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RUBIC identifies driver genes by detecting
recurrent DNA copy number breaks
Ewald van Dyk1,2, Marlous Hoogstraat1, Jelle ten Hoeve1, Marcel J.T. Reinders2 & Lodewyk F.A. Wessels1,2

The frequent recurrence of copy number aberrations across tumour samples is a reliable

hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting

recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an

approach that detects recurrent copy number breaks, rather than recurrently amplified or

deleted regions. This change of perspective allows for a simplified approach as recursive peak

splitting procedures and repeated re-estimation of the background model are avoided.

Furthermore, we control the false discovery rate on the level of called regions, rather than at

the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-

of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number

data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC

calls more focal recurrent regions and identifies a much larger fraction of known cancer

genes.
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O
wing to genomic instability, cancer cells often exhibit a
large number of somatic copy number aberrations many
of which are believed to play a pivotal role in tumour

development or progression. Specifically, somatic copy number
aberrations represent one of the mechanisms to activate
oncogenes and inactivate tumour suppressors1,2.

Given a large collection of somatic copy number profiles of
tumours, an important challenge is to distinguish driver from
passenger aberrations. The exact genomic locations of somatic
passenger aberrations are expected to be variable across different
tumour samples. In contrast, driver aberrations often recur on the
same locus across tumour samples, which allows them to be
identified in a properly defined statistical framework. Identifica-
tion of driver aberrations is important as it allows us to identify
(new) oncogenes and tumour suppressors.

Many algorithms have been developed for detecting recurrent
copy number aberrations3–14, highlighting the relevance of
discovering novel oncogenes and tumour suppressors. However,
this problem is still far from being solved as state-of-
the-art approaches fail to identify known oncogenes and
tumour suppressors in large sample sets. For example, while
EGFR is one of the most frequently amplified oncogenes in
Glioblastoma15, neither RAIG nor GISTIC2 detects the complete
recurrently amplified region harbouring EGFR.

One of the main difficulties in detecting recurrent copy
number aberrations arises from the heterogeneous nature of
driver aberrations across samples, ranging from focal aberrations
covering a single gene to broad aberrations spanning a whole-
chromosome arm. Algorithms should call recurrent regions as
focally as possible to pinpoint the driver genes and hence
maximizing specificity. Conversely, too much emphasis on
focality could result in driver genes being confused with
passengers in close proximity, simply due to off-target focal
passenger aberrations overlapping with a broader recurrent locus.
This results in reduced sensitivity. Therefore, a proper approach
should strike a good balance between sensitivity and specificity.

The great majority of algorithms, including the algorithm we
propose, start by splitting copy number gains and losses into
separate data sets and therefore detect oncogenes and tumour
suppressors separately. Throughout, we will only consider the
copy number gains—deletions are treated in a symmetric fashion.
When considering gains, the first step of existing algorithms is to
detect broad loci that are amplified at a significant frequency.
Subsequently, heuristics are applied to identify separate focal
recurrences within these loci (Fig. 1a–g). This so-called peak
splitting is achieved in two possible ways. In the first approach,
the null model is adapted12,16 based on the local background to
determine whether a smaller locus is recurrently amplified in an
already recurrent locus. This requires the re-estimation of many
parameters on smaller loci, resulting in a loss of statistical power.
The second approach employs greedy peel-off algorithms5,6,11

that call local maximum peaks in recurrent loci (Fig. 1b,c) and
then remove all aberrated segments that overlap with the
identified maximum peak (Fig. 1d). Subsequently, new maximal
peaks are identified (Fig. 1e) based on a reduced data set, and this
loss in power can result in potentially missing important driver
genes in close proximity to the original maximum peak. After
iterating these steps, a list of independent peaks are generated
(Fig. 1f). The boundaries of these peaks are sensitive to passenger
aberrations and a post processing step is employed (for example,
the RegBounder algorithm6) to broaden the peaks and improve
the probability of including the correct driver genes (Fig. 1g).

With Recurrent Unidirectional Break Identification by Cluster-
ing (RUBIC) we follow a completely different approach.
Specifically, RUBIC detects recurrent copy number breaks instead
of recurrent amplifications or deletions. A recurrent break marks

a region where a significant portion of the samples show
transitions in copy number from neutral to gain (positive break)
or from gain to neutral (negative break; Fig. 1i). RUBIC is based
on a simple idea: if we can prove significant recurrence of breaks
that occur in close proximity of each other, a subset of these
breaks are most likely associated with driver aberrations. Regions
enclosed between recurrent positive breaks on the left and
recurrent negative breaks on the right will most likely harbour a
putative oncogene. This new approach has several advantages.
First, it simplifies the identification of recurrent regions
significantly: there is no need for complicated peak splitting or
peel-off algorithms. Second, power is maximized as the recurrent
breaks are identified based on all samples and by employing a null
model based on the behaviour of passenger aberrations on the
complete genome. This is in contrast to peak splitting approaches
that require recursive re-estimation of the null model on an ever-
decreasing locus width or recursive identification of maximal
peaks on an ever-decreasing number of samples in peel-off
algorithms.

In summary, by focusing on recurrent breaks, RUBIC becomes
independent of the regions between the breaks. Specifically,
RUBIC circumvents the difficulties of current algorithms outlined
above which stem from aiming to call regions at the right size.
RUBIC is simple, computationally efficient and outperforms
existing methods on both simulated and real data sets. It calls
more true-positive regions (between 1.4 and 3.6 times more than
GISTIC2) at more (appropriate) focal widths thus pinpointing the
responsible driver genes. Finally, the algorithm only requires a
single parameter, controlling the false discovery rate (FDR) of
called regions.

Results
Overview. RUBIC detects significantly recurrent breaks in the
aggregate copy number profile of a collection of tumour samples
(Fig. 1h–k). Essentially, RUBIC performs hierarchical clustering
on the aggregate profile (Fig. 1j, red line). It starts with segments
spanning a single-measurement probe and iteratively joins
neighbouring segments until a significant break between
segments in the aggregate profile is encountered. As only neig-
bouring segments can be joined, the complexity of the clustering
problem is significantly reduced. Owing to the nature of hier-
archical clustering, this implies that all remaining breaks between
segments in the aggregate profile are significant. All significant
breaks in the aggregate profile represent segment boundaries, and
the average aggregate copy number profile between breaks
represents the segment amplitude (Fig. 1j, black line). To deter-
mine the significance of a break, we require a break recurrence
measure and a significance test. The break recurrence measure,
which scores a break between two adjacent segments, is equal to
the difference in segment amplitudes. Intuitively, this makes
sense, since a high frequency in breaks (across samples) results in
a large jump in the aggregate (Methods section). Significance of
the recurrence measure is represented by the expected Euler
characteristic (Methods section), and we employ a null model
obtained through cyclic permutation of the tumour profiles
(Methods section). During the hierarchical clustering, RUBIC
employs the expected Euler characteristic as similarity measure,
thus allowing termination of the clustering when all segments are
separated by significant breaks with similarity measures below a
fixed, predetermined threshold, E. We choose to use the expected
Euler characteristic as a significance measure because it directly
links the global threshold, E (used to terminate clustering) to the
expected number of false-positive regions called in Fig. 1k
(Methods section). This results in error control at the segment
level, rather than the probe level, as in competing approaches.
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The clustering produces a segmented aggregate profile, where the
positions of the breaks in the aggregate profile indicate regions of
significantly recurrent breaks in the sample profiles (Fig. 1j).
Finally local maximal segments are called (Fig. 1k). Such
segments are expected to contain putative oncogenes as only
gains were employed in this example. Our implementation of
RUBIC can be downloaded at http://ccb.nki.nl/software/.

Benchmarking on simulated data sets. To benchmark RUBIC
and competing approaches, we generated a simulated data set of
copy number profiles. In contrast to most available simulation
approaches that artificially insert recurrent copy number aber-
rations of fixed widths at any given locus, we employed a
preselected set of 100 driver genes as starting point. We generated
a copy number profile for each sample based on an idealized
evolutionary model. Briefly, we simulate genomic instability by
inserting random amplifications and deletions across the genome
for many individual cells. In some cells, amplifications activate
oncogenes and deletions inactivate tumour suppressors. Such
driver aberrations modulate the proliferation rate of an individual

cell. The cell with the highest score is then regarded as the
dominant clone which we use to represent the sample. This
process is repeated for each sample in our analysis. Simulated
copy number profiles exhibit complex recurrence patterns
developing on both focal and broad scales. For more information
on the model and the simulated profiles see the Methods section.

We systematically compared RUBIC with GISTIC2 (a state-of-
the-art approach) and RAIG (a recently proposed approach) on
simulated data sets generated using our evolutionary model. We
employed all three algorithms to separately detect recurrent
amplifications and deletions.

For GISTIC2 and RAIG we used exactly the same parameter
settings as for the real tumour data sets (Supplementary Methods)
RUBIC requires only a single parameter to be set: the FDR. For all
algorithms, results were generated at an FDR level of 25%. Each
algorithm reports a list of regions and genes (partially) over-
lapping with these regions. We removed all called regions that did
not overlap with any genes. Such regions were never reported by
RUBIC or RAIG. Only GISTIC2 reported four such regions in all
simulations performed, and suggested nearby genes in brackets,
none of which were drivers. We also removed regions 410 mega
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Figure 1 | Algorithmic steps of competing approaches and RUBIC. (a) A heat map of the gains in simulated copy number profiles for 20 samples.

Segments that activate oncogenes (driver aberrations) are shown in red and passenger aberrations in grey. (b) The copy number profiles in a are

aggregated (summed) to produce the aggregate gain profile. The dashed line represents a significance threshold based on a null model, obtained by, for

example, permutation of the probe indices in a. (c) The calling of the maximum peak in the aggregate profile within the genomic region where the

aggregate profile exceeds the significance threshold. (d) Copy number segments overlapping with the maximal peak are removed from the data set.

(e) Based on the adapted data set, a new aggregate profile and significance threshold are computed. (f) As in c, a maximum peak is called in the adjusted

aggregate profile. (g) Finally, a post processing step is employed to broaden the peaks and improve the probability of including the correct driver genes.

(h) The same input data set depicted in a. (i) Positions of recurrent breaks in the copy number profiles. Neutral-to-gain breaks are depicted in red and gain-

to-neutral breaks in blue. (j) The segmented profile (in black) resulting from performing hierarchical clustering on the aggregate profile (in red). During

clustering, RUBIC employs the expected Euler characteristic as similarity measure, thus allowing termination of the clustering when all segments are

separated by significant breaks with similarity measures below a fixed, predetermined threshold (green dashed line). The dendrogram resulting from

clustering the aggregate profile is also depicted, with the significance threshold used as cutoff to produce the depicted segmentation. (k) Local maximum

segments are called and such segments are expected to contain putative oncogenes.
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base pairs (Mbp), since they usually contain many genes and that
makes it difficult to pinpoint the drivers. Although rare, such
broad regions are sometimes called by GISTIC2 and RUBIC, but
not RAIG.

We evaluated the performance based on three measures: (1)
the proportion of driver genes that overlapped with called
recurrent regions (true positives); (2) the proportion of called
regions that do not overlap with any of the driver genes (false
positives) and (3) the average driver density in called regions. The
third measure scores the ability of algorithms to call regions as
focally as possible, that is, the capacity to pinpoint drivers.

We varied the number of samples from 10 to 1,000, and for
each number of samples we generated five simulated data sets
from which we extracted recurrent regions. RUBIC outperforms
both GISTIC2 and RAIG in terms of the number of drivers
detected as well as the driver density while controlling the FDR
(Fig. 2). Both RUBIC and GISTIC2 achieve an FDR well below
the set rate of 25%. For RUBIC, the measured false discovery rate
is stable at 5% across sample sizes, but much lower than the 25%
FDR selected. This is due to the fact that the cyclic shift null
model is conservative. Even though RAIG performs fairly well on
previously reported simulation studies, it performs significantly
worse than RUBIC and GISTIC2 on all measures for this
evolutionary model. In addition, RAIG does not scale well
computationally with regard to the number of samples. In Fig. 2
we only show RAIG results for up to 300 samples as we only
depict results for processes that took o2 weeks to complete.

Comparison on three TCGA SNP6 data sets. We compared
RUBIC, RAIG and GISTIC2 on SNP6 copy number profiles of
three cancer data sets from The Cancer Genome Atlas (TCGA):
1,080 breast invasive carcinoma (BRCA) samples, 577 glio-
blastoma multiforme (GBM) samples and 450 colon adeno-
carcinoma (COAD) samples. We used optimized parameters for
GISTIC2 and RAIG as specified in the Supplementary Methods.
We set the FDR at 25% and extracted both recurrent amplifica-
tions and deletions with all three algorithms. As in the simulation
experiments, we only report regions that overlapped with at least
one gene and excluded all regions 410 Mbp.

Unlike the simulation study, we do not know which genes are
drivers and therefore we selected 463 genes (Supplementary Data 1)
as positive controls from the Sanger Institute Cancer Gene Census
(referred to as ‘Census genes’)17. We score each algorithm based on
four measures: (1) the total number of focal recurrent regions
detected (‘no. regions’); (2) the number of regions that overlap with
Census genes (‘no. Census regions’); (3) the total number of Census
genes detected (‘no. Census genes’) and (4) the average driver
density in the called regions. The driver density of a region is
defined as one divided by the number of genes overlapping the
region and is therefore a measure of how good the respective
algorithms are at identifying drivers. While this (conservative)
measure is optimal when every region contains a single driver, we
do not rule out the possibility of multiple weak drivers in a region.
If the data supports the presence of multiple (weak) drivers, as
suggested in the literature18, RUBIC will detect these. Table 1
summarizes the results obtained for the three algorithms on all
three data sets. Each entry has two values (separated with a slash)
representing recurrent gains and losses, respectively.

RUBIC calls more recurrent regions than both GISTIC2 and
RAIG on all three data sets (Supplementary Data 2–7). Given that
the FDR was set at 25%, the majority of these regions are expected
to contain true driver genes. In fact, the larger number of
recurrent regions called by RUBIC also results in a larger yield of
Census genes. RAIG calls fewer amplified regions than GISTIC2
on the BRCA data set, but none of these regions contain a Census

gene. On the GBM and COAD data sets, RAIG calls more regions
than GISTIC2; however, the called regions contain fewer Census
genes. These results suggest that the RAIG error rate is high,
which is consistent with our observations in the simulation study.
The superior ability of RUBIC and GISTIC2 to recover Census
genes was also confirmed by a global analysis. Specifically, by
employing a cyclic permutation test, we found an enrichment for
Census genes (Po0.05, permutation test) in all data sets for both
RUBIC and GISTIC2, but not for RAIG. In fact, only the
amplified regions called by RAIG on the GBM data set showed
significant enrichment for Census genes.

While the average driver density estimates for RUBIC are
smaller than those obtained by GISTIC2 for the gains, these values
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are not strictly comparable since RUBIC calls many more regions.
This is because recurrent regions that are only detected by RUBIC
do not recur as frequently as those that were detected by both
algorithms. Regions of lower recurrence will necessarily be called
broader and therefore result in a lower average driver density for
RUBIC. Specifically, if we only look at the 27 amplified regions
where RUBIC and GISTIC2 overlap in BRCA, the average driver
densities are comparable, with 0.29 and 0.35 for RUBIC and
GISTIC2, respectively. Of these 27 amplified regions, 16 were called
(slightly) more focally by GISTIC2. However, 6 of these regions
called by RUBIC included extra Census genes. In contrast, none of
the 11 regions that were called more broadly by GISTIC2 included
any extra Census genes. These results suggest that GISTIC2 indeed
tends to call amplified regions too focally. Perhaps the best example
illustrating that GISTIC2 tends to call amplifications too focally is
EGFR in glioblastoma. The skeptical reader might suspect that we
ran GISTIC2 with sub-optimal parameters, but in fact we
downloaded the GISTIC2 results (with optimized parameters)
from http://firebrowse.org/. Counter-intuitively, if we run GISTIC2
on smaller subsets (o577) of the Glioblastoma data set, we do
actually detect EGFR. The reason is that GISTIC2 calls regions
wider for smaller sample sizes (Fig. 2c), but ironically falls prey to
passenger aberrations that ‘distract’ from the true driver aberration
at larger sample sizes.

Deletions called by RUBIC are more focal than those called by
GISTIC2 (higher average driver density in Table 1), while the
opposite is true for amplifications. The asymmetry between
achieved average driver densities (gains versus losses) in the
RUBIC results makes sense from a biological perspective: while
tumour suppressors can be inactivated by deletions of sub-genic
size, aberrations resulting in overexpression of oncogenes typically
cover the whole gene and are therefore expected to be wider.
RUBIC only called 8, 15 and 9% of the amplified regions based on a
break inside a gene for the BRCA, GBM and COAD data sets,
respectively. In contrast, 34, 65 and 53% of all called deletions were
based on a break inside a gene for the same respective data sets.

When considering the overlap in the Census genes retrieved by
the three approaches (Fig. 3) we notice that RUBIC returns the
largest number of Census genes and that the majority of the
Census genes retrieved by GISTIC2 and RAIG are a subset of the
Census genes retrieved by RUBIC. In the breast cancer data set,
GISTIC2 was able to call a single unique broad amplified region

that was not detected by RUBIC. This region resides at the end of
chromosome 1q and contains a single Census gene. For the
deletions, GISTIC2 called 11 unique regions that were not
detected by RUBIC. Three of these regions overlapped with
Census genes. One of these regions on Chromosome 9q is very
broad (9 Mbp) and contains seven Census genes. This single
region explains most of the disparity between the results of
RUBIC and GISTIC2 in Fig. 3a. RUBIC did call this region, but it
was filtered out as it just exceeded 10 Mbp.

Some known oncogenes and tumour suppressors are only
captured by RUBIC, such as MDM4 in breast, APC in colon and
EGFR in Glioblastoma (Fig. 3). EGFR is the most frequently
amplified gene in Glioblastoma, yet neither GISTIC2 nor RAIG
detects it. GISTIC2 missed EGFR because it called a false focal
peak (containing no overlapping genes) near EGFR and peeled
away most of the segments overlapping with the false peak that
also overlap with EGFR (Fig. 4). Interestingly, RUBIC calls two
regions, consistent with the observation that 24–67% of all
glioblastoma’s are type III deletion mutants where exons 2–7 are
deleted19. This result also suggests that EGFR-AS1 might be an
oncogene in its own right.

Focused analysis of the breast cancer data set. We analysed
the BRCA data set more closely and show a genome-wide
overview of called regions by all three algorithms in Fig. 5.
Here we also highlight (in red) a small subset of bona fide
and/or recently validated oncogenes (52 in total) and tumour
suppressors (12 in total) specifically associated with breast
cancer. The list is constructed based on strong evidence for the
involvement of each of the genes in breast cancer, and is largely
based on two published lists16,20. See Supplementary Table 1.
A subset of the oncogenes in this list were only recently
validated16. RAIG, GISTIC2 and RUBIC were able to recover,
respectively, 0, 13 and 34 of these bona fide oncogenes
and 2, 5 and 5 of these tumour suppressors. All five regions
containing the tumour suppressors were called more focally by
RUBIC as compared with GISTIC2. A global enrichment
test with a cyclic permutation scheme shows that all RUBIC
and GISTIC2 regions are highly enriched for bona fide
oncogenes and tumour suppressors (all P values o10� 3,
permutation test).

Table 1 | Summary of detected regions on SNP6 data set.

Methods RUBIC GISTIC2 RAIG

Breast cancer (BRCA; n¼ 1,080)
No. regions (gains/losses) 100/58 28/31 11/41
No. Census regions (gains/losses) 48/16 15/17 0/5
No. Census genes (gains/losses) 63/26 16/33 0/5
Avg. driver density (gains/losses) 0.21/0.41 0.34/0.10 0.80/0.57

Glioblastoma (GBM; n¼ 577)
No. regions (gains/losses) 40/152 22/36 25/58
No. Census regions (gains/losses) 23/26 14/13 7/6
No. Census genes (gains/losses) 33/34 15/15 7/6
Avg. driver density (gains/losses) 0.29/0.71 0.39/0.19 0.59/0.56

Colon adenocarcinoma (COAD; n¼ 450)
No. regions (gains/losses) 23/72 17/31 27/50
No. Census regions (gains/losses) 11/12 8/9 6/5
No. Census genes (gains/losses) 16/14 10/10 6/7
Avg. driver density (gains/losses) 0.14/0.58 0.21/0.20 0.36/0.46

Recurrent copy number regions predicted by RUBIC, GISTIC2 and RAIG on BRCA, GBM and COAD. For each subtable containing the results of a specific cancer type, the rows represent the following: the
first row (labelled ‘no. regions’) represents the total number of focal recurrent regions detected by each algorithm. The second row shows the number of regions that overlap with Census genes. The third
row represents the total number of Census genes detected. The last row shows the average driver density in the called regions. Each entry has two values (separated with a slash) representing recurrent
gains and losses, respectively.
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Zooming in on some loci, we illustrate examples in which
RUBIC outperforms both GISTIC2 and RAIG. First, we find that
RUBIC is able to recover four validated oncogenes missed by both
GISTIC2 and RAIG (Fig. 5b). In the second example, GISTIC2
called an amplification peak too focally and missed MIR21
(Fig. 5c). Finally, we show an example where GISTIC2 called a
too broad deletion in MAP2K4 (Fig. 5d). More generally, for
regions overlapping with RUBIC, GISTIC2 consistently calls
broader deletions without introducing any extra known tumour
suppressors or Census genes, while the broader amplifications
called by RUBIC do include more oncogenes and Census genes as
compared with those called by GISTIC2. This suggests that the
smaller deletions and larger amplifications called by RUBIC
improve driver detection.

Comparison on next-generation sequencing. To investigate
the applicability of RUBIC to copy number profiles derived
with next-generation sequencing (NGS) technology, we compared

RUBIC and GISTIC2 on two additional NGS data sets
(Supplementary Data 8–11). The first data set consists of copy
number profiles of 90 breast cancer samples (not overlapping
with TCGA samples) derived from low coverage (o1� average)
whole-genome sequencing (lcWGS)21. The second set contains
383 TCGA breast cancer copy number profiles derived from
whole-exome sequencing (WES). Since all comparisons indicated
that RAIG is not a competitive approach, we only benchmarked
RUBIC against GISTIC2 on the NGS data sets. We used
optimized parameters for GISTIC2 as before, set the FDR at
25% and extracted both recurrent amplifications and deletions
with both algorithms. As before, we only report regions that
overlapped with at least one gene and excluded all regions
410 Mbp. The results indicate that both RUBIC and GISTIC2
can be successfully applied to NGS data, as we recover recurrent
regions containing known drivers, albeit at a lower average driver
density. The lower density is a direct consequence of the fact that
the sample size of the NGS data is lower compared with the SNP6
data, resulting in larger called regions and hence a lower average
density. The results also indicate that the observations we made
based on the SNP6 data regarding the relative performance of
RUBIC and GISTIC2 can be extrapolated to NGS data (Table 2).
Specifically, we show that RUBIC consistently identifies more
recurrent regions, more Census genes and more bona fide breast
cancer genes at comparable or higher driver densities. On the
lcWGS data set, RUBIC detects a larger number of Census genes,
in spite of the fact that the sample size is much lower than the
SNP6 breast cancer data set. This is most likely caused by two
factors. First, the lcWGS set contains many BRCA-like samples,
characterized by BRCA1/2 specific but highly unstable copy
number profiles, increasing the likelihood of detecting recurrent
aberrations. Second, owing to the smaller sample size, the regions
called by RUBIC are larger, hence increasing the likelihood of
detecting more Census genes. While the overlap of amplified
regions identified on lcWGS profiles with the SNP6 recurrent
regions is B50%, it is consistent at that level for both RUBIC and
GISTIC2. There are two reasons why we expect this overlap to be
low. First, the collection of samples used for lcWGS is highly
enriched for the BRCA-like samples compared with the TCGA
SNP6 data set. Second, the collection of patient samples used for
the lcWGS does not overlap with the TCGA data set and the
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Figure 3 | Detected Census genes. Venn diagram of Census genes that

overlapped with called recurrent regions in RUBIC, GISTIC2 and RAIG.

(a–c) illustrates this for the breast (BRCA), glioblastoma (GBM) and colon

(COAD) cancer data sets, respectively. The numbers separated by a slash

(in brackets) represent Census gene counts for gains and losses, separately.
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Figure 4 | Recurrence at the EGFR locus. Genomic representation of EGFR

and called recurrent regions in its proximity by RUBIC, GISTIC2 and RAIG

on the Glioblastoma data set. The cyan profile represents the aggregate

copy number profile. The RUBIC segmented aggregate is depicted in red.

The rows with labels RUBIC, GISTIC2 and RAIG show the genomic locations

of regions called by each of these algorithms. The row with label ‘Census’

shows the location of EGFR (in red) and EGFR-AS1 (in blue).
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Figure 5 | Genome-wide overview of detected regions in breast cancer. Genomic representation of recurrent regions found by RUBIC, GISTIC2 and RAIG

in the breast cancer data set. (a) RUBIC segmented aggregate profiles (in red) across the whole genome for gains and losses in the top and bottom halves,

respectively. The rows with labels RUBIC, GISTIC2 and RAIG show the genomic locations of called recurrent regions. The row with label ‘Census’ shows the

locations of Census genes in blue. Validated breast cancer genes are represented in red (in the Census row). (b–d) Example (zoomed in) loci with validated

gene names added in red. The cyan profiles represent the aggregate of all samples before RUBIC segmentation depicted in red.

Table 2 | Summary of detected regions on NGS data sets.

Methods RUBIC GISTIC2

BRCA (lcWGS; n¼ 90)
No. regions (gains/losses) 80/43 26/29
No. Census regions (gains/losses) 47/10 17/7
No. Census genes (gains/losses) 90/21 25/20
No. bona fide genes (52 oncogenes/12 tumour suppressors) 32/3 10/2
Enrichment P values for bona fide genes 2� 10�4/0.022 o1� 10�4/0.083
Avg. driver density (gains/losses) 0.12/0.24 0.09/0.13
Region overlap with SNP6 0.50/0.42 0.42/0.33

BRCA (WES; n¼ 383)
No. regions (gains/losses) 46/9 13/3
No. Census regions (gains/losses) 32/4 10/1
No. Census genes (gains/losses) 58/14 16/1
No. bona fide genes (52 oncogenes/12 tumour suppressors) 28/2 10/1
Enrichment P values for bona fide genes o1� 10�4/0.018 o1� 10�4/0.021
Avg. driver density (gains/losses) 0.07/0.25 0.08/0.21
Region overlap with SNP6 0.87/0.56 0.61/0.33

Recurrent copy number regions predicted by RUBIC and GISTIC2 for BRCA data sets derived from low coverage whole-genome sequencing (lcWGS) and TCGA WES. For each subtable containing the
results of a specific sequencing platform the rows represent the following: the first row (labelled ‘no. regions’) represents the total number of focal recurrent regions detected by each algorithm. The
second row shows the number of regions that overlap with Census genes. The third row represents the total number of Census genes detected. The fourth row shows the number of BRCA bona fide
oncogenes/tumour suppressors detected. The fifth row shows the enrichment P values for bona-fide drivers in regions based on a cyclic permutation test. The sixth row shows the average driver density
in the called regions. The final row shows the proportion of regions detected in NGS data that overlap with regions found for the SNP6 TCGA data set. Each entry has two values (separated with a slash)
representing recurrent gains and losses, respectively.
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obtained overlap is therefore consistent with an FDR of 25%. In
contrast, 87% of the amplifications detected by RUBIC in the
WES data set overlap with those found in the SNP6 data set. The
patient samples in the WES data set are a subset of those
comprising the SNP6 data set and there is no enrichment for any
particular subtype (the 383 samples were selected randomly). This
suggests that RUBIC is robust against the platform differences, in
contrast to GISTIC2 that obtains only 61% overlap.

Fragile site analysis. Since RUBIC calls recurrent breakpoints, it
is reasonable to ask whether we are not simply calling breakpoints
at fragile sites. To answer this, we would have to test whether the
recurrent regions called by RUBIC are enriched for fragile sites.
We employed a published list22 of fragile sites and combined that
with an unpublished list obtained from the Sanger Institute to
construct a list of 127 rare and common fragile sites and
performed a permutation-based enrichment test (Supplementary
Methods and Supplementary Data 12). We could not find any
enrichment for fragile sites in recurrent regions called by RUBIC
for either the SNP6, lcWGS or WES profiles in any of the cancer
types considered, as indicated in Table 3.

Discussion
To identify cancer genes residing in recurrently aberrated
genomic regions, we follow a completely different approach from
current state of the art approaches. Rather than focusing on the
recurrence of regions, we introduced RUBIC, an approach that
considers the recurrence of breaks. This results in a significant
simplification of the algorithm as there is no need for recursive
identification of smaller recurrent regions in broader regions via
complicated peak splitting approaches. An added advantage of
the fact that RUBIC focuses on breaks reflecting the relative
change in copy number between segments, rather than the
cumulative strength of an aberration across samples, is that the
need for an arbitrary reference state is diminished. RUBIC
requires only a single input parameter (the FDR) and controls the
FDR at the level of regions, rather than probes as most competing
approaches. Although users are discouraged from inputting raw
unsegmented copy number data into RUBIC, we do expect
RUBIC to be less sensitive to the choice of a segmentation
algorithm since our theoretical approach does not explicitly
require piecewise constant segments. In contrast, algorithms like
GISTIC2 that directly peel-off segments when calling peaks will
be sensitive to the specific choice of segmentation algorithm. In a
comparison with GISTIC2 and RAIG, we show that RUBIC calls
significantly more recurrent regions and identifies a much larger
fraction of regions containing known cancer genes (from the
Cancer Gene Census).

We developed a gene centric simulation model to employ in
our benchmarking studies. In this model, we define hypothetical

driver genes, simulate genomically unstable copy number profiles
and apply evolutionary pressure which results in driver genes
being selectively aberrated. We believe this is an improvement
over existing simulation approaches as (1) it focuses on genes
rather than aberrations; (2) it is an approximation (albeit quite
rough) of the evolutionary processes going on in real tumours
and (3) it produces recurrence patterns that closely resemble
patterns in real data sets. It is therefore suited for revealing
shortcomings in existing approaches. For example, RAIG reports
a very high recall and precision rate in a previous simulation
study14 which simulated driver aberrations, rather than driver
genes. However, it commits many false positives when calling
driver genes in data generated with our simulation model. On
simulated data from this model, RUBIC outperforms both
GISTIC2 and RAIG on all measures: it finds more driver genes,
calls very few regions that do not overlap with driver genes and
calls these regions more focally. Nonetheless, RUBIC does tend to
call fewer false-positive regions than expected based on the set
FDR owing to its conservative null-model. This is because many
copy number breaks belong to driver aberrations that are not
provably recurrent. Yet we include these breaks in our null model
which should ideally only contain breaks associated with
passenger aberrations.

On the three TCGA data sets we employed, we selected 463
genes from the Cancer Gene Census to employ as positive
controls. It should be noted that one should not expect all of these
genes to be involved in tumour development and maintenance
specifically in breast cancer, glioblastoma and colon cancer, since
they have been found to be somatically mutated in a much
broader variety of cancer types. Nor should we expect all of them
to be activated or inactivated through copy number aberrations,
as most of these genes were identified based on the occurrence of
other aberrations, such as point mutations. In fact, in some cases
we do not even know the status (oncogene or tumour suppressor)
of the genes. We therefore also considered a much smaller subset
of bona fide or validated breast cancer oncogenes (n¼ 52) and
tumour suppressors (n¼ 12).

As stated in the introduction, algorithms should strive to
accurately pinpoint drivers by calling recurrent regions as focally
as possible. On the other hand, as we have shown, too much
emphasis on focality results in calling passengers (only) in close
proximity to drivers (EGFR in glioblastoma being a good
example). This problem is threefold. First, it results in the driver
genes being missed, reducing the true-positive rate. Second,
passenger genes are called erroneously, increasing the false-
positive rate. Finally, these erroneously called passengers are often
reported as highly significant, since they do occur in highly
recurrent regions.

Finally, we have demonstrated that RUBIC is not only
applicable to SNP6-derived copy number profiles, but can also
successfully be applied to copy number profiles derived from

Table 3 | Percentage of called regions overlapping with fragile sites and the associated enrichment P values computed with
permutation tests.

Recurrence type BRCA (n¼ 1,080) GBM (n¼577) COAD (n¼450)

RUBIC regions on SNP6 profiles
Gains: overlap (%) (P value) 20 (0.91) 38 (0.10) 17 (0.95)
Losses: overlap (%) (P value) 36 (0.10) 19 (0.68) 29 (0.52)

Recurrence type lcWGS (n¼90) WES (n¼ 383)

RUBIC regions on lcWGS and WES profiles
Gains: overlap (%) (P value) 34 (0.43) 33 (0.61)
Losses: overlap (%) (P value) 35 (0.52) 33 (0.59)
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NGS data. We showed that the results obtained in the comparison
with GISTIC2 on the SNP6 data also hold for NGS data, both in
the setting of copy number profiles derived from low coverage
whole-genome sequencing as well as WES.

While it is beyond the scope of this work, the methodology of
RUBIC can be applied to other application domains. For example,
large-scale projects such as The Encyclopedia of DNA Elements
(ENCODE) are generating large amounts of ChipSeq data.
Typically these profiles are subjected to peak calling to identify,
for example, binding sites of transcription factors or domains
characterized by a specific chromatin mark. The segmentation
approach we proposed here can be employed to segment ChipSeq
profiles to identify binding peaks and domains. Note that this will
amount to the application of the segmentation to a single sample.
However, as ChipSeq is also being applied in tumour material on
a more regular basis, we foresee that RUBIC will also be applied
to patient cohorts to detect recurrently occurring peaks or
domains.

Methods
The break recurrence measure. Suppose we have a genomic region R of width w
and cut it at position g0 into two regions: RL and RR. Let the widths of these regions
be denoted by wL and wR, respectively. Let the average of the aggregate profile for
regions RL and RR be denoted by m̂L and m̂R , respectively. Positive breaks near g0,
that significantly recur across samples, will result in m̂R4m̂L . In contrast, under the
null model (which models passengers) positive and negative breaks are equally
likely to occur anywhere in R. From this it follows that, under the null, the expected
means will be equal, that is, E½m̂R� ¼ E½m̂L�. It is important to note that this equality
holds even if R is fully contained within a recurrent region. It is this observation
that removes the need to employ the peak splitting algorithms mentioned in the
introduction.

It can be shown that a recurrent break occurs at g0 in R by showing that the
value of tðg0Þ ¼ m̂R� m̂L is significant according to the null model. This is similar
to performing a two-sample t-test where the two samplings are represented by the
aggregate log-ratio measurements in RL and RR respectively. Formally, t(g), is also a
function of w¼ (wL, wR), and will be denoted by tw(g). The larger wL and wR, the
more statistical power one attains. However, if these regions are too large and
extend beyond loci in which recurrent breaks of the opposite sign occur, the power
will decrease considerably.

In the Methods section entitled ‘segmentation’ we show how hierarchical
clustering based on the significance of tw can be employed to simultaneously find
appropriate values for wL and wR and identify recurrent breaks based on the break
recurrence measure, t.

The null model. We employ a null model to describe passenger breaks and hence
identify recurrent breaks by evaluating the significance of the break recurrence
measure. We use a cyclic shift permutation scheme described in detail in the
literature12,13 to define a null model. To sample from the null distribution, we shift
probe indices by a random offset for each copy number profile independently. In this
scheme, all break locations become independent across samples, while the inherent
genomic dependencies within each sample, for example, chromothripsis patterns, are
retained. As with the real data, we sum all cyclically shifted sample profiles per probe
(locus) to form one realization of the aggregate profile under the null. (For notational
convenience, a specific realization will be denoted by the index i.)

By repeatedly permuting profiles one can estimate the probability that breaks
recur at observed frequencies by chance alone. This null model is conservative,
since we would ideally only model passenger breaks, whereas many of the breaks in
our data contribute to driver events. To reduce this bias, we first detect driver
breaks with RUBIC and then update the null model after deleting these breaks. We
repeat these two steps iteratively (Supplementary Methods, Supplementary Figs 1
and 2).

Measuring the significance of break recurrence. For a fixed w, each tw can be
associated with a (two-tailed) P value derived from the null model. We will, instead,
use a different measure of significance called the expected Euler character-
istic12,23,24. This measure is more natural in our application and will allow us to
directly control the false discovery rate on called recurrent regions rather than
probes, as explained later. The idea is as follows: for any fixed realization of the null
model (indexed with i), a fixed w and a fixed non-negative threshold t, we define
positive and negative excursion sets: Aþw;i ¼ fg : tw;i gð Þ � tg and
A�w;i ¼ fg : tw;i gð Þ � � tg, respectively. We count the number of disjoint regions
in each and denote these with wþw;i and w�w;i , respectively. The sum of these counts,
ww;iðtÞ ¼ wþw;iþ w�w;i , is known as the Euler characteristic. We can then compute the
expected Euler characteristic across realizations: �wwðtÞ ¼

P
i2I ww;iðtÞ= Ij j, where I

represents the set of all possible permutations (Supplementary Methods).

On actual data, for a fixed scale w0 and position g0, we can compute a value
t0¼ tw0(g0). �ww0

t0j jð Þ can be interpreted as a measure of significance (small values
being significant). In fact, it is an upper bound for the familywise error rate if we
regard each locus g as a separate test and it is a tight bound for small values:
�wwo0:1 (ref. 23). It is important to note that the Euler characteristic allows us to
link the value of the break recurrence measure at a specific locus and a fixed scale,
t0¼ tw0(g0), to the significance of the number of called recurrent regions in the
aggregate profile.

There are two major advantages of using �ww as a significance measure. First,
there exists an analytical approximation that relates t¼ tw(g) to �ww tj jð Þ that is
highly accurate for the majority of scales (Supplementary Methods, Supplementary
Figs 3 and 4). This means that we can avoid time consuming permutation tests for
many choices of w (Supplementary Methods). The second, and more important
reason, is that we can directly compute the false discovery rate on called recurrent
regions (not breaks) using �ww. We clarify this in the Methods section describing
RUBIC calling.

Segmentation. Ultimately, RUBIC is a segmentation algorithm on the aggregate
profile. We essentially approximate the aggregate profile with a piecewise constant
function with jump discontinuities at significantly recurrent breaks. The jump
discontinuities represent significant breaks in the aggregate profile. The jump
height at position g is exactly equal to tw(g), where w¼ (wL,wR) represents adjacent
segment widths. We regard breaks in the aggregate profile as significant if �ww is
small.

RUBIC segmentation is an agglomerative hierarchical clustering algorithm that
starts with the most fine-grained segmentation, where each probe is a unique
segment, and iteratively merges adjacent segments. As a measure of the similarity
of two segments, we use �wws

, where ws corresponds to the widths of the segments
under consideration. In each iteration, we merge segments with the highest (least
significant) �wws

score. We continue merging segments until all remaining �wws
scores

are less than or equal to a fixed global threshold, E. This implies that the jump
discontinuities separating the remaining segments are all significant (oE) and
hence represent recurrent breaks. In the segmented profile, segments residing
between recurrent breaks are represented by a single value, the average of the
aggregate profile in that segment. Since all segments are naturally sorted on the
genome, and we only need to consider adjacent segments for merging, we can
efficiently perform the clustering in Plog(P) time, where P is the number of probes
on the genome. Figure 1j shows the resulting segmentation when we perform this
procedure for a fixed significance threshold, E.

Calling. The final step in the algorithm is to simply call all the local maximum
segments in Fig. 1j producing the result illustrated in Fig. 1k. A segment is defined
as a local maximum when it is bordered by positive and negative jump dis-
continuities on its left and right, respectively. One can then expect to find onco-
genes inside these called segments since positive (negative) jump discontinuities
correspond to significantly recurrent (oE) positive (negative) breaks, that is,
recurrent amplifications.

The remaining question is: how to choose the global threshold E? The benefit of
using the Euler characteristic as similarity measure is that E/2 is an upper bound on
the expected number of false-positive local maximum segments (called regions)
that result in the data (Supplementary Methods, Supplementary Figs 5–10). Since
there is a direct correspondence between the number of false-positive regions and
the threshold E, we can directly apply the Benjamini–Hochberg procedure25 to
control the false discovery rate on recurrently amplified called segments12. We
illustrate the Benjamini–Hochberg procedure with an example. Suppose we specify
the FDR level at 25%. We then start by setting E¼ 2� 0.25, knowing that the
expected number of false-positive called regions will be below 0.25. We then count
the number of called regions after clustering, say there are 70. At this point we
choose E¼ 70� 2� 0.25. We continue adapting E until the number of called
regions remain unchanged. Say, for example, we end up with 100 called regions. At
this point E¼ 100� 2� 0.25¼ 50. The expected number of false positives will be
below E/2¼ 25, which is 25% of the 100 called regions.

Simulating copy number evolution with known driver genes. Given the lack of a
real copy number data sets for which all the oncogenes and tumour suppressors are
known, it is very hard to compare algorithms in terms of specificity and sensitivity
on real data. This type of analysis can only be achieved through simulation. The
majority of simulation studies are performed by artificially inserting numerous
recurrent copy number aberrations of fixed widths for any given locus9. Such
simulations are not designed to give a direct answer to how good algorithms are at
pinpointing driver genes, since they define driver aberrations rather than driver
genes. In fact, it is questionable whether amplifications of a fixed width recur across
multiple samples in real data sets, except for events occurring on the chromosome
arm level.

Since real copy number aberrations are subject to selective pressure, we expect
oncogenes (tumour suppressors) to be found in recurrently amplified (deleted)
regions without the need for fixed recurrent segment widths. For example, an
oncogene can be frequently amplified across samples even though the associated
aberration widths vary considerably. A small subset of these amplifications might
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be focal enough so as to cover only this one gene. With enough samples, it is likely
that there is a sufficient number of these focal aberrations to unambiguously call
the oncogene as being recurrently aberrated. Consequently, finding driver genes is
not the same as finding recurrent aberrations of a fixed width.

For that reason, we simulated copy number profiles based on an idealized
evolutionary model in which a fixed number of oncogenes and tumour suppressors
are known. We assigned a proliferation coefficient to each gene which indicates the
influence of that gene on cell proliferation. More specifically, the contribution of a
gene to cell proliferation is the product of the coefficient and the average copy
number fold change of that gene with respect to the normal diploid state
(Supplementary Methods). In our performance study, we selected 100 random
genes from the human genome as drivers and assigned to each a proliferation score
drawn from a normal distribution. Positive (negative) coefficients represent
oncogenes (tumour suppressors). During the simulated evolutionary process, copy
number changes were introduced in the profile, resulting in copy number changes
in several genes, including oncogenes and tumour suppressors.

We started the simulation by creating a copy number neutral (diploid)
dominant clone, with a genome of the same size as the human genome. We then
evolved the copy number profile of a single sample by repeating the following
randomization and selection steps 20 times:

� Randomization: derive 100 descendants from the dominant clone by adding 10
random copy number aberrations at random locations on the genome. The
width and copy number log ratios of the aberrations are extracted from the
TCGA breast cancer data set (Supplementary Methods).

� Selection: based on the proliferation coefficients and copy number values of the
100 selected driver genes, compute the overall proliferation of each descendent,
select the descendent with the highest proliferation score and define it as the new
dominant clone.

The final dominant clone represents the final copy number profile of a single
sample. This process is repeated for every sample. Simulated copy number profiles
resemble what we observe in real data, with complex recurrence patterns
developing on both focal and broad scales.

Data availability. The lcWGS and simulated DNA copy number data that support
the findings of this study are available in GitHub, https://github.com/ewaldvandyk/
RUBIC-datasets.git. The TCGA SNP6 and WES data that support the findings of
this study are available from TCGA but restrictions apply to the availability of these
data, which were used under license for the current study, and so are not publicly
available. We provide full details on the TCGA data that we employed as well as the
processing steps that were applied to these data to obtain the input profiles
employed in our analyses. Hence, after obtaining the data from TCGA under
licence our results can be reproduced. All of the remaining data are available within
the Article and Supplementary Information files or available from the authors upon
request.
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