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Abstract: At the end of 2020, when China’s three-year Blue Sky Protection Campaign was success-
fully concluded, the main pollutants, led by O3, increased instead of decreasing, creating a new air
pollution problem. In this paper, the impact of the technological innovation level on O3 pollution
and its inter-regional differences across three major regions from 2014 to 2019 are studied using the
dynamic spatial Durbin model. Generally, in terms of ozone pollution showing significant spatial
correlation, technological innovations in China are still not effective in curbing ozone pollution. Fur-
thermore, technological innovation is a key factor affecting ozone pollution, and it is heterogeneous,
demonstrating that the impact of technological innovation on O3 pollution is different among re-
gions. Technological innovation in Beijing–Tianjin–Hebei significantly reduces local O3 pollution with
spillover, while technological innovation in the Yangtze River Delta instead significantly exacerbates
local O3 pollution, and the impact of technological innovation on O3 pollution in the Fenwei Plain
is not significant. Third, other factors in O3 pollution also differ between regions, with the number
of cars and the amount of foreign capital actually utilized being the main factors. Therefore, we
should pay attention to the spillover of O3 pollution and technological innovation and strengthen
regional cooperation according to our own characteristics to effectively suppress O3 pollution. Finally,
the findings of this paper are representative, which provides a possible reference for other similar
national or regional studies.

Keywords: dynamic spatial Dubin model; technological innovation; O3 pollution; inter-regional
differences

1. Introduction

Ozone (O3) is produced rapidly in polluted air via the photochemical oxidation of
volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx ≡ NO + NO2).
VOCs originate from both anthropogenic and biogenic sources; NOx mainly comes from
fuel combustion [1]. Exposures to ambient ozone can contribute to risks of respiratory or
circulatory mortality and also induce plant cell death and yield reductions [2,3]. O3 pollu-
tion in China has become progressively more severe since 2013. All ozone metrics averaged
from Chinese urban sites have increased significantly since 2013, and surface ozone levels
in China were significantly higher than those in other regions reported in TOAR [4,5]. As
for Beijing–Tianjin–Hebei and the Yangtze River Delta, their ozone concentrations exceed
the ambient air quality standard by 100–200% [6]. Moreover, the total premature respiratory
mortalities attributable to ambient MDA8 ozone exposure in 69 Chinese cities were 64,370
in 2019, an increase of 60% compared to 2013 levels [4]. While the concentrations of other
major pollutants are on a general decreasing trend, O3 concentrations are increasing instead
of decreasing, generating a new air pollution problem in China and requiring urgent action.

Technological innovation is a key factor that cannot be ignored in the study of at-
mospheric problems such as ozone pollution. On the one hand, the application of new
technologies may have accelerated regional ozone pollution, such as the oil and gas pro-
duction expansion event in the United States [7]; on the other hand, it may also have
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mitigated ozone pollution hazards to human health [8] and crops [9] by improving out-
dated production practices. Related studies on O3 pollution in China have focused on
chemical precursors [10,11], meteorological conditions [12,13], spatial and temporal varia-
tions [14,15], regional transport [10], sources [16,17], and harmful effects on humans and
crops [18] from geographic, chemical, and biological dimensions. However, fewer studies
have examined the effect of technological innovation on O3 pollution in the Chinese region,
and when the focus is zoomed in on the effect of technological innovation on environmental
pollution, the conclusions of a large number of studies are as shown below.

For the relationship between technological innovation and environmental pollution,
the existing literature uses the number of patent applications [19–21], the number of patents
granted [22], and R&D investment [23] as variables to measure technological innovation to
study its impact on environmental pollution. However, it is controversial as to whether
technological innovation can improve environmental pollution, and there are three main
views. First, technological innovation improves environmental pollution: the “technology
effect” in the EKC mechanism posits that in the process of a country’s economic growth,
technological progress will improve productivity and resource use efficiency and reduce
factor inputs in the production process, thus weakening the impact of production on the nat-
ural environment; meanwhile, the development, use, and upgrading of clean technologies
will also effectively reduce pollution emissions [24]. A large number of studies have argued
the role of technological innovation based on the EKC curve, verifying that technological
progress is a necessary condition for the inflection point of the EKC, which is an inevitable
way to solve the environmental pollution problem [25,26]. The improvement effect of
technological innovation is even greater than the effect of improving energy use efficiency,
adjusting the industrial structure, and strengthening investment in pollution control [27,28].
Second, technological innovation exacerbates environmental pollution: technological inno-
vation contributes significantly to economic growth but is also a source of environmental
degradation [29,30]. Technological innovation is more about the pursuit of production
efficiency, not the impact on environmental pollution. The increasing scale of economic
development will consume a large amount of scarce and non-renewable resources, and tech-
nological innovation may form new sources of pollution while increasing productivity, thus
limiting the effect of technology on the EKC. Even if there is environmental improvement,
it is a temporary phenomenon due to technological limitations [31–34]. Third, there are
uncertainties in the impact of technological and technological innovation on environmental
pollution, including no impact [35,36] and co-existing positive and negative relationships,
showing an N-shaped relationship [37], an inverted U-shaped relationship [38,39], and a
complex association with intellectual property protection intensity as a threshold nonlinear
relationship [22]. In addition, the direction and degree of influence of technological innova-
tion on environmental pollution vary among cities, which are related to factors such as the
stage of economic development, city size, and the level of urban technological innovation
in the study area [40,41].

To sum up, the effects of technological innovation on environmental pollution are
controversial, and it is necessary to continue to explore them. Importantly, when studying
environmental pollution, biased results are more likely to occur if spatial diffusion effects
and externalities are not considered [42,43]. As a new air pollution problem in China, there
is less literature on O3 pollution from macro- and meso-perspectives. Secondly, technologi-
cal innovation plays an important role in atmospheric problems such as ozone pollution,
but the effects of technological innovation in China are not clear at present. Thirdly, the
scope of the existing literature is either national [23,44] or within a certain region [45–47],
leading to a lack of comparative analysis of multiple important regions. Therefore, this
paper provides contributions in these three aspects to investigate the impact of technologi-
cal innovation on O3 pollution in key regions of China using spatial econometric models.
Additionally, referring to the design of Wang [38], the following hypothesis is proposed
in this paper. There may be a relationship between technological innovation and ozone
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pollution similar to the EKC; i.e., environmental pollution shows an increase and then a
decrease with the increase in R&D investment.

2. Materials and Methods

This section first introduces the theoretical model of this paper, the STIRPAT model,
including the mathematical and theoretical formulations and related assumptions. Then, it
introduces the spatial econometric model used in this paper, including its construction and
analysis methods.

2.1. Theoretical Model and Methodology
2.1.1. The STIRPAT Model

The STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Tech-
nology) model [48], which is based on the IPAT model, is now widely used in technology
and environmental economics research. It not only allows for the parameter estimation
of coefficients but also allows researchers to decompose and refine each impact factor
according to the specific study, allowing other variables to be included in the model to
analyze the impact of each factor on environmental stress. It can be illustrated by the
equation Iit= a Pit

b Ait
c Tit

d εit, that is, Stochastic Impacts by Regression on Population,
Affluence, Technology, and Error. Here, i and t denote the individual city and time period,
respectively; a represents a constant term; and b, c, and d are the estimated parameters.
Equation (1) is obtained after taking the natural logarithm of both sides, as follows:

lnIit= a + b lnPit+c lnAit+d lnTit+εit (1)

where O3 concentration, population density, and GDP per capita represent environmental
stress (Iit), population (Pit), and economic development (Ait), respectively. Tit, namely,
technology innovation, is the focus of the present paper. According to existing stud-
ies [22,49,50], the number of patents granted is employed as a proxy for it, and its squared
term is introduced to test the hypothesis mentioned previously.

Moreover, the model neglects some other factors influencing O3 concentration, such as
industrial structure, urbanization, energy use intensity, number of cars, and level of foreign
investment utilization, which are often used as explanatory variables for atmospheric
pollutants [51–53]. Finally, the STIRPAT model is modified to Equation (2).

ln O3it = a + d1ln techit+d2lntech2it+b ln popit+c ln agdpit
+e ln energyit+f indit+g ln carit +h ln fdiit+εit

(2)

where O3it represents the average annual concentration of ozone; techit is the number of
patents granted; popit is the year-end statistics of a city’s number of people per square kilo-
meter; agdpit is GDP per capita; energyit measures a city’s energy consumption intensity in
terms of electricity consumption per unit of GDP; indit is the output value of the secondary
industry and accounts for the proportion of total output value; carit is the number of cars in
a city at the end of the year; and fdiit is the total amount of foreign capital actually utilized
in the current year.

2.1.2. Methodology

Due to the role of atmospheric transport, the atmospheric pollutants in each region are
not independent of each other and often have a strong spatial correlation. The traditional
linear regression analysis method based on the assumption that the observations are
independent of each other is not suitable for this analysis, so a spatial regression model
is proposed.
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Before the causality analysis, it is first necessary to determine whether the dependent
variable is spatially correlated. The global Moran’s I [54] was used to examine the spatial
correlation of ozone pollution concentrations, as shown in Equation (3):

I =
n ∑n

i=1 ∑n
j=1 Wij( xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1(xi − x)2 (3)

where n is the number of spatial cells; Wij is the spatial weight matrix; xi and xj are the
observations at spatial locations i and j, respectively; and x is the mean value. The range
of the global Moran’s I is [–1,1], where I < 0 means negative spatial autocorrelation
(i.e., similar observations tend to be spatially dispersed); I = 0 means no correlation; and
I > 0 means positive spatial autocorrelation (i.e., similar observations tend to be spatially
clustered). The global Moran’s I is usually tested for significance using the Z test, as per
Equation (4):

Z(I) =
I − E(I)√

VAR(I)
(4)

where E(I) and VAR(I) are the mathematical expectation and variance of I, respectively.
Furthermore, in contrast to the global Moran’s index, which determines the existence

of spatial correlation in a region, the local Moran’s I detects the extent and location of
internal outliers or agglomerations, as per Equation (5):

Ii =
Zi

S2 ∑n
i 6=j wij Zj (5)

where Zi = yi − y, Zj = yj − y, S2 = 1
n ∑(yi − y)2, wij is the spatial weight value, and n is

the total number of all regions in the study area, with Zi as the x-axis and ∑n
i 6=j wijZj as the

y-axis. Local Moran’s I scatter plots were divided into four quadrants: high–high or HH
(quadrant I)—cities with high levels of ozone pollution are surrounded by neighboring
cities with high levels of the variable of concern; low–high or LH (quadrant II)—cities
with low levels of ozone pollution are surrounded by neighboring cities with high levels
of the variable; low–low or LL (quadrant III)—cities with low levels of ozone pollution
are surrounded by neighboring cities with low levels of the variable of concern; and high–
low or HL (quadrant IV)—cities with high levels of ozone pollution are surrounded by
neighboring cities with low levels of the variable.

Starting from the generalized nested model (Equation (6)), a series of commonly used
spatial measurement models can be clearly established [55].{

Y = ρ1 WY + β X + ρ2 WX + ε

ε = ηWε+ ν, ν ∼ N (0, σ 2 I)
(6)

where Y is the dependent variable matrix; X is the independent variable matrix; and W is the
spatial weight matrix, which measures the distance relationship between different regions.
Thus, WY and WX represent the interaction effects of the dependent and independent
variables, respectively; ρ1, β, ρ2, and η are the corresponding regression coefficients, in
which ρ1 and η are referred to as spatial correlation coefficients; I is a column vector with
elements 1; ε is a column vector for the error terms; and thus, Wε is the interaction effect of
the error terms.

The common spatial econometric models are the spatial lag model (SLM), spatial error
model (SEM), and spatial Durbin model (SDM). In Equation (3), if η = 0, then the model
degenerates into SDM; if η = 0 and ρ2 = 0, then the model is SLM, which assumes that the
variation of the dependent variable in a certain location is affected by the combined change
in dependent variables in the surrounding area; if ρ1= ρ2 = 0, then the model is SEM, which
hypothesizes that the spillover effect comes from the influence of omitted variables of the
neighboring region [56]. In addition, in order to observe the difference between short-term



Int. J. Environ. Res. Public Health 2022, 19, 7743 5 of 19

and long-term effects, we finally add the lagged dependent variable to build a dynamic
spatial model (Equation (7)).{

Y = ρ0 Yt−1+ρ1 WY + βX + ρ2 WX + ε

ε = ηWε+ ν, ν ∼ N (0, σ 2 I)
(7)

Additionally, the spatial weight matrix W needs to be set in advance in Equation (4).
In this paper, we constructed two spatial weight matrices. The first is the binary contiguity
matrix W1 [57], which is made according to queen-based contiguity. When city i and city j
have a common boundary or a common node, wij = 1; otherwise, wij = 0 (Equation (8)). The
other is the distance-based weight matrix W2 [58], whose element wij is the reciprocal of
the geographical distance between urban administrative center i and urban administrative
center j (Equation (9)).

wij =

{
1, i 6= j, i = 1, · · · , n; j = 1, · · · , n
0, i = j, i = 1, · · · , n; j = 1, · · · , n

(8)

wij =

{
1/d_ij , i 6= j, i = 1, · · · , n; j = 1, · · · , n

0, i = j, i = 1, · · · , n; j = 1, · · · , n
(9)

As shown in Equation (7), the spatial Durbin model jointly captures the influence of
the spatial lag dependent variable and spatial lag explanatory variables, which may lead
to the endogeneity problem and violates the classical assumptions of the ordinary least
square (OLS) method. Here, we used the maximum likelihood (ML) method to effectively
solve the endogeneity problem [59]. Additionally, because of spatial correlation, the change
in independent variables in one region will not only directly affect its dependent variable
but also affect the dependent variable in the region associated with its existence. Therefore,
the coefficients of the variables do not represent the marginal effect (Equation (10)), and
instead, more attention should be paid to the “direct effect” (Equation (11)) and “indirect
effect” (Equation (12)) [55]. The specific derivation processes are re-written as follows:

Y =(I − ρ1 W)−1(β X + ρ2 WX + ηWε+ ν) (10)

∂yi/∂xir = (I − ρ1 W)−1(βr I + ρ2r Wii) (11)

∂yi/∂xjr = (I − ρ1 W)−1(βr I + ρ2r Wij
)
, i 6= j (12)

where I represents an n × 1 unit matrix, n is the number of cities, (I − ρ1 W)−1 stands for
the spatial Leontief inverse matrix, ∂yi/∂xir denotes the direct effect, and ∂yi/∂xjr refers to
the indirect effect. Finally, we used STATA15.0 to estimate the magnitude and signs of the
direct and indirect effects in the dynamic model.

2.2. Study Area and Data Description

In 2018, China clearly listed the Fenwei Plain (FW) as a key area for air pollution
prevention and control alongside Beijing–Tianjin–Hebei (BTH) and the Yangtze River Delta
(YRD) in a new update of the air pollution prevention and control action plan. TH, YRD,
and FW are important urban agglomerations in the northern, central-eastern, and central-
western parts of China, as shown in Figure 1, whose economic volumes are the third, first,
and ninth in the country, respectively. However, in these three regions, the number of
days with O3 as the primary pollutant accounted for 48.2%, 49.5%, and 37.6% of the total
exceedance days in 2019, respectively [60]. These three regions include a total of 50 cities:
13 in BTH, 26 in the YRD, and 11 in the FW, as shown in Table 1.
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Figure 1. Location of BTH, YRD, and FW in China.

Table 1. Cities included in the three regions.

Region City Name

BTH Beijing, Tianjin, Shijiazhuang, Tangshan, Qinhuangdao, Handan, Xingtai,
Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui

YRD

Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng,
Yangzhou, Zhenjiang, Taizhou 1, Hangzhou, Ningbo, Jiaxing, Huzhou,

Shaoxing, Jinhua, Zhoushan, Taizhou 1, Hefei, Wuhu, Maanshan, Tongling,
Anqing, Chuzhou, Chizhou, Xuancheng

FW Jinzhong, Yuncheng, Linfen, Lvliang, Luoyang, Sanmenxia, Xi’an,
Tongchuan, Baoji, Xianyang, Weinan

1 Note: Two different cities: the former belongs to Jiangsu Province, China, and the latter belongs to Zhejiang
Province, China.

BTH, YRD, and FW were selected as the key study regions, mainly due to their com-
monalities and differences. From the perspective of commonality, firstly, in 2018, FW
replaced the PRD region and became one of the three key air pollution control regions,
along with BTH and YRD, due to the prominent problems of ozone pollution and fine par-
ticulate matter pollution (Figure 2). Secondly, BTH, YRD, and FW all belong to developed
urban agglomerations in China, which are important in terms of economic development,
technological level, and population size. From the perspective of differences, firstly, the
geographical location and positioning are different. BTH is located in the North China
Plain, which is the economic circle of the capital city of China; YRD is located in the lower
reaches of the Yangtze River in East China, centered on Shanghai, which is a region with
strong openness and high innovation; and FW is located in the middle reaches of the Yellow
River in central and western China, with rich mineral resources and high levels of industrial
and agricultural production. Next, there are differences in the GDP, size of the population,
number of patents, and number of cars in the country, ranking YRD, BTH, and FW in order
as follows. In terms of industrial structure, BTH is better than YRD and FW; in terms of
energy use, the YRD region creates 23.94% of the GDP with 17% of the energy consumption,
while BTH creates only 8.6% of the GDP with 9.6% of the energy consumption, and FW
creates 2.93% of the energy consumption and 2.88% of the GDP, as shown in Table 2.



Int. J. Environ. Res. Public Health 2022, 19, 7743 7 of 19Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 7 of 20 
 

 
Figure 2. Ozone concentration trends in BTH, YRD, and FW from 2014 to 2019 (𝜇𝑔 𝑚ିଷ). 

Table 2. Comparison of the differences between BTH, YRD, and FW regions in 2019. 

Re-
gion 

Position 

GDP Share 
of the 

Country 
(%) 

Population 
Share of the 
Country (%) 

Number of 
Patents 

Granted (Mil-
lion) 

Ratio of 
the Three 
Industries 

Number of 
Cars (Mil-

lion) 

FDI Share 
of the 

Country 
(%) 

Energy Con-
sumption Share 
of the Country 

(%) 

BTH 
Located in the North 

China Plain 8.6 8.1 24.55 
4.5: 

28.7: 
66.8 

2707.81 20.56 
9.6, of which 

coal accounted 
for 67.9 

YRD 

Located in the lower 
reaches of the Yang-

tze River in East 
China 

23.94 16.7 67.9 
3.97: 

40.66: 
55.37 

4131.42 49.86 
17%, of which 
coal accounted 

for 55.4% 

FW 

Located in west-cen-
tral China, in the 

middle reaches of the 
Yellow River 

2.88 3.68 4.59 
8.11: 

40.36: 
51.54 

929.81 8.07 
2.93%, of which 
coal accounted 

for 80% 

Considering the availability of data, 50 cities in BTH, YRD, and FW, the three major 
regions of air pollution control in China during 2014–2019, were selected as balanced 
panel data samples in this paper. The nationwide hourly ozone observations in Chinese 
cities were obtained from the China National Environmental Monitoring Center 
(CNEMC) network, and then we obtained the average annual ozone concentration data 
after taking the arithmetic average. Observations of key independent variables and other 
control variables are from the China City Statistical Yearbook and the statistical yearbooks 
of various provinces and cities. As for the spatial weight matrix W, the latitude and lon-
gitude of each city and the vector map data bounded by administrative areas were ob-
tained from the National Catalogue Service for Geographic Information. Table 3 shows 
the variables’ descriptive statistics without taking logarithmic values. 

Table 3. Descriptive statistics of variables. 

Region Variable Unit Mean Std. dev Min Max 

BTH 

O3 μg mିଷ 97.1766 10.4500 65 113.5 
tech -- 14,308.45 29,244.58 300 13,1716 

energy kwh yuanିଵ 0.0980 0.1024 0.0152 0.6761 
agdp yuan personି 55,960.36 31,666.73 22,758 164,220 
car -- 181.8881 137.2016 51.56 636.5 
ind % 41.1321 10.7247 8.5 62.1 

Figure 2. Ozone concentration trends in BTH, YRD, and FW from 2014 to 2019 (µg m−3).

Table 2. Comparison of the differences between BTH, YRD, and FW regions in 2019.

Region Position
GDP Share

of the
Country (%)

Population
Share of the
Country (%)

Number of
Patents
Granted
(Million)

Ratio of the
Three

Industries

Number of
Cars

(Million)

FDI Share
of the

Country (%)

Energy Con-
sumption

Share of the
Country (%)

BTH
Located in
the North

China Plain
8.6 8.1 24.55

4.5:
28.7:
66.8

2707.81 20.56
9.6, of which

coal
accounted

for 67.9

YRD

Located in
the lower
reaches of

the Yangtze
River in East

China

23.94 16.7 67.9
3.97:

40.66:
55.37

4131.42 49.86
17%, of

which coal
accounted
for 55.4%

FW

Located in
west-central
China, in the

middle
reaches of
the Yellow

River

2.88 3.68 4.59
8.11:

40.36:
51.54

929.81 8.07
2.93%, of

which coal
accounted

for 80%

Considering the availability of data, 50 cities in BTH, YRD, and FW, the three major
regions of air pollution control in China during 2014–2019, were selected as balanced
panel data samples in this paper. The nationwide hourly ozone observations in Chinese
cities were obtained from the China National Environmental Monitoring Center (CNEMC)
network, and then we obtained the average annual ozone concentration data after taking
the arithmetic average. Observations of key independent variables and other control
variables are from the China City Statistical Yearbook and the statistical yearbooks of various
provinces and cities. As for the spatial weight matrix W, the latitude and longitude of
each city and the vector map data bounded by administrative areas were obtained from
the National Catalogue Service for Geographic Information. Table 3 shows the variables’
descriptive statistics without taking logarithmic values.
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Table 3. Descriptive statistics of variables.

Region Variable Unit Mean Std. dev Min Max

BTH

O3 µg m−3 97.1766 10.4500 65 113.5
tech – 14,308.45 29,244.58 300 13,1716

energy kwh yuan−1 0.0980 0.1024 0.0152 0.6761
agdp yuan person−1 55,960.36 31,666.73 22,758 164,220
car – 181.8881 137.2016 51.56 636.5
ind % 41.1321 10.7247 8.5 62.1
pop person km−2 606.7331 313.0762 61.9616 1324
fdi yuan 262,370.4 519,982.3 1047 2,432,909

YRD

O3 µg m−3 94.4653 15.3034 36 115
tech – 20,903.1 19,415.71 1040 100,587

energy kwh yuan−1 0.0538 0.0250 0.0124 0.1153
agdp yuan person−1 92,849.81 35,715.66 28,808 180,044
car – 130.126 94.9818 8.73 442.55
ind % 47.2482 6.6954 26.99 68.27
pop person km−2 790.3617 677.264 171.8062 3830
fdi yuan 258,718.2 353,974.1 7792 1,904,800

FW

O3 µg m−3 89.4681 15.0859 58.75 118.6667
tech – 3458.439 8278.139 117 38,279

energy kwh yuan−1 0.0673 0.0536 0.0069 0.2247
agdp yuan person−1 44,500.66 16,658.41 22,304 92,256
car – 66.1168 69.0366 6.9349 343.0559
ind % 47.3930 9.2123 32.84 70.04
pop person km−2 348.3166 191.5584 180.7995 863.2962
fdi yuan 87,823.59 156,464.5 1 665,666

3. Results
3.1. Spatial Autocorrelation Test

In order to avoid the heteroskedasticity problem to some extent, non-ratio variables
were treated as natural logarithms when performing regression. Table 4 lists the global
Moran’s I of lnO3 for three regions each year and the calculated average values, illustrating
that most Moran’s I statistic values are greater than zero and statistically significant at the
10% level. It is found that ozone pollution in the three regions of BTH, YRD, and FW is
indeed spatially correlated, which indicates that we need to take this spillover effect into
extra consideration.

Table 4. Global Moran’s I of lnO3.

Year BTH YRD FW

2014 −0.097 0.513 *** 0.209
2015 −0.091 0.586 *** 0.469 ***
2016 −0.100 0.285 *** 0.235 **
2017 0.191 0.038 −0.021
2018 0.480 *** 0.106 −0.002
2019 0.440 *** 0.135 0.425 **

Note: *** and ** represent significance levels of 1% and 5% respectively.

The LISA map for ozone pollution concentrations in 2019 (Figure 3) shows the spatial
clustering of O3 pollution among cities within the BTH, YRD, and FW regions, indicating
that there is a positive spatial correlation in ozone pollution concentration in the three
regions, with a high–high and low–low clustering trend. We can see that, in 2019, ozone
pollution within the BTH region was highly correlated in Shijiazhuang and Hengshui and
lowly correlated in Tangshan, Qinhuangdao, and Chengde. Ozone pollution within the
YRD region was highly correlated in Suzhou, Nantong, Yancheng, Yangzhou, and Taizhou
and lowly correlated in Hefei, Wuhu, Tongling, Anqing, and Chizhou. Ozone pollution
within the FW region was low–low correlated in Jinzhong and Luliang and high–low
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correlated around Luoyang. This indicates that ozone pollution concentration presents
obvious spatial agglomeration. Moreover, the degree of spatial dependence has a tendency
to increase.
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3.2. Estimation Results
3.2.1. Selection of the Specific Model

To determine which spatial econometric model is more appropriate for estimation, first,
we conducted conventional OLS estimations and performed the corresponding (robust) LM-
lag and LM-error tests for the two spatial econometric estimators, and then we conducted
SDM directly and performed the LR and Wald tests to determine whether SDM could be
converted to SLM or SEM. Table 5 reports the results of these tests. The values of LM-lag
are more significant than those of LM-error, and both the values of Robust LM-lag and
Robust LM-error are significant at the 5% level, indicating that the SLM model should be
selected in BTH. In YRD, the values of Robust LM-lag are more significant than those of
Robust LM-error in the case that both LM-lag and LM-error are significant at the 1% level,
so SLM is selected. For FW, SLM is also selected. In addition, the hypothesis that SDM
should be converted to SLM or SEM is rejected in the BTH and FW regions; in YRD, the
results of the LR test and the Wald test are opposite, and thus, increased attention should be
paid to the SDM results. According to the results of the Hausman test, fixed effects should
be used in all three regions, and the last LR test indicates that none of the three regions can
be simplified to be time-fixed or individual-fixed, so all use double-fixed effects.

Table 5. Results of LM, LR, and Wald tests.

Test BTH YRD FW

LM-lag 3.386 ** 28.027 *** 15.685 ***
Robust LM-lag 11.119 *** 11.704 *** 2.843 *

LM-error 0.105 16.534 *** 14.143 ***
Robust LM-error 7.838 *** 0.211 1.301

Hausman test 275.73 *** 70.98 *** 5.00

LR test
SDM/SLM chi2 = 27.17 *** chi2 = 11.36 chi2 = 21.02 **
SDM/SEM chi2 = 29.61 *** chi2 = 25.98 *** chi2 = 21.01 **

Wald test
SDM/SLM chi2 = 50.77 *** chi2 = 40.06 *** chi2 = 43.15 ***
SDM/SEM chi2 = 70.61 *** chi2 = 49.15 *** chi2 = 35.34 ***

LR test
ind/both chi2 = 17.17 * chi2 = 19.32 ** chi2 = 40.89 ***
time/both chi2 = 44.82 *** chi2 = 104.80 *** chi2 = 41.62 ***

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

3.2.2. Regression Results

Table 6 reports the results of SDM. It is noteworthy that the autocorrelation parameter
“rho” for O3 concentrations is statistically significant at the 5% level in the three regions,
indicating that there are spatial dependences in the sample. Meanwhile, the time-lagged
dependent variable (L.O3) is significantly and positively associated with O3 pollution
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concentration in BTH and YRD, but not in FW, which is not statistically significant. The
current period of O3 pollution is indeed affected by the previous period; thus, the problem
of controlling it is a long-term and arduous task. It is also very important that the marginal
effects of these independent variables on the dependent variable cannot be reflected by
the coefficients of SDM [55], and so Table 6 reports the “direct effect”, “indirect effect”,
and “total effect” of the variables. Here, a “direct effect” indicates the impact of a city’s
independent variables on its O3 concentration, and an “indirect effect” presents the impact
of the independent variables of neighboring cities on a city’s O3 concentration. It can be
seen that the “direct effect” of variables is different from the corresponding coefficient
values in Table 6, because spatial dependence is considered in the spatial econometric
models, and there is a feedback mechanism for the relationship between variables.

Table 6. Estimation results of dynamic SDM for the full sample.

Variable BTH YRD FW

L.lnO3 0.593 *** 0.514 *** 0.217
(4.565) (5.996) (1.366)

lntech −1.001 *** 0.525 *** 0.041
(−5.159) (2.660) (0.304)

lntech2 0.057 *** −0.020 ** −0.003
(4.900) (−2.230) (−0.199)

lnenergy 0.016 0.007 0.054 **
(1.279) (0.441) (2.189)

lnagdp 0.255 * −0.207 * 0.104
(1.882) (−1.795) (0.342)

lncar 0.245 −0.114 * 0.783 ***
(1.544) (−1.904) (2.831)

ind −0.008 ** 0.003 −0.004
(−2.491) (0.854) (−0.026)

lnpop 0.002 0.534 −1.831 **
(0.049) (1.575) (−2.559)

lnfdi 0.032 *** −0.016 −0.027 ***
(2.730) (−0.658) (−5.231)

W.lntech 0.394 −1.568 ** 0.186
(0.678) (−2.062) (0.393)

W.lntech2 −0.032 0.069 ** −0.017
(−0.955) (2.264) (−0.521)

W.lnenergy −0.002 0.010 0.116 **
(−0.075) (0.330) (2.328)

W.lnagdp −0.035 −0.079 −1.340 ***
(−0.320) (−0.409) (−2.756)

W.lncar 0.527 *** 0.058 −0.148
(4.043) (0.461) (−0.361)

W.ind 0.015 *** −0.006 0.786 **
(5.021) (−0.860) (2.484)

W.lnpop 0.168 −1.114 −0.471
(0.979) (−1.065) (−0.473)

W.lnfdi −0.016 0.019 −0.036 **
(−0.712) (0.281) (−2.433)

rho 0.303 ** 0.491 *** 0.259 **
(2.543) (8.418) (2.572)

sigma2_e 0.002 *** 0.006 *** 0.003 ***
(6.323) (2.756) (4.908)

R2 0.7645 0.6593 0.8406
Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

3.2.3. Direct Effect and Indirect Effect

As for the key independent variable in this paper, it can be seen from the “total effect”
that the increase in technological innovation (lntech) can significantly decrease the O3
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pollution concentration, and its squared term (lntech2) carries a positive sign in the BTH
region. Therefore, the results of lntech and lntech2 indicate a U-shaped relationship between
technological innovation and O3 pollution. In contrast, more advanced technological
innovation aggravates the O3 concentration in the YRD and FW regions, and their squared
terms are negative, illustrating that O3 pollution shows an inverted U-shaped transition
when accompanied by technological innovation. However, the former is significant at the
1% level, and FW is not.

From the “direct” and “indirect” effects (Table 7), in the short term, the direct effects
of technological innovation on O3 pollution in the BTH region are significantly negative
(−0.97) at the 1% level, and the indirect effects are positive (0.135) but not significant.
In the YRD region, the direct effect and indirect effect of technological innovation are
positive (0.315) and negative (−2.491), respectively, significant at the 10% level, and the
absolute value of the indirect effect is much greater than that of the direct effect. Finally,
the technological innovation of FW has no significant direct or indirect impact on O3
pollution reduction, which eventually leads to a positive and insignificant total effect
(0.403) of technological innovation. In the long run, only in the BTH region, the direct
effect of technological innovation is significantly negative (−2.463) at the 1% level. None
of the technological spillover effects in the three regions are significant, indicating that
technological innovation has no long-term effect.

Table 7. Marginal effects of dynamic SDM for the full sample.

Variable BTH YRD FW

SR_Direct

lntech −0.970 *** 0.315 * 0.074
(−5.096) (1.812) (0.577)

lntech2 0.054 *** −0.011 −0.003
(2.612) (−1.347) (−0.108)

lnenergy 0.017 0.009 0.065 **
(1.008) (0.503) (2.030)

lnagdp 0.273 * −0.238 ** −0.020
(1.930) (−2.128) (−0.058)

lncar 0.308 * −0.114 ** 0.815 ***
(1.828) (−2.028) (3.002)

ind −0.007 0.003 0.073
(−1.119) (0.722) (0.496)

lnpop 0.020 0.409 −1.991 ***
(0.447) (1.087) (−2.927)

lnfdi 0.032 −0.013 −0.031 **
(1.563) (−0.404) (−2.002)

SR_Indirect

lntech 0.135 −2.491 * 0.329
(0.173) (−1.897) (0.536)

lntech2 −0.021 0.112 ** −0.030
(−0.455) (2.148) (−0.670)

lnenergy 0.002 0.022 0.157 **
(0.075) (0.364) (2.574)

lnagdp 0.087 −0.347 −1.691 **
(0.606) (−0.971) (−2.344)

lncar 0.828 *** −0.019 0.097
(3.456) (−0.089) (0.185)

ind 0.017 ** −0.007 1.013 **
(2.476) (−0.584) (2.479)

lnpop 0.228 −1.450 −1.308
(1.005) (−0.812) (−0.929)

lnfdi −0.007 0.024 −0.058 **
(−0.223) (0.185) (−2.207)
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Table 7. Cont.

Variable BTH YRD FW

LR_Direct

lntech −2.463 *** −0.847 0.116
(−4.985) (−0.016) (0.642)

lntech2 0.140 *** 0.050 −0.006
(2.632) (0.023) (−0.154)

lnenergy 0.041 −0.003 0.089 **
(0.957) (−0.002) (2.133)

lnagdp 0.659 * −0.804 −0.087
(1.892) (−0.049) (−0.179)

lncar 0.602 −0.392 1.061 ***
(1.450) (−0.094) (2.990)

ind −0.020 0.005 0.132
(−1.236) (0.024) (0.658)

lnpop −0.008 −0.211 −2.634 ***
(−0.072) (−0.005) (−2.938)

lnfdi 0.081 0.033 −0.042 **
(1.587) (0.010) (−2.011)

LR_Indirect

lntech 1.047 −3.021 0.516
(0.679) (−0.006) (0.549)

lntech2 −0.083 0.324 −0.047
(−0.907) (0.014) (−0.663)

lnenergy −0.010 0.057 0.226 ***
(−0.161) (0.002) (2.658)

lnagdp −0.025 −6.107 −2.385 **
(−0.073) (−0.033) (−2.153)

lncar 1.330 ** 1.655 0.276
(2.210) (0.027) (0.351)

ind 0.039 ** −0.168 1.445 **
(2.232) (−0.086) (2.305)

lnpop 0.406 −31.882 −2.197
(0.944) (−0.035) (−0.971)

lnfdi −0.039 −1.222 −0.086 **
(−0.600) (−0.017) (−1.979)

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

3.3. Model Validation

The endogeneity problem in this paper focuses on the possible inverse causality
between O3 pollution and technological innovation: that is, technological innovation may
inhibit or exacerbate ozone pollution conditions, but at the same time, ozone pollution also
causes changes in the level of technological innovation. In addition to the dynamic spatial
panel model (with a one-period lag of O3 pollution added as the dependent variable) used
in the previous paper to try to address the endogeneity issue, the key explanatory variable
L.tech with a one-period lag was used here as an instrumental variable (IV) to test the
endogeneity issue. As can be seen from the results in Table 8, the positive and negative
signs and significance of the key explanatory variables are basically consistent with the
previous paper, and the estimation results of the coefficients of other variables also remain
generally consistent, indicating that the model setting in this paper is reasonable.

Taking into account the conclusion’s robustness, we chose to replace the spatial weight
matrix to conduct a robustness test. Here, the inverse distance matrix was employed to
measure the coefficient value. The results in Table 9 prove that the coefficient values of the
key dependent variable and its squared term are both significant and mainly consistent
with the original results, regardless of which spatial weight matrix is used. Additionally,
most of the other control variables are close to the results of the binary contiguity matrix.
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Table 8. Results of endogeneity test.

Variable BTH YRD FW

L.lnO3 0.549 *** 0.453 *** 0.093
(5.825) (13.675) (0.601)

lnltech −0.531 *** 0.548 ** 0.053
(−2.809) (2.531) (0.360)

lnltech2 0.038 *** −0.023 ** −0.003
(3.129) (−2.029) (−0.359)

lnenergy 0.019 0.015 0.052 **
(1.499) (0.612) (2.223)

lnagdp 0.100 −0.188 ** 0.268 *
(1.000) (−1.990) (1.810)

lncar −0.055 −0.031 0.654 ***
(−0.343) (−0.431) (2.788)

ind −0.007 ** 0.002 0.001
(−2.073) (0.556) (0.285)

lnpop 0.031 0.452 −1.646 **
(0.988) (1.083) (−2.359)

lnfdi 0.011 0.020 −0.023 ***
(0.764) (0.515) (−4.023)

rho 0.300 *** 0.404 *** 0.037
(2.620) (4.044) (0.239)

sigma2_e 0.003 *** 0.005 *** 0.003 ***
(7.249) (2.957) (6.288)

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

Table 9. Results of robustness test.

Variable BTH YRD FW

L.lnO3 0.540 *** 0.603 *** 0.187
(6.423) (15.307) (1.407)

lntech −0.899 *** 0.229 ** 0.115
(−5.941) (2.498) (0.490)

lntech2 0.049 *** −0.006 * −0.012
(4.728) (−1.827) (−0.795)

lnenergy 0.006 −0.008 0.039
(0.648) (−0.459) (1.382)

lnagdp 0.246 * −0.316 *** 0.015
(1.820) (−4.065) (0.063)

lncar 0.491*** −0.090 0.736 *
(3.449) (−1.389) (1.848)

ind −0.003 0.005 * −0.003
(−1.254) (1.735) (−0.799)

lnpop 0.107 ** 0.521 −1.781 ***
(2.503) (1.244) (−3.136)

lnfdi 0.047 *** −0.032 * −0.036 ***
(3.762) (−1.665) (−4.355)

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

4. Discussion

This research investigated the spatial impact of technological innovation on ozone
pollution and its regional differences. Overall, current technological innovations in China,
represented by the three major regions, are not very effective in mitigating ozone pollution,
which is consistent with the findings of Chen [23] for a full sample of countries. From the
perspective of heterogeneity, we focus on the differences among the three major regions.

4.1. Technology Innovation

First, in the BTH region, the total effect of high-level technological innovation is a
relatively significant mitigation of ozone pollution, which is consistent with the findings
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of Chen [23] and Churchill [51]. For high-technology-level countries, developed regions
have a strong innovation drive to develop environmentally friendly technologies that can
effectively improve regional pollution. On the one hand, in front-end prevention, the BTH
region, with a high level of technological innovation, applies clean production technologies
and environmental protection products to energy systems and production systems, which
can essentially improve the efficiency of enterprises’ resource ecological use and reduce
the generation of ozone precursors. The middle-end process uses cutting-edge pollution-
monitoring platforms to mitigate ozone precursors and has timely access to pollution
information. In the terminal treatment, they help enterprises improve their pollution treat-
ment capacity and development capacity to reduce the emission of haze-causing substances
with high-technology R&D capability. On the other hand, technological innovation will
also further reduce the production of ozone precursors by optimizing resource allocation
and promoting industrial structure upgrading. By leading the flow and concentration of
capital, labor, technology, and information from traditional industries to new industries,
technology-intensive and low-pollution industries can optimize industrial and resource
allocation structures, improving the allocation efficiency and total factor productivity.

Second, in the YRD region, it is noteworthy that its relatively high level of technological
innovation has instead exacerbated regional ozone pollution, which is consistent with the
findings of Fernandez et al. [61], Ullah [62], and Chen [23]. The direct effect of technological
innovation is significantly positive, while the indirect effect is significantly negative, with
the final total effect being positive at the 1% significance level. On the one hand, this may
be due to the fact that regional demand-driven technological innovation focuses mainly
on industrial support and ecological growth, which effectively promotes local economic
growth at the expense of environmental quality to some extent. On the other hand, the
YRD region contains the largest number of cities and has a large variability in internal
development. Although the spillover effect due to the flow of technological innovation
factors has a mitigating effect on ozone pollution, this effect is limited.

Finally, in the FW region, it can be seen that the effect of technological innovation on
regional ozone pollution is not significantly positive and is small in absolute value. This
is consistent with the findings of Chen [23] for low-income countries, Samargandi [36]
for Saudi Arabia, and Cheng et al. [34] for OECD. Collectively, the FW region has the
lowest level of economic development and innovative technology among the three regions,
making it difficult to meet the technology and requirements of the green threshold to
effectively improve environmental quality, resulting in a negligible effect.

4.2. Other Influencing Factors

Here, we discuss the causes of the large differences in the effects of each control
variable in the three regions of BTH, YRD, and FW. Overall, this is largely consistent with
the development characteristics and resource endowment differences among the three
regions and justifies the study to a certain extent. The specific analysis is as follows.

4.2.1. The BTH Region

In the BTH region, the direct effects of the economic development level and foreign
direct investment on ozone pollution are significantly positive, in addition to the technolog-
ical innovation factor. This indicates that ozone pollution has a positive relationship with
the economic level and FDI level, which is consistent with the classical “pollution paradise
hypothesis” proposed by Kathuria [63]. BTH’s GDP accounted for 8.6% of the national
share, and FDI accounted for 20.56%, ranking second among the three regions. Both ranked
second in 2019. In the process of rapid economic development, the massive entry of foreign
investment can lead to the concentration of highly polluting enterprises in areas with lower
environmental regulations and access barriers, which can generate a large number of ozone
pollution precursors. The direct effect of the industrial structure on ozone pollution is
significantly negative, which indicates that the industrial structure of the BTH region is to
some extent conducive to improving regional ozone pollution. In 2019, the structure of the
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three major industries in the Beijing–Tianjin–Hebei region was the best among the three re-
gions, with the proportions of primary, secondary, and tertiary output values at 4.5%, 28.7%,
and 66.8%, respectively, and the proportion of secondary industry output value as low as
28.7%, which makes an important contribution to the mitigation of ozone pollution in the
region. Second, the spillover effects of motor vehicle numbers and industrial structure are
significantly positive, which is consistent with Silva [64], Anenberg [65], and Unger [66].
The large amounts of NOX and VOCS emitted from the exhaust of motor vehicles such as
cars and diesel vehicles become precursors of ozone pollution, and their casual mobility
contributes to air pollution in the surrounding cities. In addition, the transfer of highly
polluting industries, industrial undertaking, and factor mobility within the region are also
the main reasons that the industrial structure aggravates ozone pollution.

4.2.2. The YRD Region

In the YRD region, the direct effects of the economic development level and the number
of motor vehicles on ozone pollution are significantly negative, except for the effect of
technological innovation. This indicates that the regional economic development and the
number of motor vehicles do not exacerbate ozone pollution but rather have a mitigating
effect on it. This may be consistent with the second half of the EKC curve [24], where the
ozone pollutants show a decreasing trend with the increasing economic level in the YRD
region. The relatively consistent and well-established public green transportation system in
the YRD also mitigates ozone pollution to some extent. Other control variables do not have
significant effects on ozone pollution in the YRD, which is consistent with the regression
results of Chen [23] for the whole study sample. On the one hand, spillover effects from
adjacent areas may offset the effects of a local factor on ozone pollution; on the other hand,
the YRD includes more cities and intra-regional heterogeneity prevails, and the overall
effect of a factor on ozone pollution may not be significant.

4.2.3. The FW Region

In the FW region, first, the direct and spillover effects of energy use intensity on ozone
pollution are significantly positive, indicating that regional energy use is the main factor
that exacerbates local ozone pollution concentrations. This is consistent with Radmehr [67]
and Adewuyi [68]. In 2019, energy consumption in the FW accounted for 2.93% of the
national share, with coal accounting for 80% of the total, the highest among the three regions.
The fossil-energy-based energy structure and higher energy use intensity in particular have
a significant impact on environmental pollution and are the main cause of ozone pollution.
Second, the direct effect of the number of motor vehicles is significantly positive, with
the number of motor vehicles in the FW reaching 9,298,000 in 2019, the main source of
mobile emissions causing ozone pollution. This, coupled with the low topography of the
FW itself—it is in the valley of the Fen and Wei rivers—is not conducive to the diffusion of
pollution sources, making pollution worse. In addition, both the direct and indirect effects
of foreign direct investment are significantly negative, which is consistent with Gunnar [69].
This indicates that foreign investment in the FW is mainly environmentally friendly and
promotes the regional environmental technology level through the “demonstration effect”,
“spillover effect”, and “competition effect”, which has a mitigating effect on ozone pollution.
The direct effect of population density on ozone pollution is significantly negative, which
may be mainly due to the relatively low population density in the FW region, with the
resident population accounting for 3.68% of the national population in 2019, the lowest
among the three regions.

5. Conclusions

This paper explores the impact of technological innovation on O3 pollution in three
important regions of China (Beijing–Tianjin–Hebei, the Yangtze River Delta, and the Fenwei
Plain) over the period 2014–2019 through spatial econometric models. The main contri-
bution is the analysis of the spillover effects of technological innovation on O3 pollution
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and their heterogeneity. Generally, there is an obvious spatial correlation of O3 pollution,
and technological innovations in China are still not effective in curbing ozone pollution.
Secondly, the empirical results first prove that O3 pollution and technological innovation
are spatially correlated among cities of a region, and the spillover effect is important in
understanding the relationship between technological innovation and O3 pollution. Thirdly,
technological innovation in BTH not only significantly reduces its O3 pollution but also
helps reduce O3 pollution in neighboring cities in the long term; the indirect effect of this in
YRD is significantly negative, but the total effect is still a positive contribution to ozone
pollution. Technological innovation in FW does not significantly promote O3 pollution
in its own cities and/or neighboring cities. Furthermore, the coefficients of the control
variables show that the main influencing factors of O3 pollution vary from region to region.
This is in line with the differences in endowments and development characteristics of each
region. Based on this paper’s main conclusions, some relevant policy implications are
suggested, as follows:

1. The positive superposition of O3 pollution in time and space dimensions indicates that
it is urgent to carry out regional control and joint prevention efforts to limit regional
O3 pollution. In particular, key regions should actively carry out intra- and inter-
regional synergistic cooperation and implement joint actions in key pollution source
monitoring, mobile monitoring, legislative enforcement, quantitative standards, etc.,
to strictly implement O3 pollution regulation and pollution management.

2. The direct and indirect effects of technological innovation on ozone pollution vary
considerably between regions. In particular, in the YRD and FW regions, on the one
hand, they should promote green environmental protection technologies, accelerate
the elimination of energy-consuming and polluting production technologies, and
encourage international corporations to help cities with lower technological innova-
tion. On the other hand, they should pay more attention to improving O3 pollution
control technologies and equipment, including controlling the sources of pollution
and end-of-treatment.

3. As for other factors on ozone pollution, the BTH region should strengthen the man-
agement of motor vehicles and promote a green transportation system throughout the
whole area while strengthening the upgrading of industrial structure, especially in
the cities of Hebei Province. The YRD region should improve its energy use efficiency
and reduce its energy use intensity. The FW region, because of its abundant energy
resources, mostly coal, has an industrial structure dominated by secondary industries
and high energy use intensity, which has exacerbated the degree of ozone pollution.
Therefore, efforts should focus on the upgrading of industrial structure and energy
use to promote the formation of green industries and energy use.
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