiple probes matched
to the same gene. To completely avoid missing values, merging of expression matrices was
based on the intersection of genes between datasets, using the HUGO Gene Symbol as a key.
Batch effects across different studies in the discovery data were removed with ComBat [76],
and the quality of the corrected data was assessed with BatchQC [21] (Figures S1 and S2),
with boxplots of expression distribution per sample and principal component analysis plots
of sample relationships (Figure S3), with gene expression comparisons of housekeeping
genes to other genes (Figure S4) [77], and with a set of 12 positive control BLCA markers
with known regulation across normal–NMI–MI or across normal–low-grade–high-grade
disease (Figure S5).
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