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ABSTRACT

Objective: Chronic diseases often have long durations with slow, nonlinear progression and complex, and

multifaceted manifestation. Modeling the progression of chronic diseases based on observational studies is

challenging. We developed a framework to address these challenges by building probabilistic disease progres-

sion models to enable better understanding of chronic diseases and provide insights that could lead to better

disease management.

Materials and Methods: We developed a framework to build probabilistic disease progression models using

observational medical data. The framework consists of two steps. The first step determines the number of dis-

ease states. The second step builds a probabilistic disease progression model with the determined number of

states. The model discovers typical states along the trajectory of the target disease, learns the characteristics of

these states, and transition probabilities between the states. We applied the framework to an integrated obser-

vational HD dataset curated from four recent observational HD studies.

Results: The resulting HD progression model identified nine disease states. Compared to state-of-art HD staging

system, the model 1) covers wider range of HD progression; 2) is able to quantitatively describe complex

changes around the time of clinical diagnosis; 3) discovers multiple potential HD progression pathways; and 4)

reveals expected time durations of the identified states.

Discussion and Conclusion: The proposed framework addresses practical challenges in observational data and

can help enhance the understanding of progression of chronic diseases. The framework could be applied to

other chronic diseases with the help of clinical knowledge.
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INTRODUCTION

Chronic diseases that progress slowly are among the most common,

expensive, and debilitating of all health problems.1 Modeling symp-

tom progression of chronic diseases enables better understanding of

disease prognosis and provides insights into staging systems, which

could assist early diagnosis and personalized care, and provide help

in the development and evaluation of interventions.

Disease Progression Modeling (DPM)2 describes the time course

of disease status and tracks disease severity over time. Longitudinal

information collected in observational studies such as disease
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registries3 and Electronic Health Records4 provides rich structured

information for data-driven approaches. However, several chal-

lenges make the use of such real-world evidence for tracking disease

progression difficult. First, although the underlying disease progres-

sion processes likely change continuously, observations are only

available at discrete, often irregular, time points. Second, an individ-

ual patient’s records typically cover only a fraction of the entire pro-

gression trajectory, and a comprehensive trajectory must be inferred

by stitching together records from a large number of patients, which

may not be readily aligned. Third, progression of chronic conditions

is usually manifested through multifaceted symptoms. Modeling the

complex progression patterns of multiple symptoms is of great value

for improving the understanding of a target disease. Last but not

least, while a few well studied chronic conditions, such as chronic

kidney disease, have widely accepted biomarkers for tracking their

natural progression pathways, such knowledge is not available for

other less studied conditions, especially rare diseases such as the

Huntington’s Disease (HD).

HD is a neurodegenerative disorder caused by an unstable ex-

pansion in a trinucleotide (CAG) repeat in the huntingtin (HTT)

gene,5 and is clinically characterized by the progressive decay of mo-

tor and cognitive abilities accompanied by functional and behavioral

changes.6 Due to its monogenic nature, predictive genetic testing

can determine whether an individual will develop the disease.

Among genetically confirmed Huntington’s Disease Gene Expansion

Carriers (HDGECs), a clinical diagnosis of HD is typically made

when an individual exhibits overt, otherwise unexplained extrapyra-

midal movement disorder. The periods before and after the motor

diagnosis are referred to as the premanifest and manifest periods, re-

spectively.

Previous clinical studies on the natural history of HD mainly

focus on the motor onset. Stine et al. and Duyao et al.7,8 identi-

fied strong correlation between the age of motor onset and the

CAG repeat length. Langbehn et al.9 developed a parametric sur-

vival model based on CAG repeat length to predict the probability

of motor onset. Dorsey et al.10 studied the longitudinal changes of

clinical features among HDGECs, and compared with controls.

Warner and Sampaio11 presented a general class of models, and

fitted the models to a selection of structural imaging markers. De-

spite the increasing understanding of HD progression, several lim-

itations exist in previous studies. First, while motor impairment

has been the primary focus in HD clinical studies, cognitive,12

and certain behavioral disorders13 are also known to surface years

before motor onset. Second, most previous studies model one clin-

ical assessment at a time. The multifaceted nature of HD progres-

sion calls for a comprehensive characterization of the processes

involved.

Recently, several large-scale observational studies have been con-

ducted in HDGECs to better understand the natural history of HD.

These studies generated longitudinal datasets from relatively large

HDGECs cohorts, providing unprecedented opportunity to investi-

gate the progression of HD.

In this study, we propose a framework based on the Continuous-

Time Hidden Markov Model (CTHMM) to address the aforemen-

tioned challenges for building disease progression models from ob-

servational data. The framework consists of two steps. The first step

determines the number of disease states using a grid-search ap-

proach. The second step builds a probabilistic disease progression

model with the determined number of states. The proposed frame-

work was applied to an integrated HD observational data, and the

results are discussed.

Objective
The aim of this study is to develop a method to address the chal-

lenges and build probabilistic disease progression models to enable

better understanding of chronic diseases and provide insights for

staging systems.

METHODS

Continuous-time hidden Markov model
The CTHMM model assumes that the progression of the target

disease can be segmented into M distinct disease states, where each

disease state captures a typical disease status along its natural

course. The underlying progression process of the target disease is

assumed to evolve according to a continuous-time Markov pro-

cess, which is denoted as SðsÞ, and is parameterized by an M�M

transition generator matrix Q, and an M� 1 initial state probabil-

ity vector p. The ði; jÞ-th element of Q, denoted as Qði;jÞ, character-

izes the intensity of instantaneous transition from disease state i to

disease state j, for i 6¼ j. The ith diagonal element

Qði;iÞ ¼ �
P

j 6¼iQði;jÞ, and the row sums of Q equal to 0. The pro-

gression of the target disease is reflected in the transition of disease

states. Note that an element Qði;jÞ ¼ 0 (for i 6¼ j) indicates that

patients in disease state i cannot progress into disease state j at an

instantaneous time. Different types of disease progression can be

specified by imposing various constraints on the structure of Q.

For example, a Q with all elements not equal to 0 indicates that a

patient in any disease state can progress/recover to any other state.

The corresponding model is referred to as the full progression

model. A Q with all the lower triangular elements equal to 0 indi-

cates that a disease can only get worse and the progression cannot

be reversed. The corresponding model is referred to as the forward

progression model. A Q with only the diagonal line and the first L

upper off-diagonal lines not equal to 0 indicates that the disease

can only progress to the next L states at any instantaneous time.

The corresponding model is referred to as the L-th order forward-

chain progression model. For disease progression, the most appro-

priate type of the model (ie, constraints on Q) is specified based on

existing knowledge of the target disease. Given Q, the transition

probabilities with a time span d can be calculated by Equation 1 in

Wang et al.:4

Ai;j dð Þ ¼ expmðdQÞi;j (1)

Although the underlying progression is assumed to be

continuous-time, we only observe manifestations of disease states

at discrete times. Assume there are N patients in the dataset. Pa-

tient n has Tn observations, with time stamps s1; . . . ; sTn . Let Zk

denote the k-th feature with k ¼ 1; . . . ;K, Sn;t denote the disease

state of patient n at st, and Sn ¼ Sn; 1; . . . ; Sn;Tn
g

�
denote the dis-

ease state sequence of the patient. Without loss of generality, we

assume that the features under each state follow independent

Gaussian distributions, that is, Zn;t;kjSn;t ¼ m � N lm;k;r
2
m;k

� �
,

where Zn;t;k denotes the value of the kth feature of patient n at

his tth observation, lm;k and r2
m;k are the mean and variance of

the kth feature under state m. We use H ¼ fQ;p;!l;!r2g to de-

note the collection of parameters in the CTHMM model. Note

that the states S are not directly observed. The goal is to estimate

H and S simultaneously.

The Expectation-Maximization (EM) algorithm [15] was used to

estimate the parameters. Specifically, the complete likelihood can be

written as follows:
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PðZ; S; SðsÞ; HÞ ¼
YN

n¼1

(
PðSn;1Þ

YTn

t¼1

PðSn;tjSn;t�1Þ

YTn

t¼0

YK

k¼1

PðZn;t;kjSn;tÞ
)

(2)

The conditional expectation term EPðS;SðsÞjZ;HÞ logP½ Z; S; S sð Þ; Hð Þ�
can be broken down to two terms:

E
P SjZ;H

0ð Þ logpþ logPðZjSÞ½ � þ E
P S;SðsÞjZ;H

0ð Þ logPðS; SðsÞ; HÞ½ � (3)

where H
0
is the value of the parameters from the previous EM itera-

tion. Following equation (II.7) in Metzner et al.,16 the second term

in (4) can be calculated as follows:

E
P S;SðsÞjX;H

0ð Þ logP S; S sð Þ; Hð Þ½ � ¼
X
d

i; j 2 ½M�

CijðdÞ
X

k; l 2 M½ �;

k 6¼ l

logQklE Nkl dð Þj S; Q
0

� �
� QklE Rk dð Þð jS; Q

0 Þ

2
6666664

3
7777775

(4)

where CijðdÞ denotes the number of transitions such that St�1 ¼ i,

St ¼ j, and st � st�1 ¼ d, NklðdÞ is the number of transitions from

state k to state l during time interval d, and RkðdÞ is the total time

the Markov process spends in state k during the time interval d. In

the M-step, we update the transition generator matrix Q and initial

probability p as follows,

Qij ¼
P

d;k;l2½M� E Nij dð Þ
� ��S dð Þ ¼ l; S 0ð Þ ¼ k; Q

0 �CklðdÞP
d;k;l2½M�E Ri dð Þ½ jS dð Þ ¼ l; S 0ð Þ ¼ k; Q0 �CklðdÞ

; (5)

pi ¼
PN

n¼1 PðSn;0 ¼ i; p
0
; Q0ÞP

n; j PðSn;0 ¼ j; p0 ;Q0Þ ; (6)

where ½M� denote the set of integers from 1 to M.

We follow Section 4.2 of Wang et al.14 to calculate the two ex-

pectation terms EðNklðdÞÞ and EðRkðdÞÞ, and use the standard

forward-backward algorithm to calculate the posterior distributions

in (7).

In the E-step, state sequences are updated by the Viterbi algo-

rithm. Next, parameters in the observational model can be updated.

Specifically, under the independent Gaussian model, the parameters

(l;r) can be updated by the sufficient statistics expressed as follows:

lm;k ¼
P

n;t PðSn;t ¼ mÞZn;t;kP
n;t PðSn;t ¼ mÞ (7)

r2
m;k ¼

P
n;t PðSn;t ¼ mÞðZn;t;k � lm;kÞ2P

n;t PðSn;t ¼ mÞ (8)

Replacing the independent Gaussian model with other (multivariate)

distributions in the exponential family is straightforward and would

not increase the complexity the algorithm.

Determine number of disease states M

The CTHMM model assumes that the number of disease states M is

predetermined. For some of the most studied chronic diseases which

have widely accepted staging systems or biomarkers, Mcan be deter-

mined based on clinical knowledge. However, such knowledge is

not available for other diseases, especially those rare and less under-

stood diseases such as HD. We used a data-driven approach for de-

termining M for these diseases. To select the optimal M, the dataset

is split into a training set and a testing set. First, a series of CTHMM

model with various value of M are built on the training set. Each

model is then applied to the test set to calculate the fitness measure

defined as log-likelihood on the test set given the model. The model

with the highest log-likelihood provides the best fit for the data, and

its corresponding M is chosen as the optimal M.

Individual state sequences
Individual state sequences can be obtained using the standard

Viterbi algorithm. Furthermore, predictions of future disease states

and feature values can be made by leveraging intermediate results

from the model. Due to limited space, the detailed description of the

method is given Sections S3 and S4 in the Supplementary Material.

DATASET

The dataset used in this study was integrated from four large-scale

prospective observational studies of HD, which are named Enroll-

HD,17 REGISTRY,18 TRACK-HD/TRACK-ON,13,19 and PRE-

DICT-HD,20 respectively. In each of the four studies, participants

went through annual study visits and generated a diverse set of clini-

cal assessments that span a spectrum of clinical symptoms and mani-

festations expressed by HD patients. The integrated dataset contains

55782 observations from 16653 HDGECs and 2716 control partici-

pants, with the average number of observations (ie, number of study

visits) per participant being 2.9. Details about data from the four

studies are summarized in Supplementary Material S1, and the inte-

gration steps are presented in the Supplementary Material S2. In the

rest of this article, we refer to this data as the integrated HD data.

Several challenges prohibited directly applying the framework to

the integrated HD data. First, clinical assessments may have limited

availability due to missing values. Second, not all assessments col-

lected in observational studies were relevant for tracking HD pro-

gression. Third, the high-dimensional clinical assessments are

essentially manifestations of an unobserved lower-dimensional dis-

ease process. Extracting sensitive and efficient representations of the

unobserved and heterogeneous progression processes is crucial for

the success of DPM.

To address these issues, we exploited the Bayesian Latent Vari-

able Analysis by Ghosh et al.21 to extract latent factor scores to rep-

resent the underlying progression trajectories. Specifically, we

extracted the leading three latent factors from each of motor, func-

tional, and cognitive domains. We kept the number of factors equal

in the three domains so that we did not bias the final HD progres-

sion model towards symptoms in any single domain. The extracted

latent factors were concatenated and used as observed features (Z)

in the CTHMM model.

RESULTS

The integrated HD data consists of participants with the number of

clinical visits ranging from 1 to 25 (Supplementary Figure S2). Since

longitudinal information is essential for DPM, we excluded study

visits with missing values and patients with only one clinical visit.

We used 3126 HDGECs with at least 4 visits to determine the
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number of disease states ðMÞ, and 8452 HDGECs with at least 2

observations to build the final HD progression model.

It is known that HD symptoms progress slowly over a long pe-

riod of time, and no known treatment have been demonstrated to be

effective in reversing or slowing down its progression. Based on the

understandings of HD, we set the HD progression model to be a

second-order forward-chain progression model. That is, at any

instantaneous time, a patient at state i can have three possibilities:

1) stay at state i; 2) jump to state iþ 1; or 3) jump to state iþ 2. In

addition, the last disease state was set as an absorbing state.

Determine the number of disease states
We randomly split the 3126 participants into a training set (80%)

and a testing set (20%). Using the approach described in the Meth-

ods section, we trained separate CTHMM models with M ranging

from 6 to 12, and applied the models on the testing set to calculate

the log-likelihood. Figure 1 shows the log-likelihood versus M. The

model with 9 states yielded the highest log-likelihood. Therefore, we

built the final HD progression model with 9 states.

Integrated HD progression model
The final HD progression model is referred to as Integrated Hun-

tington’s Disease Progression Model (IHDPM), and we compare it

to the Shoulson and Fahn HD stages.22 The Shoulson and Fahn

stages are defined for patients who have reached their motor onset.

The stages are defined based on the Total Functional Capacity,

which is a functional score in the UHDRS.

We first checked the distributions of the Diagnostic Confidence

Level (DCL) at each discovered state. DCL is one of the most widely

used clinical assessment in HD clinical practice. DCL serves as the

criterion to determine motor onset (ie, clinical diagnosis) in current

clinical practice, despite the fact that these values can be subjective

and suffer from personal biases. The value of DCL ranges from 0 to

4. The time a patient’s DCL level first reaches 4 is regarded as the

time of motor onset. Figure 2 shows the boxplots of DCL in the nine

disease states. According to the distributions of DCL, the nine states

can be separated into three phases. In states 1 and 2, most patients

had not reached motor onset (DCL < 4). Therefore, they are re-

ferred to as the Prodromal states. The majority of patients went

through motor onset during states 3 to 5, so we refer to these as the

Transition states. By the time patients reached state 6, most patients

had already reached motor onset. Therefore, states 6 to 9 are re-

ferred to as the Manifest states. Comparing to the Shoulson

and Fahn stages, IHDPM presents a method to quantify subtle but

significant clinical changes in HDGECs well before motor onset is

recorded. It covers periods both before and after motor diagnosis,

while the Shoulson and Fahn stages only covers periods after motor

diagnosis. Furthermore, IHDPM gives a holistic view of the symp-

tom progression in multiple domains.

Figures 3–5 show the mean values of a selected set of motor,

functional, and cognitive assessments at each disease state. Error

bars are not shown for cleaner presentations. The distances between

disease states on the x-axis are proportional to the expected dura-

tions of the states calculated from the transition densities in the

model (Table 1). Figure 3 shows that motor scores in general in-

crease with the progression of HD, and Figures 4 and 5 show that

functional and cognitive scores decrease with the progression of

HD. Note that higher motor scores indicate more severe motor im-

pairment, whereas higher functional and cognitive scores indicate

better abilities. The trends in the three plots show that conditions in

all three domains in general deteriorate with the progression of HD.

The motor and cognitive scores start to deteriorate from the Pro-

dromal period. Most functional scores stay relatively stable in early

states, except that the Occupation score starts to change as early as

state 2, indicating that the inability to work in an employed HD

population is an early indicator of functional impairment in HD.

For the Transition period, the plots indicate that states 3 and 4

can be distinguished by motor and cognitive changes, with minor

changes in the functional domain. On the other hand, states 4 and 5

are distinguished by the sharp drop in functional scores, while motor

and cognitive scores do not show significant differences. Recall that

previous HD clinical studies and the Shoulson and Fahn stages treat

motor diagnosis as the benchmark event in HD progression, and

rely on the subjective measure DCL to identify motor diagnosis.

IHDPM revealed that patients may undergo complex changes

around the time of motor diagnosis.

During the Manifest period, among the motor scores, changes in

the chorea score (green bold line in Figure 3) deviates from others.

The chorea score reaches its peak at state 7 and stays relatively

Figure 1. Number of disease states versus prediction log-likelihood.

Figure 2. Distributions of diagnostic confidence level at the discovered dis-

ease states.

Table 1. Expected duration of state 1–8 population

State 1 2 3 4 5 6 7 8

Expected duration (years) 9.7 9.2 3.8 2.9 5.8 3.5 3.0 3.2
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Figure 3. Distributions of motor assessments at the discovered disease states.

Figure 4. Distributions of functional assessments at the discovered disease states.
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stable afterwards. This observation is congruent with clinical prac-

tice where motor diagnosis is contingent upon clear and unambigu-

ous signs of chorea. The subsequent attenuation observed in chorea

scores beyond state 7 is also in line with the current understanding

that beyond motor diagnosis chorea becomes less pronounced

(http://web.stanford.edu/group/hopes/cgi-bin/hopes_test/motor-

symptoms/#late-stages). In the cognitive domain, the Mini-

Mental State Exam score stays relatively stable until late in the

Manifest period. The finding is consistent with the knowledge that

dementia is not a prominent symptom in early stages of HD.23

Next, we examine the transitions between the discovered disease

states. Recall that the matrix Q represents instantaneous transition

rates, and the transition probability matrix over time duration d can

be calculated by equation (1). In this section, we present the

transition probability matrix for d equals to 1 year and denote it

as Að1Þ. Figure 6 shows the heatmap of Að1Þ. The ði; jÞth element in

Að1Þ represents the probability that a participant at state i ends up

at state j at the end of 1 year.

Recall that we assumed a second-order forward-chain

progression for HD. Consequently, all elements in the lower triangle

of Að1Þ equal to 0, and they are not marked in Figure 6. Elements

on the diagonal represents the probabilities of staying in the same

state after 1 year, and the upper off-diagonal elements represent the

probabilities of moving to a later state after 1 year. Elements on the

diagonal line are generally larger than the off-diagonal elements, in-

dicating that the majority of participants would stay in the same

state at the end of 1 year, and only a small portion of participants

would move to a more advanced disease state. The observation is

consistent with the knowledge that HD has a long duration. Notice

that the cells ði; jÞ with j > iþ 1 represent the probabilities of

“skipping” one or more disease states, and ending up in more ad-

vanced states at the end of 1 year. Figure 6 demonstrates that most

skipping probabilities are insignificant except during the Transition

period, that is, cells ð3;5Þ and ð4; 6Þ. Together with the observations

Figure 5. Distributions of cognitive assessments at the discovered disease states.

Figure 6. Heatmap of transition probability matrix A(1).
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in the previous paragraph, the two nonignorable skipping probabili-

ties suggested that states 4 and 5 could be two parallel states, and

there could be multiple potential progression pathways during the

transition period. Further investigation of subcohorts with different

progression pathways will be a focus of our future work.

Another advantage of IHDPM compared to the Shoulson and

Fahn stages is that the expected time durations of the disease states

can be calculated. The expected time durations (measured in years)

of states 1–8 are summarized in Table 1. No estimated duration for

the last state is available since it was set to be an absorbing state.

IHDPM infers disease states from HD observations datasets that cu-

mulatively track approximately four decades in HD progression

pathway. The expected duration of the Prodromal period as defined

by these datasets is close to 20 years. It is consistent with the knowl-

edge that subtle changes could happen to patients long before motor

onset. The expected duration of states 6–8 together is about 10 years.

The observation is consistent with the previous literature that the life

expectancy of HD is around 10–15 years after motor diagnosis.24

Individual disease staging
Next, we examine the state sequences of individual patients and

compare with the Shoulson and Fahn stages. Table 2 shows an ex-

ample of a real patient in the integrated HD data. The three columns

are the dates of study visits aligned by the first visit (year), the states

under the IHDPM model, and the Shoulson and Fahn stages. Note

that the Shoulson and Fahn stage only covers period after motor on-

set, we set visits before motor onset as “premanifest” stage. The pa-

tient had a total of 14 visits. According to the Shoulson and Fahn

stages, the first 8 visits are in the “premanifest” stage. However, the

IHDPM model shows the more granular progression from state 2

(Prodromal) to state 3 (Transition). In the 7th and 8th visits, the pa-

tient moved to state 3, indicating that he was getting closer to motor

onset. The patient reached motor onset at the 9th visit, and stayed in

HD1 until the 13th visit. The IHDPM model shows more detailed

progression from state 3 to 5 during this period. In the last visit, the

patient moved to HD2 under the Shoulson and Fahn stages, and the

IHDPM model also shows the progression from state 5 to 6. The ex-

ample demonstrates that the IHDPM model provides a more nu-

anced view about patients’ condition and progression, and can be

used to identify patients who are about to enter motor onset or

stages. Such information can help with personalized care manage-

ment, and could be used as a criterion for subcohort segmentation

and patient recruitment in clinical trials.

DISCUSSION AND CONCLUSION

We describe a framework to build disease progression models based

on observational data. The method was applied to an integrated ob-

servational HD dataset to inform a HD progression model. The

learned disease progression model could 1) provide comprehensive

view of disease states across the entire progression pathway that is

covered by the data; 2) characterize progression of disease as the

transition between disease states; 3) generate expected durations of

disease states for a targeted cohort; 4) infer disease state sequences

for individual patients.

The framework is not limited to HD and could be applied to ob-

servational data of other diseases. However, care should be taken

when applying the framework to other diseases. For instance, we

build a second-degree forward progressing model for HD based on

the knowledge that HD has long progression and has no known

treatment, and the relevant clinical domains were determined based

on data availability and existing knowledge of HD symptoms. Such

choices need to be made with the help of clinical knowledge when

applying the framework to other diseases.

Quantitatively evaluating the performance of developed HD pro-

gression model is difficult due to the lack of a proper gold standard.

For example, the state-of-art Shoulson and Fahn stages only cover

the postmotor diagnosis period, and relies solely on functional

assessments as the criterion to separate the stages. From the discus-

sion of Figures 3–5, we demonstrated that the Shoulson and Fahn

stages cannot sufficiently serve as a gold standard for evaluating dis-

ease course before motor diagnosis. Other widely used clinical

assessments, such as DCL, suffer from biases and noises, and do not

serve as appropriate gold standards. In this study, we use existing

knowledge in the HD clinical literature (eg, life expectancy) and do-

main experts’ feedback (eg, observed pattern in chorea score in the

Manifest period) to qualitatively validate the developed model. Vali-

dating the developed model using independent datasets as well as

translating it into clinical practice will be one of the areas of focus in

our future research.
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