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Simple Summary: The present study demonstrates that a radiolabeling strategy can positively
modify hu5A10′s capacity to bind PSA and complex with the FcRn receptor, which results in
a more homogenous activity distribution in tumors and enhanced therapy efficacy. These new
innovative radiochemistry ideas could potentially decrease relapse of tumors in patients treated with
internalizing antibodies.

Abstract: Background: The humanized monoclonal antibody (mAb) hu5A10 specifically targets and
internalizes prostate cancer cells by binding to prostate specific antigen (PSA). Preclinical evaluations
have shown that hu5A10 is an excellent vehicle for prostate cancer (PCa) radiotheranostics. We
studied the impact of different chelates and conjugation ratios on hu5A10′s target affinity, neonatal
fc-receptor interaction on in vivo targeting efficacy, and possible enhanced therapeutic efficacy.
Methods: In our experiment, humanized 5A10 (hu5A10) was conjugated with DOTA or DTPA at a
molar ratio of 3:1, 6:1, and 12:1. Surface plasmon resonance (SPR) was used to study antigen and
FcRn binding to the antibody conjugates. [111In]hu5A10 radio-immunoconjugates were administered
intravenously into BALB/c mice carrying subcutaneous LNCaP xenografts. Serial Single-photon
emission computed tomography (SPECT) images were obtained during the first week. Tumors were
harvested and radionuclide distribution was analyzed by autoradiography along with microanatomy
and immunohistochemistry. Results: As seen by SPR, the binding to PSA was clearly affected by
the chelate-to-antibody ratio. Similarly, FcRn (neonatal fc-receptor) interacted less with antibodies
conjugated at high ratios of chelator, which was more pronounced for DOTA conjugates. The
autoradiography data indicated a higher distribution of radioactivity to the rim of the tumor for
lower ratios and a more homogenous distribution at higher ratios. Mice injected with ratio 3:1
111In-DOTA-hu5A10 showed no significant difference in tumor volume when compared to mice
given vehicle over a time period of 3 weeks. Mice given a similar injection of ratio 6:1 111In-DOTA-
hu5A10 or 6:1 111In-DTPA-hu5A10 or 12:1 111In-DTPA-hu5A10 showed significant tumor growth
retardation. Conclusions: The present study demonstrated that the radiolabeling strategy could
positively modify the hu5A10′s capacity to bind PSA and complex with the FcRn-receptor, which
resulted in more homogenous activity distribution in tumors and enhanced therapy efficacy.

Keywords: prostate cancer; FcRn; radionuclide therapy; hu5A10; PSA

Cancers 2021, 13, 3469. https://doi.org/10.3390/cancers13143469 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-0287-5367
https://orcid.org/0000-0001-5343-0213
https://doi.org/10.3390/cancers13143469
https://doi.org/10.3390/cancers13143469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13143469
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13143469?type=check_update&version=2


Cancers 2021, 13, 3469 2 of 16

1. Introduction

Prostate cancer (PCa) is the most common cancer in men in the Western world [1].
One of every 8–10 patients diagnosed with PCa will die from this disease. There is cur-
rently no curative treatment for patients with metastatic castration-resistant prostate cancer
(mCRPC), despite an expanding arsenal of targeted agents to treat and monitor the disease.
Existing therapies have limited treatment efficacy with a minor increase in prolonged life
expectancy [2]. As prostate cancer is dependent on androgen receptor (AR) pathway signal-
ing for proliferation, relapse following androgen deprivation therapy relies on reactivation
of the AR or crosstalk between the AR and other signal transduction pathways. Treatments
of prostate cancer are currently focusing on targets downstream of the androgen receptor
(AR) pathway such as prostate-specific membrane antigen (PSMA) [3]. One promising
strategy to manage metastatic PCa is targeted radionuclide therapy [4]. Both lutetium-
177-labeled PSMA-targeted antibodies (J591) and small molecules have shown promising
anti-tumor effects, albeit often transitory and with decreasing therapeutic efficacy upon
re-dosing. It is known that AR signaling results in down-regulation of FOLH1, the gene
coding for PSMA (folate hydrolase 1, FOLH1), and subsequently a lower expression of
PSMA. This has presented a challenge, as it impacts the diagnostic readout for PSMA
ligand positron emission tomography (PET).

Prostate-specific antigen (PSA, kallikrein-related peptidase 3, KLK3) is another inter-
esting target for prostate cancer radiotheranostics downstream of the AR. PSA is uniquely
and abundantly expressed in healthy and malignantly derived prostate tissues, which
decreases risks for false-positive diagnostic findings and side-effects related to uptake in
non-prostatic tissues [5–7]. Several pathological processes, such as malignancy and inflam-
mation, cause retrograde release of free PSA (fPSA) into the blood circulation. When this
occurs, serine protease inhibitors (such as alpha(1)-antichymotrypsin, ACT) immediately
form a stabile complex with PSA by binding to the catalytic cleft. The PSA concentration in
blood is approximately a millionth-fold lower than in prostate tissues.

We have previously reported on development of non-invasive fPSA-targeted radio-
theranostics, including PET-based detection of metastatic disease, assessment of lesion
specific AR-activity, and prostate-tumor-specific delivery of both alpha and beta radionu-
clides [8–10]. Our technology is based on an IgG1 antibody (5A10) that selectively targets
tissue-associated fPSA; 5A10 binds to an epitope specific to the catalytic cleft of fPSA,
which effectively avoids binding to forms in the blood circulation. After binding to fPSA,
5A10 is permanently internalized into the target cell by a neonatal fc-receptor-driven pro-
cess (FcRn) [11]. FcRn is a MHC-I related protein that takes part in the transport of IgGs;
i.e., transcytosis across cells into the circulation via the neonate gut of rodents, or similarly
in humans via the placenta, to the circulation of the prenate. FcRn is also involved in
IgG recycling and its expression in the endothelial cells of the vasculature is believed to
regulate IgG perseverance. Another important location of FcRn expression is the liver,
also believed to be an FcRn-driven site for IgG recycling, with expression in early, late,
or recycling endosomes, rather than in the trans Golgi network or lysosomes. The result
of recycling is a prolonged IgG half-life, an important immunological feature contingent
upon the IgG-type’s fc-portion and its ability to bind to the neonatal fc-receptor. If IgGs are
unable to do so they are mainly catabolized in the liver.

An absolute majority of the radiolabeling methods applied for antibodies rely on
conjugating the chelates to random lysine residues on the antibody. Chelates may become
appended to regions on the fc or the Fab that is crucial to the immunological mechanisms
described above. Edelmann et al. have reported that high conjugation ratios of chelator to
mAb may reduce the affinity of IgGs to FcRn. This is believed to influence the lysosomal
degradation of the antibody, particularly in endothelial cells [12].

It is known from studies of therapeutic antibodies, radioimmunoconjugates, and
antibody drug conjugates that antibodies with high affinity towards their antigen, like
hu5A10, do not necessarily have high therapeutic efficacy, as a high affinity negatively
impacts the penetration into a tumor mass. We have earlier shown that biokinetics is
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heavily dependent on conjugation strategy for small molecules [13–15]. In the current
study, we have evaluated the influence of an increasing number of the p-SCN-CHX-A”-
DTPA or p-SCN-Bn-DOTA chelators per hu5A10 mAb with regards to fPSA binding, FcRn
interaction, tumor penetration, and blood retention. The Auger electron emitter 111In
(mostly emitting Auger electrons with only conversion electrons at 144.5 keV in 8% of
decays, and at 218.6 keV in 5% of decay, and with its therapeutic effect highly dependent on
cellular internalization) was used. We evaluated the efficacy of radionuclide therapy using
111In-hu5A10 to determine if a more homogenous tumor activity and thus absorbed dose
distribution could be achieved through careful modification of the conjugation chemistry.
Furthermore, a study with 177Lu-labeled DTPA-hu5A10 ratio 12:1 was performed in mice
bearing 22RV1 xenografts both to compare the uptake with LNCaP xenografts and to
investigate the feasibility of 177Lu labeling for future therapy studies.

2. Results
2.1. SPR

The affinity (KD) of DTPA-conjugated hu5A10 was lower than that of DOTA-conjugated
hu5A10 (Table 1). Further, a decrease in FcRn binding, measured as the ratio of antibody
to FcRn on the chip, with increasing DOTA-chelation indicated that an increased number
of chelates on the fc-part could reduce fc-FcRn interaction. Kallikrein-related peptidase
2, immobilized in an adjacent flow cell, was used as control, and no binding of the PSA
specific antibody or its immunoconjugates was detected.

Table 1. The impact of different conjugation chelator-to-antibody ratios for two common bifunctional chelators (CHX-A”-
DTPA or DOTA) on the binding kinetics to the target fPSA and FcRn, measured by SPR using a Biacore instrument. The
results showed that labeling under increasing amounts of DOTA chelator affected the FcRn binding the most, whereas the
same was true for fPSA binding with the DTPA chelator.

Antibody
/Immunoconjugate

KOFF
(10−6 S−1)

Global
Fit-Dissociation Curve

(R2)

KON
(106 M−1 S−1)

KD
(10−12 M)

Global
Fit-Association Curve

(R2)

Fcrn Bound
Per Antibody

hu5A10 1.28±0.05 1.00 1.7±0.06 0.75 0.98 1.8
hu5A10-DOTA

3:1 1.56±0.03 0.99 0.68±0.03 2.31 0.98 0.8
6:1 1.13±0.04 0.99 0.53±0.02 2.12 0.98 0.5

12:1 1.24 ± 0.06 0.99 0.42 ± 0.02 2.92 0.98 0.1
hu5A10-DTPA

3:1 2.47 ± 0.07 0.99 0.16 ± 0.01 15.09 0.99 1.9
6:1 2.52 ± 0.08 0.99 0.18 ± 0.01 13.68 0.98 1.9

12:1 2.26 ± 0.10 0.99 0.16 ± 0.01 14.49 0.98 1.7

2.2. Conjugation of hu5A10 and Radiolabeling

The number of DTPA and DOTA molecules per antibody was determined by la-
belling of the (DTPA)X-hu5A10 and (DOTA)X-hu5A10 conjugates with different ratios of
111InCl3/natInCl3 as described above. Results showing the average chelator-to-hu5A10 ratio
for each conjugate are presented in Table 2.

Table 2. Ratio of chelator-to-antibody and radiochemical yield for hu5A10 conjugated with the
chelators CHX-A”-DTPA or DOTA.

Ratio of Chelator-to-Antibody Radiochemical Yield (%)

DOTA-hu5A10
3:1 0.8 ± 0.1 74 ± 3.0 (n = 2)
6:1 1.5 ± 0.7 70 ± 13.0 (n = 2)

12:1 2.4 ± 0.5 77 ± 6.0 (n = 2)
CHX-A”-DTPA-hu5A10

3:1 1.4 ± 0.3 85 ± 4.0 (n = 3)
12:1 9.4 ± 2.1 89 ± 1.3 (n = 3)
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Results from the radiolabeling experiments revealed that it was possible to label
DTPA immunoconjugates with 111In and radiochemical yields exceeding 85%. However,
DOTA conjugates demonstrated significantly lower radiochemical yields, 74% ± 3.0 for
ratio 3:1, and 77% ± 6.0 for ratio 12:1, potentially reflecting the slow kinetic for DOTA
and/or the comparatively fewer chelators per antibody (Table 2). Radiolabeling of the
immunoconjugate CHX-A”-DTPA-hu5A10 with 177Lu was successful, with a radiochemical
yield exceeding 90%.

2.3. In Vivo SPECT/CT Imaging

For DTPA-labeled conjugates, there seemed to be a shift from high liver uptake at
low ratios to low liver uptake at a high ratio (Figure 1A,B). For 111In-DOTA-hu5A10 ratio
3:1 and ratio 6:1, the shift was not as pronounced (Figure 1C,D), which could have been
due to a lower affinity to FcRn for DOTA-hu5A10 compared to DTPA-hu5A10. Instead,
there was a relatively higher tumor uptake (e.g., a tumor-to-liver ratio of 0.61 ± 0.18 for
ratio 3:1 versus 0.82 ± 0.08 for ratio 12:1 at 24 h). Interestingly, at later timepoints (120 h
and 168 h), the 12:1 conjugation ratio had a higher tumor-to-liver ratio than ratio 3:1 for
both DOTA- and DTPA-conjugated hu5A10 (0.78 ± 0.06 versus 1.05 ± 0.19 for DOTA and
0.3 ± 0.1 versus 1.7 ± 0.3 for DTPA). All tumor-to-blood and tumor-to-liver ratios can be
found in Table 3.
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Figure 1. Effect on activity distribution of chelator and chelate-to-antibody ratio. (A) 111In-DTPA-
hu5A10 ratio 3:1 at 48 h and 7 days; (B) 111In-DTPA-hu5A10 ratio 12:1 at 48 h and 7 days; (C)
111In-DOTA-hu5A10 3:1 at 48 h and 5 days; (D) 111In-DOTA-hu5A10 ratio 12:1 at 48 h and 5 days.
There was a large shift in activity distribution for DTPA, but not as large as a difference as was seen
for 111In-DOTA-hu5A10. This can be seen in a clear shift from high liver uptake for ratio 3:1 to high
tumor uptake for ratio 12:1.
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Table 3. The tumor-to-organ ratios for 111In-CHX-A”-DTPA-hu5A10 and 111In-DOTA-hu5A10 with
3:1, 6:1, and 12:1 chelator-to-antibody molar ratios in LNCaP xenografted BALBC-nu mice.

Tumour-to-organ of 111In-DOTA-hu5A10 for different chelator-to-antibody ratios

Blood Liver
Ratio 3 6 12 3 6 12

24 h 0.40 ± 0.06 0.49 ± 0.13 0.54 ± 0.09 0.61 ± 0.18 0.65 ± 0.08 ‡ 0.82 ± 0.08
48 h 0.55 ± 0.10 0.68 ± 0.10 0.56 ± 0.06 0.72 ± 0.13 † 0.96 ± 0.04 0.82 ± 0.15

120 h 0.57 ± 0.07 † 0.93 ± 0.16 0.81 ± 0.18 * 0.78 ± 0.06 † 1.27 ± 0.30 1.05 ± 0.19
Tumour-to-organ of 111In-CHX-A”-DTPA-hu5A10 for different chelator-to-antibody ratios

48 h 1.1 ± 0.3 N/A 0.8 ± 0.5 0.8 ± 0.3 N/A 1.0 ± 0.3
168 h 3.0 ± 2.6 N/A 1.4 ± 0.3 0.3 ± 0.1 N/A §1.7 ± 0.3

* Significant difference (p < 0.05) between 111In-DOTA-hu5A10 3:1 and 111In-DOTA-hu5A10 12:1. † Significant
difference (p < 0.05) between 111In-DOTA-hu5A10 3:1 and 111In-DOTA-hu5A10 6:1. ‡ Significant difference
(p < 0.05) between 111In-DOTA-hu5A10 6:1 and 111In-DOTA-hu5A10 12:1. § Significant difference (p < 0.05)
between 111In-DTPA-hu5A10 3:1 and 111In-DTPA-hu5A10 12:1.

For 111In-DOTA-hu5A10, tumor-to-blood showed an increased ratio with time, and
the conjugation ratios of 6:1 and 12:1 showed the highest values at both 48 h and 5 days
post-injection. The tumor-to liver-ratio was significantly higher for ratio 6:1 compared to
ratio 3:1 at both 48 h and 5 days post-injection. Ratio 6:1 demonstrated the most favorable
tumor-to-organ ratios. At 5 days post-injection, ratio 6:1 had significantly higher tumor-to-
liver ratios compared to ratio 3:1. The chelator-to-antibody ratio 12:1 had significant higher
tumor-to-liver ratio compared to 3:1 at 5 days.

For 111In-DTPA-hu5A10, the tumor-to-blood ratio was higher for the 3:1 conjugation
ratio, whereas the tumor-to-liver showed the opposite, with a significantly higher tumor-
to-liver ratio at 7 days post-injection for ratio 12:1 compared to 3:1.

There was an increased blood concentration for ratio 12:1 compared to ratio 3:1, FcRn
blocking enhanced the blood retention for both ratios, and there was a significant higher
blood retention for ratio 3:1 after FcRn blocking (Figure A1).

2.4. Uptake Study in 22RV1 Xenografts

The tumor-to-liver ratio for 22RV1 xenografts was consistent with LNCaP (1.6± 0.2 vs.
1.7 ± 0.3) at 7 days p.i. The liver uptake for 22RV1 was in agreement with the liver uptake
of LNCaP (4.0 ± 0.8%IA/g vs. 5.6 ± 0.9%IA/g). The tumor uptake was in well agreement
with previously obtained results using 89Zr-labeled 5A10 in 22Rv1 xenografts [8].

2.5. Autoradiography, Immunohistochemistry, and Immunofluorescence

In the 3:1 chelate-antibody ratio group (Figure 2), there was a high radionuclide uptake
in junctions between nodules in the tumor sections. These areas contained binding tissue,
but also a quite dense concentration of viable tumor cells. Additionally, there was moderate
uptake around most of the edges of the tumor nodules that had a denser concentration
of viable tumor cells than the inside of the nodules. The tumor distribution of higher
levels of activity uptake correlated well with a high Ki67 immunohistochemical labeling.
Incongruently, there was scarce Ki67 labeling and almost absent radionuclide uptake at the
center of the tumor nodules. There was also some variation in the degree of correlation
between the radionuclide and Ki67 distribution between individual nodules in the same
tumor sections.

PSA-immunolabelled adjacent sections showed high levels of PSA labeling between
and along the edges of tumor nodules, which correlated with the distribution of the
radionuclide uptake hotspots. However, central areas of the tumor nodules had low levels
of both PSA labeling and radionuclide uptake.

In the 6:1 chelator-to-antibody ratio group, the tumor distribution of radionuclide
uptake coincided with the higher density of viable cells, but also showed variations with
high radionuclide uptake along the edges comprising a mix of viable tumor cells and con-
nective tissue. The intratumoral distribution of high radionuclide uptake and Ki67 labeling
correlated to some degree, but also differed between sections; i.e., between levels of the
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tumors. In central areas, the Ki67 labeling correlated with a lower degree of radionuclide
uptake. There was a corresponding distributional correlation of radionuclide uptake and
PSA labeling, such as in areas along the edges of the tumor nodules, and PSA labeling
correlating with lower radionuclide uptake in central parts of each nodule.

Cancers 2021, 13, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 2. Digital autoradiography and immunohistochemistry of 111In-DOTA-hu5A10 5 days after 
injection. (A) Each representative digital autoradiography image of activity uptake is individually 
scaled from 0 (white) to max (black) signal in that section, demonstrating that the higher the chelate-
to-antibody molar ratio, the more even the activity distribution in the tumor. (B) The same tissue 
sections as in (A) stained with hematoxylin and eosin, demonstrating the tumor histology. (C) Ad-
jacent sections illustrating the distribution of immunohistochemically labelled Ki-67-positive prolif-
erating cells. (D) Adjacent sections to (C), demonstrating the distribution of immunohistochemically 
labelled PSA-positive cells. (E) Immunofluorescence double labeling, illustrating the distributional 
relation of radionuclide uptake primarily in viable tumor regions with PSA-expressing cells (green) 
and Ki67-positive cells (red), rather than in necrotic regions. 

2.6. Therapeutic Efficacy 
Results for the therapeutic efficacy of 111In-DOTA-hu5A10 and 111In-DTPA-hu5A10 

with chelate-to-antibody ratios of 3:1, 6:1, and 12:1 are displayed in Figure 3. Data are 
presented as changes in relative tumor size ratio (log(RTS)), as well as weight changes 
during therapy, for the different therapy groups It can be clearly seen that the therapy 
efficacy was highly dependent of the choice of chelator and chelate-to-antibody molar ra-
tio. 

Figure 2. Digital autoradiography and immunohistochemistry of 111In-DOTA-hu5A10 5 days after
injection. (A) Each representative digital autoradiography image of activity uptake is individually
scaled from 0 (white) to max (black) signal in that section, demonstrating that the higher the chelate-to-
antibody molar ratio, the more even the activity distribution in the tumor. (B) The same tissue sections
as in (A) stained with hematoxylin and eosin, demonstrating the tumor histology. (C) Adjacent
sections illustrating the distribution of immunohistochemically labelled Ki-67-positive proliferating
cells. (D) Adjacent sections to (C), demonstrating the distribution of immunohistochemically labelled
PSA-positive cells. (E) Immunofluorescence double labeling, illustrating the distributional relation
of radionuclide uptake primarily in viable tumor regions with PSA-expressing cells (green) and
Ki67-positive cells (red), rather than in necrotic regions.
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In the 12:1 chelate-to-antibody ratio group, the radionuclide uptake was more evenly
distributed throughout the whole tumor nodule, and there was no correlation between a
higher density of tumor cells and higher uptake. Some sections even showed an inverse
correlation. In addition, there was no correlation between the general pattern of radionu-
clide uptake and Ki67-labeled regions. There was, however, a high degree of distributional
correlation of PSA labeling and radionuclide uptake in most parts of the tumor nodules.

These results showed that a higher chelate-to-antibody ratio provided a more ho-
mogenous radioactivity distribution, which resulted in a more homogenous absorbed dose
distribution, and thereby a larger volume of the tumor receiving a similar therapeutic
absorbed dose.

The immunofluorescence labeling (Figure 2) confirmed the distributional correlation
of hu5A10-targeted, PSA-labeled cells with regions with ongoing cell proliferation (Ki67-
labeled), as indicated by the single labeling in adjacent sections (above). The double
labeling further supported the distributional relation of radionuclide uptake in regions
with viable rather than necrotic cells; i.e., comprising PSA-expressing cells and proliferating
(Ki67-positive) cells. The PSA-labeled cells were not Ki67-positive, and thus comprised
separate cellular populations, located in close vicinity to each other, intermingled in some
regions, or more separated in other regions of the tumors.

The antibody control sections showed no labeling, which supported the specific
binding by both the primary and secondary antibodies to their individual epitopes.

2.6. Therapeutic Efficacy

Results for the therapeutic efficacy of 111In-DOTA-hu5A10 and 111In-DTPA-hu5A10 with
chelate-to-antibody ratios of 3:1, 6:1, and 12:1 are displayed in Figure 3. Data are presented
as changes in relative tumor size ratio (log(RTS)), as well as weight changes during therapy,
for the different therapy groups It can be clearly seen that the therapy efficacy was highly
dependent of the choice of chelator and chelate-to-antibody molar ratio.

1 
 

 
 
Figure 3 

Figure 3. The therapy efficacy for 111In-DOTA-hu5A10 and 111In-DTPA-hu5A10 for chelate-to-antibody ratios of 3:1, 6:1,
and 12:1. (A) Tumor size ratio (log(RTS)) and (B) weight change during therapy. It can be clearly seen that the therapy
efficacy was highly dependent on the chelate-to-antibody molar ratio and chelator.
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Mice injected with circa 18 MBq and chelate-to-antibody ratio 3:1 111In-DOTA-hu5A10
showed no significant difference in tumor volume when compared to mice given vehicle
over a time period of 3 weeks. However, mice given a similar injection of chelate-to-
antibody ratio 6:1 111In-DOTA-hu5A10 or 6:1 111In-DTPA-hu5A10 or 12:1 111In-DTPA-
hu5A10 showed significant tumor growth retardation, as seen in Figure 3A when plotting
the relative tumor size with regards to the day of injection. Further, mice given 111In-DTPA-
hu5A10 showed little to no change in body weight over this time course, indicating that
the treatment was well tolerable (Figure 3B). As the health of mice given only vehicle
deteriorated with increasing tumor burden, as well as for mice given 111In-DOTA-hu5A10,
they subsequently lost weight, and consequently the therapy study was ended about three
weeks post-injection.

3. Discussion

Monoclonal antibody (mAb)-based therapeutics are an established and clinically
successful way of treating cancer [16]. The success or demise of a therapeutic mAb is not
just reliant on its specificity towards the target. Unlike small-protein-based targeting agents,
mAbs are bulky agents and hence are less prone to modifications induced by payload
coupling. However, multiple reports have been published on the influence of conjugation
ratio on mAbs properties [17–21]. Higher chelator-to-antibody conjugation ratios may alter
physical and biological properties of the mAb. One example is the decrease in binding
affinity of the conjugated mAb to the target of interest. Pharmacokinetics may also be
compromised due to modification of the overall charge (isoelectric point) of the mAb, and
increased recognition of the excessively decorated mAb by the reticuloendothelial system
present in the liver and spleen. Further, Edelmann et al. [12] have recently shown, using
affinity chromatography, that conjugation of IgGs with bifunctional chelators, intended
for labeling with radiometals, as well as direct radioiodination, interfered with the FcRn–
antibody binding.

Herein, we have shown that conjugation methodology of hu5A10 had an impact on the
in vitro properties; i.e., both FcRn and PSA binding, of the immunoconjugates, as well as
the in vivo distribution of hu5A10, tumor distribution, and therapy efficacy. The tumor and
tissue uptake and ratios for the two xenograft types LNCaP and 22RV1, with 22RV1 being a
cell line with lower basal expression of fPSA, were similar and in well agreement with pre-
vious results with 89Zr-labled 5A10 in 22Rv1 and LNCaP-AR xenografts [8]. However, we
observed differences in blood and organ concentrations of radioactivity depending on the
conjugation ratio. Interestingly, the intratumoral distribution of the radioimmunoconjugate,
as well as therapy outcome, were highly influenced by the chelator-to-antibody ratio.

The tendency of mAbs and their conjugates to distribute in a non-homogenous fashion
inside the tumor volume, a result of strong interaction with antigen on cells in the outer
layers of tumors, leading to low tumor penetration, is denoted by the binding-site barrier
(BSB) [22]. The BSB is believed to contribute to heterogeneous activity and absorbed dose
distributions with a positive therapy effect in regions with high uptake, but with the risk of
relapse in parts of the tumor that receive sub-therapeutic levels of the antibody or antibody
conjugate [22–26]. 111In-DOTA-hu5A10 conjugated antibodies produced with the higher
conjugation ratio were less prone to bind FcRn and PSA in vitro, and the corresponding
radioimmunoconjugate had a significantly more homogenous intratumoral distribution
as compared to the lower ratios (Figure 2). This could be due to overcoming of the BSB
following reduced binding to PSA, but also potentially because of weaker binding to, and
thus less frequent internalization via, FcRn. All together, this allows increased penetration
into the tumor mass.

However, there are other parameters that affect tumor uptake, specifically, blood
concentration. For DOTA-conjugated hu5A10, which had a significant reduction in the
FcRn binding when increasing the conjugation ratio, there was a higher blood retention
for ratio 12:1 than for ratio 3:1 at 0 h (Figure A1). As diffusion is a main driver of tumor
accumulation [27–30], a higher systemic availability of these radioimmunoconjugates, not
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being shuttled by the FcRn, could be the reason that they ended up with a more beneficial
tumor-to-liver profile than those conjugated at 3:1. This could have implications for both
therapy outcome and absorbed doses to normal organs.

However, blocking of the FcRn receptors in vivo is stoichiometrically unfeasible, but
saturating FcRn did significantly affect the blood retention for ratio 3:1, with increased
blood levels at 0 h, which was not seen for ratio 12:1 (Figure A1). Both DOTA- and DTPA-
conjugated hu5A10, despite the small effect in vitro on FcRn binding with DTPA (Table 1),
had a better tumor-to-liver ratio at higher ratios (Table 3). This indicated that antibodies
with retained FcRn binding were trapped in the liver, an organ with high FcRn expression,
to a larger degree than radioimmunoconjugates with reduced FcRn binding.

For DTPA conjugation, the tumor-to-liver ratio had a fivefold increase for ratio
12:1 compared to ratio 3:1 (Table 3), and similar tendencies were observed earlier for
antibodies with a high number of conjugated chelates [13] (see Table 2). The change in
antibody–antigen kinetics inside the tumor, with a lower affinity to PSA (a KD 10 times
larger than that for DOTA-conjugated antibodies) could lessen the effects of the BSB.
In vitro, binding to the FcRn was mostly retained when conjugating with DTPA (Table 2).
This combined, efficient penetration and clearance via tumor cell internalization could
drive tumor accumulation and lead to the larger differences seen. Mass spectrometry of the
DOTA- and DTPA-labeled antibodies revealed that the difference seen with respect to FcRn
binding between the two chelates could potentially be explained by differences in place-
ment of the chelates, even though the reaction chemistry was the same (unpublished data).

To test the hypothesis that the differences seen herein affected the outcome when
applied to radioimmunotherapy, DOTA-hu5A10 and DTPA-hu5A10 were labeled with
indium-111 (111In). 111In is a radionuclide mostly used for imaging, as it emits two gam-
mas, 171 keV (90%) and 245 keV (94%), and K-X-rays 23–26 keV (82%) when it decays
to cadmium-111. It can also be used for therapy because of its large emission of Auger
electrons (K (119 keV/16%), L (2.7 keV/98%)) and conversion electrons (124–245 keV/15%).
Therapeutic effects have been seen when coupled to internalizing and residualizing target-
ing agents [31]. The short range (nm) of the electrons means that they have no crossfire
effect. Hypothetically, 111In should thus be an excellent radionuclide if one wants to reveal
the differences in outcome one could expect from heterogeneous and variable uptake. Our
results showed that there seemed to be such an effect (Figure 3). The change in uptake as
ratio of tumor-to-blood or directly in activity concentration seemed to be reflected in the
therapeutic outcome. Surprisingly, there were no significant differences between the two
different chelates. The bystander effect could be a (probably minor) explanation for the
observed therapy effect, in which a more homogenous activity distribution, probably not
targeting all cells but cells in close vicinity, could lead to a bystander effect.

There are several other factors that could affect the distribution in the tumors, such
as complexation or charge of the immunoconjugate. When comparing the biokinetics for
DTPA-hu5A10 ratio 12:1 with previously published biokinetic results for DTPA-hu5A10 ra-
tio 3:1, we could not find any differences in macroscopic tumor uptake—thus the tumor
mean absorbed dose might not be the reason for the better therapy effect. The main objec-
tive of this study was to show that conjugation ratios altered the intratumoral distribution.
We further used 111In as proof of concept for any effect on the therapy efficacy and as
an indicator of internalization of the antibody. As explained above, the Auger electrons
emitted from indium-111 can only have a therapeutic effect if it is in close proximity to
the DNA. We have previously shown that antibodies that bind to secreted antigens as
PSA are internalized into the cell due to complexation with FcRn [11]. Here, we used
two conjugation strategies, one leading to reduced FcRn binding and one to reduction in
binding of PSA, as shown in vitro. Both DOTA- and DTPA-conjugated hu5A10 performed
better when conjugated at higher ratios. This could be due to overcoming the binding
site barrier (lower affinity to PSA or FcRn). Collectively, the results herein will provide a
radioconjugate with favorable characteristics for further radioimmunotherapy studies.
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4. Materials and Methods
4.1. SPR

The binding interaction between the hu5A10 immunoconjugates, recombinant PSA
(Innovagen AB, Lund, Sweden, DiaProst, Lund, Sweden), and FcRn was studied by surface
plasmon resonance (SPR) (Biacore 2000 system, GE Healthcare, Boston, USA). Human
kallikrein-related peptidase 2 (hK2, KLK2) was used as control for PSA. Antigens were im-
mobilized on a CM4 research grade chip (GE Healthcare) using a covalent amine coupling
kit (GE Healthcare). Different concentrations (100, 50, 25, 12.5, and 10 nM) of the conjugated
and unconjugated variants of antibody were flown over the immobilized channels with a
flow rate of 30 µL/min. The association phase of the immunoconjugate was followed for
4–5 min, and the dissociation phase was extended up to 480 min. To determine the binding
of FcRn to the hu5A10-PSA complex, 10 min into the dissociation phase, 40 nM FcRn
(Acrobiosystems Inc, Newark, DE, USA) in 10 mM maleic acid (pH 6.0) buffer was flown
over the chip, containing the coupled antigen and bound antibody, for 3 min. Thereafter
the dissociation phase was resumed. The output signals generated by the blanks were sub-
tracted from the other flow cells. The affinity of each immunoconjugate was calculated by
fitting a bi-exponential function to the binding and the dissociation curves. FcRn binding
was evaluated by calculating the number of FcRn bound per antibody on the chip at the
end of FcRn injection. Response units (RUs) corresponding to bound antibody on the chip
just before the end of FcRn injection were calculated by intrapolation using the dissociation
phase before and after the injection of FcRn. This was possible because of the highly pH
dependent nature of FcRn binding. Knowing the RUs for both the antibody and FcRn at
the end of the FcRn injection, as well as the molar mass of both molecules, the ratio of FcRn
to antibody could then be calculated based on the assumption that RUs directly correlated
to the mass on the chip.

4.2. Conjugation of hu5A10 and Radiolabeling

Humanized 5A10 (hu5A10) (Innovagen AB, Lund and Diaprost) was conjugated
with either CHX-A”-DTPA (Macrocyclics, Plano, TX, USA) or p-SCN-Bn-DOTA (DOTA)
(Macrocyclics) at a 3:1, 6:1, or 12:1 chelator-to-antibody molar ratio. The conjugates were
stored at −8 ◦C and used/labeled within the same day of conjugation (see Appendix A).

Labeling efficiency of the radiolabeled conjugates was evaluated using a previously
established thin-layer chromatography protocol, which utilized a phosphor imager system
and Optiquant software (all details are given in the Appendix A).

The average number of chelators conjugated to each mAb was determined according
to Mears et al. [32]. In brief, the immunoconjugate was mixed with a 111InCl3/natInCl3
solution consisting of known concentrations of non-radioactive (Sigma-Aldrich, Saint-
Louis, MO, USA) and radioactive (111In) indium. The radioactive yield was, together
with the assumption of a 1:1 interaction between indium atoms and chelators, utilized for
calculating the number chelates attached to each mAb.

4.3. In Vivo SPECT/CT Imaging

All animal experiments were performed in accordance with national legislation on
laboratory animal protection and permitted by the Local Ethics Committee for Animal
Research at Lund University (ethical permission number 4350-20).

A 200 µL 1:1 cell suspension of Matrigel (Corning) and 5–7× 106 LNCaP cells (Prostate
Carcinoma cells Clone FGC ATCC®®CRL-1740, Lot 5972254), Rv22 in RPMI 1640, were
unilaterally implanted subcutaneously (s.c.) on the right hind leg of male BALB/cnu/nu
mice. Animals were regularly monitored for tumor growth, body weight, and physical
signs of illness. If the tumor diameter reached >15 mm, or if a severe decline in general
condition was noticed, animals were immediately euthanized.

The SPECT imaging was performed using a preclinical SPECT/CT (see Appendix A).
To specifically evaluate if saturating the FcRn receptor would affect the blood retention

of 111In-p-SCN-Bn-DOTA-hu5A10 at ratios 3:1 and 12:1, 800 µg of Fc fragment (ab90285,
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Native Human IgG FC fragment protein, GR3276085, Abcam, Cambridge, United Kingdom)
was administered by intraperitoneal injection directly before the radiotracer was injected
(30µg per mouse, i.v, 10–13 MBq) in LNCaP-bearing BALB/cnu/nu mice (n = 3–4). Each
animal was anesthetized at 0 and 48 h and 5 days post-injection, and SPECT imaging was
conducted. Activity uptake in the heart was quantified as a percentage of the injected
activity minus activity remaining in the tail.

To specifically evaluate the effect of FcRn blocking on blood retention of 111In- p-SCN-
Bn-DOTA-hu5A10 at ratios 3:1 and 12:1, 800 µg of Fc fragment (ab90285, Native Human
IgG FC fragment protein, GR3276085, Abcam, Cambridge, UK)) was administered by
intraperitoneal injection directly before the radiotracer was injected (30µg per mouse, i.v,
10–13 MBq) in LNCaP-bearing BALB/cnu/nu mice (n = 3–4). Each animal was anesthetized
at 0 and 48 h and 5 days post-injection, and SPECT imaging was conducted. Activity uptake
in the heart was quantified as a percentage of the injected activity minus activity remaining
in the tail.

4.4. Uptake Study

22Rv1 prostate cancer cells (4 × 106 cells/mouse) were implanted in the right hind leg
of 6–8-week-old male Balb/c nu/nu immunodeficient mice (Janvier, France). Tumors were
allowed to grow for 3–4 weeks. On the day of the experiment, the average mice weight
was 25.7 ± 1.5 g. Four mice were intravenously injected with 100 µL of 177Lu-hu5A10
(20 µg in 2%BSA-PBS, 130 kBq, 0.13 mM EDTA) in the tail vein. Seven days p.i., mice
were euthanized using an overdose of anesthesia (20 µL of Ketalar Rompun per gram
body weight: Ketalar (50 mg/mL; Pfizer, New-York, NY, USA), 10 mg/mL; Rompun,
(20 mg/mL; Bayer, Leverkusen, Germany), followed by heart puncture and exsanguination
with a syringe. Liver and tumor were collected and weighed, and their radioactivity
concentration in the respective tissue was measured in a NaI(Tl) automated well counter
(PerkinElmer, Waltham, MA, USA).

4.5. Autoradiography, Immunohistochemistry, and Immunofluorescence

Intra-tumoral distribution of radioactivity was studied using digital autoradiography.
Specifically, cryosections (10 µm thickness) adjacent to sections used for immunohistochem-
ical labeling were imaged using a Biomolex 700 Imager (Biomolex AS, Oslo, Norway) [33].
Corrections were applied for dead or miscalibrated detector strips and images recon-
structed after a minimum of 1440 min of measurement. After autoradiography, sections
were stained with hematoxylin and eosin and imaged using an automated whole slide
imager (Carl Zeiss AG, Oberkochen, Germany).

Cryosections (10 µm) for PSA or Ki67 antibody single labeling was used to visualize
their binding sites by means of HRP, DAB/H2O2-based reactions of adjacent sections.
Whole labeled sections were slide scanned (Hammatsu). For simultaneous visualization of
PSA and Ki67, tumor sections were incubated with a cocktail of primary and secondary
species specific antibodies conjugated with fluorophores with separate emission spectra. A
nuclear counterstain (4′,6-diamidino-2-phenylindole, DAPI) was used to visualize the cell
nuclei, and confocal laser scanning microscopy (LSM 800, Zeiss, Germany) was used for
the visualization of antibody binding sites. Details for PSA and Ki67 single immunohisto-
chemistry and double immunofluorescence labeling are given in the Appendix A.

4.6. Therapeutic Efficacy

To evaluate the effect of chelate and chelate-to-antibody ratio, LNCaP tumor-bearing
mice (n = 3–4 per group) were administered a single injection of 50 µg radiolabeled
immunoconjugate of activities of 18 MBq with 111In-DOTA-hu5A10 chelate-to-antibody
ratios of 3:1 and 6:1, or 111In-DTPA-hu5A10 with chelate-to-antibody ratios of 6:1 and 12:1.
Syringe activity was measured before and after injection (Atom Lab 500 Dose Calibrator,
Biodex Medical Systems Inc., Shirley, NY) to assure true injected activity. Body weight and
tumor volume (external caliper measurement, V = 0.5 × length × width × width) were
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monitored 2–3 times per week for three weeks. Relative tumor size (RTS) was calculated
as the natural logarithm of the fractional increase in volume relative to the tumor size at
treatment start (logarithm of the relative tumor size (log(RTS)).

5. Conclusions

The present study demonstrated that the labeling method of choice had a substantial
influence on binding affinity to the antigen, FcRn interaction, blood retention, tumor pene-
tration, and internalization. Together, these parameters significantly affected the therapy
outcome of an Auger-emitting radionuclide, emphasizing the importance of internaliza-
tion and homogenous activity/absorbed dose distribution in tumors. Our results were
especially interesting with regard to the interaction of the immunoconjugate with the FcRn,
since this is a common route for internalization of antibodies, and also seems to influence
the relationship between liver and tumor accumulation. Optimizing this feature further
could improve the future use of hu5A10 in radiotheranostic applications.

6. Patents

Sven-Erik Strand, and David Ulmert are shareholders of DiaProst (Lund, Sweden),
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Appendix A

Appendix A.1. Method

Appendix A.1.1. Conjugation

Humanized 5A10 (hu5A10) (Innovagen AB, Lund; 0.72 mg/mL in PBS pH 7.4, Lot No:
90475.24) was conjugated with either CHX-A”-DTPA (Macrocyclics) or p-SCN-Bn-DOTA
(DOTA) (Macrocyclics) at a 3:1, 6:1, and 12:1 chelator-to-antibody molar ratio. Conjugation
was done at room temperature in 0.07 M sodium borate buffer pH 9.2 (Sigma Aldrich,
St Louis, MO, USA) and terminated after 8 h by size-exclusion chromatography on a
NAP-5 column, equilibrated with 20 mL 0.2 M pH 5.5 ammonium acetate buffer (Sigma
Aldrich). The immunoconjugates were eluted with 1 mL of the same ammonium aetate
buffer. Aliquots were kept, if stored, at −20 ◦C before labeling.

https://portal.research.lu.se/portal/sv/organisations-units/systemic-radiation-therapy(922e7906-fc50-4731-ad1c-579419b2212e).html
https://portal.research.lu.se/portal/sv/organisations-units/systemic-radiation-therapy(922e7906-fc50-4731-ad1c-579419b2212e).html
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Appendix A.1.2. Labeling Chemistry

The hu5A10 conjugated to CHX-A”-DTPA or p-SCN-Bn-DOTA, in a 3:1, 6:1 and
12:1 chelator-to-hu5A10 ratios were labeled with 111In (indium-111). 111InCl3 (20–30 MBq,
Mallinkrodt Medical) was added to the respective conjugate diluted in 0.2M ammonium ac-
etate buffer, pH 5.5, and the mixture was vortexed carefully. Reaction vials were incubated
at 38 ◦C for 1 h (CHX-A”-DTPA-hu5A10) or 2 h (DOTA-hu5A10). The labeling efficiency of
all radiolabeled conjugates was monitored using instant thin-layer chromatography strips,
eluted with 0.2 M citric acid (Sigma Aldrich) and quantified with a Phosphor Imager system
with Optiquant software (Perkin Elmer, Wellesley, MA, USA). All radiolabeled conjugates
were purified from non-bound 111InCl3 using a size-exclusion NAP-5 column (Thermo
Fischer Scientific, Waltham, MA, USA) equilibrated with PBS (Hyclone). For labeling
with the β-emitter 177Lu (Curium, Stockholm), 30–50 µg of the conjugate was mixed with
177LuCl3 (15–25 MBq) and incubated at 38 ◦C with continuous vortexing for 30 min. There-
after, the radiolabeled conjugate was purified using AMICON Ultra-0.5-centrifugal filter
devices with a MWCO 30,000 Da (Millipore, Burlington, MA, USA). Radiochemical yield
and purity of the radioconjugate was determined using silica-impregnated ITLC strips
(150–771 DARK GREEN Tec-Control Chromatography strips, Biodex Medical Systems)
eluted with 0.2 M citric acid and measured using the Cyclone Storage Phosphor System
(PerkinElmer, Waltham, MA, USA).

Appendix A.1.3. In Vivo SPECT/CT Imaging

The SPECT imaging was performed using a preclinical SPECT/CT scanner (NanoSPECT/CT
Plus, Mediso; Budapest, Hungary) equipped with the NSP-106 multipinhole mouse collimator
used with energy windows of 20% centered over 172, and 245-keV energy peaks of 111In.
Each imaging session was started by performing a short CT scan to acquire anatomical
information. This was then followed by a 30–50 min SPECT scan for each animal. The scan
data was reconstructed to a 3D image using HiSPECT software (Scivis GmbH, Göttingen,
Germany) using standard settings. Images were analyzed using VivoQuant software
(inviCRO Imaging Services and Software, Boston, USA), drawing regions by hand around
the heart, the liver, and the tumor. Activity in blood (heart), liver, and tumor was minus
anything remaining in the tail due to non-perfect injections.

The animals were anesthetized with isoflurane and restrained in a plastic tube with
continuous administration of isoflurane. Vital signs were continuously monitored dur-
ing imaging.

Appendix A.1.4. PSA and Ki67 Immunohistochemistry

Following SPECT imaging of 111In-DOTA-hu5A10 ratio 3:1, 6:1, and 12:1 groups,
tumor tissue was collected from mice and frozen in cryomount (Histolab Products AB,
Stockholm, Sweden) on dry ice, and the tissue was cryosectioned at 10 µm thickness.

Prior to immunohistochemistry, the cryosections were dried for 15 min at 37 ◦C.
Sections were post-fixed in 4% paraformaldehyde (PFA). Tissues were then quenched for
10 min in 0.3% H2O2 (in PBS) at room temperature (RT), rinsed in PBS (3× 3 min). Blocking
was performed via incubation of sections in PBS containing 1% BSA and 0.05% Triton X-100
(PBSBSATX) for 30 min at RT.

Sections were then incubated with rabbit monoclonal primary antibodies made against
PSA (ab240982, Abcam diluted 1:100–1:400) or against Ki67 (Clone SP6, Thermo Fischer
Scientific) diluted for 90 or 120 min, respectively, at RT. Primary antibody specificity was
tested by omitting the primary antibody incubation from the protocol in parallel sections
to those incubated with primary antibodies.

Sections were rinsed in PBS (3× 3 min) and incubated with HRP-conjugated secondary
antibodies made in goat (Dako Cytomation, DAKO, DK, Agilent Technologies, or Jackson
ImmunoResearch Laboratories, Inc., West Grove, PA), for 30 min at RT. All antibody
incubations were performed in a moisture chamber. Following rinses in PBS (3 × 3 min),
the immunoreaction was performed in a solution containing di-aminobenzidine (DAB,
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0.5% in PBS) and H2O2 (0.1%) for 10 min at RT. After rinses in PBS (3× 3 min) and distilled
water, sections were counterstained with Mayers hematoxylin and then rinsed in distilled
water. Sections were dehydrated in a graded alcohol serial (70–99.9%, 2 × 2) ended with
Xylen (100% 2 × 5 min), and were then mounted and cover-slipped in Pertex (Histolab,
Gtbg, Sweden).

The labeled whole sections were slide scanned using an automated whole slide imager
(Hamamatsu NanZoomer S60, Hamamatsu, Japan).

Appendix A.1.5. Double Immunofluorescence Labeling

For the immunofluorescence, double staining of PSA and Ki67 sections (10 µm) were
post-fixed in 4% PFA. Following incubation with blocking in PBSBSATX and rinses in PBS
(3 × 3 min), sections were incubated with a mixture of primary antibodies, the monoclonal
PSA made in rabbit used for immunohistochemistry and a Ki67 antibody made in rat
(Invitrogen #14-5698-80). Antibody specificity was tested by omitting the primary antibody
incubation from the protocol in parallel sections to those incubated with primary antibodies.
Sections were then rinsed in PBS (3 × 3 min), incubated with a mixture of fluorophore-
conjugated secondary antibodies (Jackson ImmunoResearch, West Grove, PA, USA) made
in donkey against rabbit and rat IgGs (conjugated with AF488 or Rodamine RX, diluted
1:200 in PBSBSATX), for 30 min at RT. Antibody incubations were performed in a moisture
chamber. Sections were then incubated in 4′,6-diamidino-2-phenylindole (DAPI) and rinsed
in PBS, followed by mounting in anti-fade solution (ab104135, Abcam, Cambridge, UK).

Confocal laser scanning analyses of the fluorescence labeling were performed using a
Zeiss LSM 800 microscope (Zeiss, Germany) with a x20 magnification lens.

Appendix A.2. Results

Tumor and Normal Organ Uptake

Figure A1 shows the blood retention for 111In-DOTA-hu5A10 with 3:1 and 12:1 chelator-
to-antibody molar ratios obtained from SPECT imaging performed at 0 h, 48 h, and 5 days
post-injection. The results for FcRn blocking are also included. As can be seen, there was an
increased blood concentration for ratio 12:1 compared to ratio 3:1. FcRn blocking enhanced
the blood retention for both ratios, and there was a significant higher blood retention for
ratio 3:1 after FcRn blocking. The blood, liver, and tumor uptake for 111In-CHX-A”-DTPA-
hu5A10 with 3:1 and 12:1 chelator-to-antibody molar ratios and 111In-DOTA-hu5A10 with
3:1, 6:1, and 12:1 chelator-to-antibody molar ratios in LNCaP xenografted BALBC-nu mice
can be seen in Table A1.
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111IN-DOTA-HU5A10 
 Blood Liver Tumor 

RATIO 3 6 12 3 6 12 3 6 12 
0 17.5 ± 2.0 20.4 ± 3.6 25.0 ± 4.0 15.5 ± 4.5 19.5 ± 3.91 11.4 ± 1.0 N/A N/A N/A 

24 H 10.6 ± 0.5 9.7 ± 1.2 9.0 ± 1.5 7.3 ± 1.3 7.0 ± 0.6 5.9 ± 1.1 4.3 ± 0.8 4.6 ± 0.7 4.8 ± 0.7 
48 H 9.4 ± 1.5 8.8 ± 1.5 11.1 ± 1.5 7.5 ± 1.5 6.1 ± 0.8 7.8 ± 1.7 5.1 ± 1.0 5.6 ± 0.9 6.2 ± 0.4 
120 H 7.2 ± 1.0 7.5 ± 0.4 8.1 ± 1.2 5.9 ± 0.4 5.6 ± 0.4 6.1 ± 0.6 4.6 ± 0.7 6.6 ± 1.5 6.3 ± 0.4 

111IN-DTPA-HU5A10 
 Blood Liver Tumor 

RATIO 3 12 3 12 3 12 
48 H 9.5 ± 1.5 9.0 ± 2.0 13.9 ± 3.2 7.5 ± 0.9 10.4 ± 1.2 7.3 ± 1.9 

168 H 2.5 ± 1.5 7.0 ± 1.1 17.8 ± 2.8 5.6 ± 0.9 5.4 ± 2.1 9.3 ± 0.9 
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Figure A1. Blood retention for 111In-DOTA-hu5A10 with 3:1 and 12:1 chelate-to-antibody molar
ratios. The results for FcRn blocking are also included. As can be seen, there was an accelerated
blood clearance observed for ratio 3:1. FcRn blocking enhanced the blood retention for both ratios.
Results from SPECT imaging performed at 0, 2, and 5 days post-injection.
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Table A1. The biodistribution for 111In-CHX-A”-DTPA-hu5A10 and 111In-DOTA-hu5A10 with 3:1, 6:1, and 12:1 chelator-to-
antibody molar ratios in LNCaP xenografted BALBC-nu mice.

111IN-DOTA-HU5A10

Blood Liver Tumor

RATIO 3 6 12 3 6 12 3 6 12

0 17.5 ± 2.0 20.4 ± 3.6 25.0 ± 4.0 15.5 ± 4.5 19.5 ± 3.91 11.4 ± 1.0 N/A N/A N/A

24 H 10.6 ± 0.5 9.7 ± 1.2 9.0 ± 1.5 7.3 ± 1.3 7.0 ± 0.6 5.9 ± 1.1 4.3 ± 0.8 4.6 ± 0.7 4.8 ± 0.7

48 H 9.4 ± 1.5 8.8 ± 1.5 11.1 ± 1.5 7.5 ± 1.5 6.1 ± 0.8 7.8 ± 1.7 5.1 ± 1.0 5.6 ± 0.9 6.2 ± 0.4

120 H 7.2 ± 1.0 7.5 ± 0.4 8.1 ± 1.2 5.9 ± 0.4 5.6 ± 0.4 6.1 ± 0.6 4.6 ± 0.7 6.6 ± 1.5 6.3 ± 0.4
111IN-DTPA-HU5A10

Blood Liver Tumor

RATIO 3 12 3 12 3 12

48 H 9.5 ± 1.5 9.0 ± 2.0 13.9 ± 3.2 7.5 ± 0.9 10.4 ± 1.2 7.3 ± 1.9

168 H 2.5 ± 1.5 7.0 ± 1.1 17.8 ± 2.8 5.6 ± 0.9 5.4 ± 2.1 9.3 ± 0.9

References
1. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/home (accessed on 3 March 2021).
2. Heidenreich, A.; Pfister, D.; Merseburger, A.; Bartsch, G.; German Working Group on Castration-Resistant Prostate Cancer.

Castra-tion-resistant prostate cancer: Where we stand in 2013 and what urologists should know. Eur. Urol. 2013, 64, 260–265.
[CrossRef]

3. Behr, S.C.; Aggarwal, R.; Van Brocklin, H.F.; Flavell, R.R.; Gao, K.; Small, E.J.; Blecha, J.; Jivan, S.; Hope, T.A.; Simko, J.P.; et al.
Phase I Study of CTT1057, an 18F-Labeled Imaging Agent with Phosphoramidate Core Targeting Prostate-Specific Membrane
Antigen in Prostate Cancer. J. Nucl. Med. 2019, 60, 910–916. [CrossRef]

4. Kratochwil, C.; Haberkorn, U.; Giesel, F.L. Radionuclide Therapy of Metastatic Prostate Cancer. Semin. Nucl. Med. 2019, 49,
313–325. [CrossRef]

5. Proteinatlas The Human Protein Atlas. Available online: https://www.proteinatlas.org (accessed on 19 December 2019).
6. Lilja, H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J. Clin. Investig. 1985,

76, 1899–1903. [CrossRef]
7. Christensson, A.; Laurell, C.-B.; Lilja, H. Enzymatic activity of prostate-specific antigen and its reactions with extracellular serine

proteinase inhibitors. JBIC J. Biol. Inorg. Chem. 1990, 194, 755–763. [CrossRef]
8. Ulmert, D.; Evans, M.J.; Holland, J.; Rice, S.L.; Wongvipat, J.; Pettersson, K.; Abrahamsson, P.-A.; Scardino, P.T.; Larson, S.M.; Lilja,

H.; et al. Imaging Androgen Receptor Signaling with a Radiotracer Targeting Free Prostate-Specific Antigen. Cancer Discov. 2012,
2, 320–327. [CrossRef] [PubMed]

9. Vilhelmsson-Timmermand, O.; Santos, E.; Thorek, D.L.; Axelsson, S.E.; Bjartell, A.; Lilja, H.; Larson, S.; Strand, S.-E.; Tran,
T.A.; Ulmert, D. Radiolabeled antibodies in prostate cancer: A case study showing the effect of host immunity on antibody
bio-distribution. Nucl. Med. Biol. 2015, 42, 375–380. [CrossRef] [PubMed]

10. Veach, D.R.; Storey, C.M.; Lückerath, K.; Braun, K.; von Bodman, C.; Lamminmäki, U.; Kalidindi, T.; Strand, S.E.; Strand, J.;
Altai, M.; et al. PSA-Targeted Alpha-, Beta-, and Positron-Emitting Immunotheranostics in Murine Prostate Cancer Models and
Nonhuman Primates. Clin. Cancer Res. 2021, 27, 2050–2060.

11. Thorek, D.L.J.; Watson, P.A.; Lee, S.-G.; Ku, A.T.; Bournazos, S.; Braun, K.; Kim, K.; Sjöström, K.; Doran, M.G.; Lamminmäki, U.;
et al. Internalization of secreted antigen-targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen
receptor axis. Sci. Transl. Med. 2016, 8, 167–367. [CrossRef] [PubMed]

12. Edelmann, M.R.; Kettenberger, H.; Knaupp, A.; Schlothauer, T.; Otteneder, M.B. Radiolabeled IgG antibodies: Impact of various
labels on neonatal Fc receptor binding. J. Label. Compd. Radiopharm. 2019, 62, 751–757. [CrossRef]

13. Grunberg, J.; Jeger, S.; Sarko, D.; Dennler, P.; Zimmermann, K.; Mier, W.; Schibli, R. DOTA-Functionalized Polylysine: A High
Number of DOTA Chelates Positively Influences the Biodistribution of Enzymatic Conjugated Anti-Tumor Antibody chCE7agl.
PLoS ONE 2013, 8, e60350. [CrossRef] [PubMed]

14. Strand, J.; Honarvar, H.; Perols, A.; Orlova, A.; Selvaraju, R.K.; Karlstrom, A.E.; Tolmachev, V. Influence of macrocyclic chelators
on the targeting properties of 68Ga-labeled synthetic affibody molecules: Comparison with 111In-labeled coun-terparts. PLoS
ONE 2013, 8, e70028. [CrossRef]

https://gco.iarc.fr/today/home
http://doi.org/10.1016/j.eururo.2013.05.021
http://doi.org/10.2967/jnumed.118.220715
http://doi.org/10.1053/j.semnuclmed.2019.02.003
https://www.proteinatlas.org
http://doi.org/10.1172/JCI112185
http://doi.org/10.1111/j.1432-1033.1990.tb19466.x
http://doi.org/10.1158/2159-8290.CD-11-0316
http://www.ncbi.nlm.nih.gov/pubmed/22576209
http://doi.org/10.1016/j.nucmedbio.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25577038
http://doi.org/10.1126/scitranslmed.aaf2335
http://www.ncbi.nlm.nih.gov/pubmed/27903863
http://doi.org/10.1002/jlcr.3793
http://doi.org/10.1371/journal.pone.0060350
http://www.ncbi.nlm.nih.gov/pubmed/23565233
http://doi.org/10.1371/journal.pone.0070028


Cancers 2021, 13, 3469 16 of 16

15. Altai, M.; Strand, J.; Rosik, D.; Selvaraju, R.K.; Karlström, A.E.; Orlova, A.; Tolmachev, V. Influence of Nuclides and Chelators on
Imaging Using Affibody Molecules: Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with
68Ga and 111In via Maleimido Derivatives of DOTA and NODAGA. Bioconjugate Chem. 2013, 24, 1102–1109. [CrossRef]

16. Bartholomä, M.D. Radioimmunotherapy of solid tumors: Approaches on the verge of clinical application. J. Label. Compd.
Radiopharm. 2018, 61, 715–726. [CrossRef]

17. Knogler, K.; Grünberg, J.; Novak-Hofer, I.; Zimmermann, K.; Schubiger, P.A. Evaluation of 177Lu-DOTA-labeled aglycosylated
monoclonal anti-L1-CAM antibody chCE7: Influence of the number of chelators on the in vitro and in vivo properties. Nucl. Med.
Biol. 2006, 33, 883–889. [CrossRef] [PubMed]

18. Paik, C.H.; Murphy, P.R.; Eckelman, W.C.; Volkert, W.A.; Reba, R.C. Optimization of the DTPA mixed-anhydride reaction with
antibodies at low concentration. J. Nucl. Med. 1983, 24, 932–936.

19. Kukis, D.L.; DeNardo, G.L.; De Nardo, S.J.; Mirick, G.R.; Miers, L.A.; Greiner, D.P.; Meares, C.F. Effect of the extent of chelate
substitution on the immunoreactivity and biodistribution of 2IT-BAT-Lym-1 immunoconjugates. Cancer Res. 1995, 55, 878–884.
[PubMed]

20. Shin, I.S.; Lee, S.-M.; Kim, H.S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K.T.; Hassan, R.; Campo, M.F.; Albone, E.F.; et al. Effect
of chelator conjugation level and injection dose on tumor and organ uptake of 111In-labeled MORAb-009, an anti-mesothelin
antibody. Nucl. Med. Biol. 2011, 38, 1119–1127. [CrossRef]

21. Pham, D.T.; Kaspersen, F.M.; Bos, E.S. Electrophoretic Method for the Quantitative Determination of a Benzyl-DTPA Ligand in
DTPA Monoclonal Antibody Conjugates. Bioconjugate Chem. 1995, 6, 313–315. [CrossRef]

22. Fujimori, K.; Covell, D.G.; Fletcher, J.E.; Weinstein, J.N.; Fujimori, K.; Covell, D.G.; Fletcher, J.E.; Weinstein, J.N. A modeling
analysis of monoclonal antibody percolation through tumors: A binding-site barrier. J. Nucl. Med. 1990, 31, 1191–1198.

23. Saga, T.; Neumann, R.D.; Heya, T.; Sato, J.; Kinuya, S.; Le, N.; Paik, C.H.; Weinstein, J.N. Targeting cancer micrometastases with
monoclonal antibodies: A binding-site barrier. Proc. Natl. Acad. Sci. USA 1995, 92, 8999–9003. [CrossRef] [PubMed]

24. Tsumura, R.; Manabe, S.; Takashima, H.; Koga, Y.; Yasunaga, M.; Matsumura, Y. Influence of the dissociation rate constant on the
intra-tumor distribution of antibody-drug conjugate against tissue factor. J. Control. Release 2018, 284, 49–56. [CrossRef]

25. Miao, L.; Newby, J.M.; Lin, C.M.; Zhang, L.; Xu, F.; Kim, W.Y.; Forest, M.G.; Lai, S.K.; Milowsky, M.I.; Wobker, S.E.; et al. The
Binding Site Barrier Elicited by Tumor-Associated Fibroblasts Interferes Disposition of Nanoparticles in Stroma-Vessel Type
Tumors. ACS Nano 2016, 10, 9243–9258. [CrossRef]

26. Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity
restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001, 61, 4750–4755. [PubMed]

27. Stylianopoulos, T.; Jain, R.K. Design considerations for nanotherapeutics in oncology. Nanomed.: Nanotechnol., Biol. Med. 2015, 11,
1893–1907. [CrossRef] [PubMed]

28. Thurber, G.; Schmidt, M.M.; Wittrup, K.D. Factors determining antibody distribution in tumors. Trends Pharmacol. Sci. 2008, 29,
57–61. [CrossRef]

29. Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592. [CrossRef]
30. Xenaki, K.T.; Oliveira, S.; Bergen En Henegouwen, P.M. Antibody or Antibody Fragments: Implications for Molecular Imaging

and Targeted Therapy of Solid Tumors. Front. Immunol. 2017, 8, 1287. [CrossRef]
31. Ku, A.; Facca, V.J.; Cai, Z.; Reilly, R.M. Auger electrons for cancer therapy–A review. EJNMMI Radiopharm. Chem. 2019, 4, 1–36.

[CrossRef]
32. Meares, C.F.; McCall, M.J.; Reardan, D.T.; Goodwin, D.A.; Diamanti, C.I.; McTigue, M. Conjugation of antibodies with bi-

functional chelating agents: Isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal
ions. Anal. Biochem. 1984, 142, 68–78. [CrossRef]

33. Örbom, A.; Ahlstedt, J.; Serèn, T.; Auterinen, I.; Kotiluoto, P.; Hauge, H.; Östlund, K.; Olafsen, T.; Wu, A.M.; Dahlbom, M.;
et al. Characterization of a double-sided silicon strip detector autoradiography system. Med Phys. 2015, 42, 575–584. [CrossRef]
[PubMed]

http://doi.org/10.1021/bc300678y
http://doi.org/10.1002/jlcr.3619
http://doi.org/10.1016/j.nucmedbio.2006.08.001
http://www.ncbi.nlm.nih.gov/pubmed/17045168
http://www.ncbi.nlm.nih.gov/pubmed/7850803
http://doi.org/10.1016/j.nucmedbio.2011.05.003
http://doi.org/10.1021/bc00033a012
http://doi.org/10.1073/pnas.92.19.8999
http://www.ncbi.nlm.nih.gov/pubmed/7568060
http://doi.org/10.1016/j.jconrel.2018.06.016
http://doi.org/10.1021/acsnano.6b02776
http://www.ncbi.nlm.nih.gov/pubmed/11406547
http://doi.org/10.1016/j.nano.2015.07.015
http://www.ncbi.nlm.nih.gov/pubmed/26282377
http://doi.org/10.1016/j.tips.2007.11.004
http://doi.org/10.1038/nrc1893
http://doi.org/10.3389/fimmu.2017.01287
http://doi.org/10.1186/s41181-019-0075-2
http://doi.org/10.1016/0003-2697(84)90517-7
http://doi.org/10.1118/1.4905049
http://www.ncbi.nlm.nih.gov/pubmed/25652478

	Introduction 
	Results 
	SPR 
	Conjugation of hu5A10 and Radiolabeling 
	In Vivo SPECT/CT Imaging 
	Uptake Study in 22RV1 Xenografts 
	Autoradiography, Immunohistochemistry, and Immunofluorescence 
	Therapeutic Efficacy 

	Discussion 
	Materials and Methods 
	SPR 
	Conjugation of hu5A10 and Radiolabeling 
	In Vivo SPECT/CT Imaging 
	Uptake Study 
	Autoradiography, Immunohistochemistry, and Immunofluorescence 
	Therapeutic Efficacy 

	Conclusions 
	Patents 
	
	Method 
	Conjugation 
	Labeling Chemistry 
	In Vivo SPECT/CT Imaging 
	PSA and Ki67 Immunohistochemistry 
	Double Immunofluorescence Labeling 

	Results 

	References

